Skip to main content

Regulation of Lipid Metabolism by Cyclic Nucleotides

  • Chapter
Cyclic Nucleotides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 58 / 2))

Overview

The intracellular concentration of cyclic AMP regulates triglyceride breakdown in adipocytes. However, it remains to be established whether hormones which activate lipolysis exert their effects solely through cyclic AMP. Under appropriate conditions, all agents which increase lipolysis in adipocytes increase cyclic AMP formation. Catecholamines and other activators of adipocyte lipolysis also increase the activity of adenylate cyclase, protein kinase and triacylglycerol lipase. Cholera toxin, after a lag period of 30–90 min, increases cyclic AMP accumulation in adipocytes and accelerates triglyceride breakdown. Cholera toxin inhibits the guanosine triphosphatase involved in conversion of active to inactive adenylate cyclase through NAD ribosylation of a plasma membrane protein. The addition of adenosine deaminase to rat adipocytes rapidly activates adenylate cyclase by removing membrane-bound adenosine which exerts an inhibitory constraint on basal adenylate cyclase activity. Thyroid hormones regulate adenylate cyclase activity of adipocytes by affecting the coupling of the hormone-receptor complexes to adenylate cyclase. Growth hormone also activates adenylate cyclase through a process involving synthesis of a protein(s).

Methyl xanthines and other inhibitors of cyclic AMP phosphodiesterase increase lipolysis. However, there are no hormones whose effects on lipolysis can be attributed to regulation of cyclic AMP phosphodiesterase. The effects of methyl xanthines on cyclic AMP accumulation in rat adipocytes may be due primarily to antagonism of adenosine inhibition of adenylate cyclase. Insulin activates cyclic AMP phosphodiesterase activity of rat adipocytes; it is unlikely that this accounts for the anti-lipolytic action of insulin. Similarly, the lipolytic action of glucocorticoids does not appear to involve regulation of cyclic AMP metabolism. There is even evidence that agents such as ACTH and catecholamines may activate some process in addition to adenylate cyclase which contributes to their activation of lipolysis. One possibility is hormonal regulation of the availability of triglyceride stores in the central triglyceride droplet of adipocytes to the triacylglycerol lipase in the cytosol.

2-Adrenergic agonists inhibit hormone activated adenylate cyclase activity of adipocytes from hamsters and man. This appears to be a direct effect not mediated through calcium. There is an α 1-adrenergic effect in rat adipocytes which results in an increase in cytosol calcium. The increase in phos-phatidylinositol turnover seen with α-adrenergic agonists is exclusively an α 1-effect and may be involved in some unknown fashion with the release of bound intracellular calcium and entry of extracellular calcium. Alterations in the level of cytosol calcium have little effect on lipolysis; but an elevation of cytosol calcium inactivates glycogen synthase and activates glycogen phosphorylase. Insulin activates glycogen synthase in adipocytes but its action does not appear to involve either cytosol calcium, cyclic AMP, cyclic GMP, or H2O2. Insulin probably regulates mitochondrial pyruvate dehydrogenase and glycogen synthase through generation of an unknown second messenger. An attractive hypothesis is that the interaction of insulin with plasma membrane receptors results in activation of a protease which forms a polypeptide messenger.

The regulation of fatty acid synthesis by agents altering cyclic AMP is well recognized. Recent evidence supports the hypothesis that the key regulatory enzymes are subject to cyclic AMP dependent phosphorylation through protein kinase. Hormones activating triglyceride breakdown inhibit fatty acid synthesis; this is another example of reciprocal metabolic regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    PubMed  CAS  Google Scholar 

  • Aktories K, Jakobs KH, Schultz G (1979) Influence of sodium chloride on the inhibition of hamster fat cells adenylate cyclase by GTP and on the inhibitory effects of alpha-ad-renergic agonists and prostaglandin E1 (Abstr). Arch Pharmacol 308:R15

    Google Scholar 

  • Alexander MC, Kowaloff EM, Witters LA, Dennihy DT, Avruch J (1979) Purification of a hepatic 123,000-dalton hormone-stimulated 32P-peptide and its identification as ATP-citrate lyase. J Biol Chem 254:8052–8056

    PubMed  CAS  Google Scholar 

  • Angel A, Desai KS, Halperin ML (1971) Reduction in adipocyte ATP by lipolytic agents: relation to intracellular free fatty acid accumulation. J Lipid Res 12:203–211

    PubMed  CAS  Google Scholar 

  • Appleman MM, Thompson WJ, Russell TR (1973) Cyclic nucleotide phosphodiesterase. Adv Cyclic Nucleotide Res 3:65–98

    PubMed  CAS  Google Scholar 

  • Ariens EJ, Beld AJ, Miranda JFR, Simonis AM (1979) The pharmacon-receptor-effector concept. In: O’Brien RD (ed) Receptors: vol 1, General principles and procedures. Plenum, New York London, pp 33–91

    Google Scholar 

  • Armstrong KJ, Stouffer JE, Van Inwegen RG, Thompson WJ, Robison GA (1974) Effect of thyroid hormone deficiency on cyclic adenosine 3′,5′-monophosphate and control of lipolysis in fat cells. J Biol Chem 249:4226–4231

    PubMed  CAS  Google Scholar 

  • Arner P, Wennlund A, Ostman J (1979) Regulation of lipolysis by human adipose tissue in hyperthyroidism. J Clin Endocrinol Metab 48:415–419

    PubMed  CAS  Google Scholar 

  • Asakawa T, Ruiz J, Ho R-J (1978) Epinephrine-induced elevation of guanosine 3,5′-cyclic monophosphate in isolated fat cells of rat. Proc Natl Acad Sci USA 75:2684–2688

    PubMed  CAS  Google Scholar 

  • Ashby P, Bennett DP, Spencer IM, Robinson D (1978) Post-translational regulation of lipoprotein lipase activity in adipose tissue. Biochem J 176:865–872

    PubMed  CAS  Google Scholar 

  • Astwood EB (1965) The pituitary gland and the mobilization of fat. In: Renold AE, Cahill GF Jr (eds) Adipose tissue. American Physiological Society, Washington, DC (Handbook of physiology, sect 5, pp 529–532)

    Google Scholar 

  • Aurbach GD, Fedak SA, Woodard CJ, Palmer JS, Hauser D, Troxler F (1974) Beta-adrenergic receptor: stereospecific interaction of iodinated beta-blocking agent with high afinity site. Science 186:1223–1224

    PubMed  CAS  Google Scholar 

  • Avruch J, Leone GR, Martin DB (1976) Effects of epinephrine and insulin on phosphopep-tide metabolism in adipocytes. J Biol Chem 251:1511–1515

    PubMed  CAS  Google Scholar 

  • Bar HP, Hechter O (1969) Adenyl cyclase and hormone action. III. Calcium requirement for ACTH stimulation of adenyl cyclase. Biochem Biophys Res Commun 35:681–686

    PubMed  CAS  Google Scholar 

  • Baquer NZ, Cascales M, McLean P, Greenbaum AL (1976) Effects of thyroid hormone deficiency on the distribution of hepatic metabolites and control of pathways of carbohydrate metabolism in liver and adipose tissue of the rat. Eur J Biochem 68:403–413

    PubMed  CAS  Google Scholar 

  • Begin-Heick N, Heick HM (1977) Increased response of adipose tissue of the ob/ob mouse to the action of adrenaline after treatment with thyroxin. Can J Physiol Pharmacol 55:1320–1329

    PubMed  CAS  Google Scholar 

  • Belfrage P, Fredrikson G, Nilsson NO, Stralfors P (1980) Regulation of adipose tissue lipolysis: phosphorylation of hormone-sensitive lipase in intact rat adipocytes. FEBS Lett 111:120–124

    PubMed  CAS  Google Scholar 

  • Benjamin WB, Clayton N-L (1978) Action of insulin and catecholamines on the phosphorylation of proteins associated with the cytosol, membranes, and “fat cake” of rat fat cells. J Biol Chem 253:1700–1709

    PubMed  CAS  Google Scholar 

  • Benjamin WB, Singer I (1975) Actions of insulin, epinephrine and dibutyryl cyclic adenosine 5′ monophosphate on fat cell protein phosphorylations. Cyclic adenosine 5′-monophos-phate dependent and independent mechanisms. Biochemistry 14:3301–3309

    PubMed  CAS  Google Scholar 

  • Bennet V, Mong L, Cuatrecasas P (1975) Mechanism of activation of adenylate cyclase by Vibrio cholera enterotoxin. J Membr Biol 24:107–129

    Google Scholar 

  • Bensadoun A, Ehnholm C, Steinberg D, Brown WV (1974) Purification and characterization of lipoprotein lipase from pig adipose tissue. J Biol Chem 249:2220–2227

    PubMed  CAS  Google Scholar 

  • Bereziat G, Wolf C, Colard O, Polonovski J (1978) Phospholipases of plasmic membranes of adipose tissue. Possible intermediaries for insulin action. Adv Exp Biol 101:191–199

    CAS  Google Scholar 

  • Berridge MJ, Fain JN (1979) Inhibition of phosphatidylinositol synthesis and the inactiva-tion of calcium entry after prolonged exposure of the blowfly salivary gland to 5-hy-droxytryptamine. Biochem J 178:59–69

    PubMed  CAS  Google Scholar 

  • Bieber LL, Petterson B, Lindberg O (1975) Studies on norepinephrine-induced efflux of free fatty acid from hamster brown adipose tissue cells. Eur J Biochem 58:375–381

    PubMed  CAS  Google Scholar 

  • Bieck P, Stock K, Westermann E (1966) Lipolytic action of serotonin in vitro. Life Sci 5:2157–2163

    CAS  Google Scholar 

  • Bielmann P, Chretien M, Gattereau A (1972) Lipogenic activity of a potent lipolytic hormone: Sheep beta-lipotropin (β-LPH). II. Further effects of sheep β-LPH on specifically labeled glucose and the localization of the lipogenic active center of the molecule. Horm Metab Res 4:22–25

    PubMed  CAS  Google Scholar 

  • Birnbaumer L, Rodbell M (1969) Adenyl cyclase in fat cells. II. Hormone receptors. J Biol Chem 244:3477–3482

    PubMed  CAS  Google Scholar 

  • Bjorntorp P, Ostman J (1971) Human adipose tissue dynamics and regulation. Adv Metab Disord 5:277–327

    PubMed  CAS  Google Scholar 

  • Blackberg, Hernell O, Bengtsson G, Olivecrona T (1979) Colipase enhances hydrolysis of dietary triglycerides in the absence of bile salts. J Clin Invest 64:1303–1308

    PubMed  CAS  Google Scholar 

  • Blecher M (1967) The effects of insulin and phospholipase A on glucose transport across the plasma membrane of free adipose cells. Biochim Biophys Acta 137:557–571

    PubMed  CAS  Google Scholar 

  • Blecher M (1969) Insulin-like, antilipolytic actions of phospholipase A in isolated rat adipose cells. Biochim Biophys Acta 187:380–384

    PubMed  CAS  Google Scholar 

  • Bowery B, Lewis GP (1973) Inhibition of functional vasodilation and prostaglandin formation in rabbit adipose tissue by indomethacin and aspirin. Br J Pharmacol 47:305–314

    PubMed  CAS  Google Scholar 

  • Boyd TA, Wieser PB, Fain JN (1975) Lipolysis and cyclic AMP accumulation in isolated fat cells from chicks. Gen Comp Endocrinol 26:243–247

    PubMed  CAS  Google Scholar 

  • Brownsey RW, Hughes WA, Denton RM, Mayer RJ (1977) Demonstration of the phosphorylation of acetyl-coenzyme A carboxylase within intact rat epididymal fat cells. Biochem J 168:441–445

    PubMed  CAS  Google Scholar 

  • Brownsey RW, Hughes WA, Denton RM (1979) Adrenaline and the regulation of acetyl-coenzyme A carboxylase in rat epididymal adipose tissue. Biochem J 184:23–32

    PubMed  CAS  Google Scholar 

  • Burges RA, Blackburn KJ (1972) Adenyl cyclase and the differentiation of β-adrenorecep-tors. Nature 235:249–250

    CAS  Google Scholar 

  • Burns TW, Langley PE (1975) The effect of alpha- and beta-adrenergic receptor stimulation on the adenylate cyclase activity of human adipocytes. J Cyclic Nucleotide Res 1:321 – 328

    PubMed  CAS  Google Scholar 

  • Burns TW, Langley PE, Robison GA (1975) Site of free-fatty acid inhibition of lipolysis by human adipocytes. Metabolism 24:265–276

    PubMed  CAS  Google Scholar 

  • Burns TW, Langley PE, Terry BE, Bylund DB, Hoffman BB, Tharp MD, Lefkowitz RJ, Garcia-Sainz JA, Fain JN (1981) Pharmacological characterization of adrenergic receptors in human adipocytes. J Clin Invest 67:467–475

    PubMed  CAS  Google Scholar 

  • Butcher RW, Carlson LA (1970) Effects of secretin on fat mobilizing lipolysis and cyclic AMP levels in rat adipose tissue. Acta Physiol Scand 79:559–563

    PubMed  CAS  Google Scholar 

  • Butcher RW, Sutherland EW (1962) Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J Biol Chem 237:1244–1250

    PubMed  CAS  Google Scholar 

  • Butcher RW, Ho RJ, Meng HC, Sutherland EW (1965) Adenosine 3′,5′-monophosphate in biological materials. II. The measurement of adenosine 3′,5′-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J Biol Chem 240:4515–4523

    PubMed  CAS  Google Scholar 

  • Butcher RW, Sneyd JGT, Park CR, Sutherland EW Jr (1966) Effect of insulin on adenosine 3′,5′-monophosphate in the rat epididymal fat pad. J Biol Chem 241:1651–1653

    PubMed  CAS  Google Scholar 

  • Butcher RW, Baird CE, Sutherland EW (1968) Effects of lipolytic and antilipolytic substances on adenosine 3′,5′-monophosphate levels in isolated fat cells. J Biol Chem 243:1705–1712

    PubMed  CAS  Google Scholar 

  • Cabelli RJ, Malbon CC (1979) Characterization of (—)-[3H]dihydroalprenolol binding sites on isolated rat fat cells. J Biol Chem 254:8903–8908

    PubMed  CAS  Google Scholar 

  • Caldwell A, Fain JN (1971) Triiodothyronine stimulation of cyclic adenosine 3′,5′-mono-phosphate accumulation in white fat cells. Endocrinology 89:1195–1204

    PubMed  CAS  Google Scholar 

  • Carchman RA, Janus SC, Rubin RP (1971) The role of adrenocorticotropin and calcium in adenosine cyclic 3′,5′-phosphate production and steroid release from the isolated perfused cat adrenal gland. Mol Pharmacol 7:491–499

    PubMed  CAS  Google Scholar 

  • Carter JR Jr, Avruch J, Martin DB (1972) Glucose transport in plasma membrane vesicles from rat adipose tissue. J Biol Chem 247:2682–2688

    PubMed  CAS  Google Scholar 

  • Carter-Su C, Pillion DJ, Czech MP (1980) Reconstituted D-glucose transport from the adipocyte plasma membrane. Chromatographic resolution of transport activity from membrane glycoproteins using immobilized concanavalin A. Biochemistry 19:2374–2385

    PubMed  CAS  Google Scholar 

  • Cassel D, Selinger Z (1977) Mechanism of adenylate cyclase activation by cholera toxin: inhibition of GTP hydrolysis at the regulatory site. Proc Natl Acad Sci USA 74:3307–3311

    PubMed  CAS  Google Scholar 

  • Chang J, Lewis GP, Piper PJ (1977) Inhibition by glucocorticoids of prostaglandin release from adipose tissue in vitro. Br J Pharmacol 59:425–432

    PubMed  CAS  Google Scholar 

  • Chang KJ, Cuatrecasas P (1974) Adenosine triphosphate-dependent inhibition of insulin-stimulated glucose transport in fat cells. Possible role of membrane phosphorylation. J Biol Chem 249:3170–3180

    PubMed  CAS  Google Scholar 

  • Chasin M, Mamrak F, Koshelnyk K, Rispoli M (1977) Dissociation of lipolysis from the levels of cyclic AMP in rat epididymal fat cells. Arch Int Pharmacodyn Ther 227:180–194

    PubMed  CAS  Google Scholar 

  • Cheng CHK, Saggerson ED (1978 a) Rapid effects of noradrenaline on Mg2+-dependent phosphatidate phosphohydrolase activity in rat adipocytes. FEBS Lett 87:65–68

    PubMed  CAS  Google Scholar 

  • Cheng CHK, Saggerson ED (1978 b) Rapid antagonistic actions of noradrenaline and insulin on rat adipocyte phosphatidate phosphohydrolase activity. FEBS Lett 93:120–124

    PubMed  CAS  Google Scholar 

  • Christ EJ, Nugteren DH (1970) The biosynthesis and possible function of prostaglandins in adipose tissue. Biochim Biophys Acta 218:296–307

    CAS  Google Scholar 

  • Combret Y, Laudat P (1972) Adenyl cyclase activity in a plasma membrane fraction purified from “ghosts” of rat fat cells. FEBS Lett 21:45–48

    PubMed  CAS  Google Scholar 

  • Cooper B, Partilla JS, Gregerman RT (1975) Expression of epinephrine-sensitive activation revealed by 5′-guanylyl-imidodiphosphate. Clin Invest 56:1350–1353

    CAS  Google Scholar 

  • Cooper MF, Schlegel W, Lin MC, Rodbell M (1979) The fat cell adenylate cyclase system. J Biol Chem 254:8927–8931

    PubMed  CAS  Google Scholar 

  • Coore HG, Denton RM, Martin BR, Randle PJ (1971) Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones. Biochem J 125:115–127

    PubMed  CAS  Google Scholar 

  • Corbin JD, Krebs EG (1969) A cyclic AMP — stimulated protein kinase in adipose tissue. Biochem Biophys Res Commun 36:328–338

    PubMed  CAS  Google Scholar 

  • Corbin JD, Reimann EM, Walsh DA, Krebs EG (1970) Activation of adipose tissue lipase by skeletal muscle cyclic adenosine-3′,5′-monophosphate-stimulated protein kinase. J Biol Chem 245:4849–4851

    PubMed  CAS  Google Scholar 

  • Corbin JD, Soderling TR, Park CR (1973) Regulation of adenosine 3′,5′-monophosphate-dependent protein kinase. 1. Preliminary characterization of the adipose tissue enzyme in crude extracts. J Biol Chem 248:1813–1821

    PubMed  CAS  Google Scholar 

  • Corbin JD, Soderling TR, Sugden PH, Keely SL, Park CR (1976) Control of metabolic processes by cAMP-dependent protein phosphorylation. In: Dumont JE, Brown BL, Marshall NJ (eds) Eukaryotic cell function and growth. Plenum, New York London, pp 231–247

    Google Scholar 

  • Correze C, Laudat MH, Laudat P, Nunez J (1974) Hormone-dependent lipolysis in fat cells from thyroidectomized rats. Mol Cell Endocrinol 1:309–327

    PubMed  CAS  Google Scholar 

  • Correze C, Auclair R, Nunez J (1976) Cyclic nucleotide phosphodiesterases, insulin and thyroid hormones. Mol Cell Endocrinol 5:67–79

    PubMed  CAS  Google Scholar 

  • Correze C, Nunez J, Gordon A (1977) Thyroid hormones and lipogenesis from glucose in rat fat cells. Mol Cell Endocrinol 9:133–144

    PubMed  CAS  Google Scholar 

  • Cote TE, Epand RM (1979) Na-trinitrophenyl glucagon. An inhibitor of glucagon-stimulat-ed cyclic AMP production and its effects on glycogenolysis. Biochim Biophys Acta 582:295–306

    PubMed  CAS  Google Scholar 

  • Cryer PE, Jarett L, Kipnis DM (1969) Nucleotide inhibition of adenyl cyclase activity in fat cell membranes. Biochim Biophys Acta 177:586–590

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P (1973) Cholera toxin-fat cell interaction and the mechanism of activation of the lipolytic response. Biochemistry 12:3567–3577

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P, Hollenberg MD, Chang K, Bennett V (1975) Hormone receptor complexes and their modulation of membrane function. Recent Prog Horm Res 31:37–94

    PubMed  CAS  Google Scholar 

  • Czech MP (1976 a) Differential effects of sulfhydryl reagents on activation and deactivation of the fat cell hexose transport system. J Biol Chem 251:1164–1170

    PubMed  CAS  Google Scholar 

  • Czech MP (1976 b) Regulation of the D-glucose transport system in isolated fat cells. Mol Cell Biochem 11:51–63

    PubMed  CAS  Google Scholar 

  • Czech MP (1977) Molecular basis of insulin action. Annu Rev Biochem 46:359–384

    PubMed  CAS  Google Scholar 

  • Czech MP (1980) Insulin action and the regulation of hexose transport. Diabetes 29:399–409

    PubMed  CAS  Google Scholar 

  • Czech MP (1981) Insulin action: second messengers. In: Brownlee M (ed) Handbook of diabetes mellitus: Vol. 2. Jarland STPM Press, New York, pp. 117–149

    Google Scholar 

  • Czech MP, Lynn WS (1973) Stimulation of glucose metabolism by lectins in isolated white fat cells. Biochim Biophys Acta 297:368–377

    PubMed  CAS  Google Scholar 

  • Czech MP, Lawrence JC Jr, Lynn WS (1974 a) Evidence for the involvement of sulfhydryl oxidation in the regulation of fat cell hexose transport by insulin. Proc Natl Acad Sci USA 71:4173–4177

    PubMed  CAS  Google Scholar 

  • Czech MP, Lawrence JC, Lynn WS (1974 b) Evidence for electron transfer reactions involved in the Cu2+-dependent thiol activation of fat cell glucose utilization. J Biol Chem 249:1001–1006

    PubMed  CAS  Google Scholar 

  • Czech MP, Malbon C, Kerman K, Gitomer W, Pilch PF (1980) Effect of thyroid status on insulin action in rat adipocytes and skeletal muscle. J Clin Invest 66, 574–582

    PubMed  CAS  Google Scholar 

  • Dalton C, Hope HR (1973) Inability of prostaglandin synthesis inhibitors to affect adipose tissue lipolysis. Prostaglandins 4:641–651

    PubMed  CAS  Google Scholar 

  • Dalton C, Hope WC (1974) Cyclic AMP regulation of prostaglandin biosynthesis in fat cells. Prostaglandins 6:227–242

    PubMed  CAS  Google Scholar 

  • Davies JI (1968) In vitro regulation of the lipolysis of adipose tissue. Nature 218:349–352

    PubMed  CAS  Google Scholar 

  • Debons AF, Schwartz IL (1961) Dependence of the lipolytic action of epinephrine in vitro upon thyroid hormone. J Lipid Res 2:86–89

    CAS  Google Scholar 

  • De Cingolani GEC, Van Den Bosch H, Van Deenen LLM (1972) Phospholipase A and lysophospholipase activities in isolated fat cells: effect of cyclic 3′,5′-AMP. Biochim Biophys Acta 260:387–393

    PubMed  Google Scholar 

  • Denton RM, Hughes WA (1978) Pyruvate dehydrogenase and the hormonal regulation of fat synthesis in mammalian tissues. Int J Biochem 9:545–552

    PubMed  CAS  Google Scholar 

  • Denton RM, Hughes WA, Bridges BJ, Brownsey RW, McCormack JG, Stansbie D (1978) Regulation of mammalian pyruvate dehydrogenase by hormones. In: Dumont J, Nunez J (eds) Hormones and cell regulation. Elsevier/North-Holland Biomedical, Amsterdam Oxford New York, pp 121–208

    Google Scholar 

  • Desai K, Hollenberg CH (1975) Regulation, by insulin, of lipoprotein lipase and phosphodiesterase activities in rat adipose tissue. Isr J Med Sci 11:540–550

    PubMed  CAS  Google Scholar 

  • Desai KS, Li KC, Angel A (1973) Bimodal effect of insulin on hormone-stimulated lipolysis. Relation to intracellular 3′,5′-cyclic adenylic acid and free fatty acid levels. J Lipid Res 14:647–655

    PubMed  CAS  Google Scholar 

  • Desai K, Zinman B, Hollenberg CH (1976) Role of calcium in insulin induced inhibition of lipolysis and activation of phosphodiesterase. Clin Res 24:680A

    Google Scholar 

  • Diamant S, Gorin E, Shafrir E (1972) Enzyme activities related to fatty acid synthesis in liver and adipose tissue of rats treated with triiodothyroinine. Eur J Biochem 26:553–559

    PubMed  CAS  Google Scholar 

  • Dole VP (1956) A relation between non-esterified fatty acids in plasma and the metabolism of glucose. J Clin Invest 35:150–154

    PubMed  CAS  Google Scholar 

  • Dole VP (1961) Effect of nucleic acid metabolites on lipolysis in adipose tissue. J Biol Chem 236:3125–3130

    PubMed  CAS  Google Scholar 

  • Drahota Z, Houstek J (1976) Biochemical aspects of non-shivering thermogenesis in brown adipose tissue. In: Jansky L, Musacchia XJ (eds) Regulation of depressed metabolism and thermogenesis. Thomas, Springfied, pp 213–224

    Google Scholar 

  • Drahota Z, Honova E, Han P (1968) The effect of ATP and carnitine on the endogenous respiration of mitochondria from brown adipose tissue. Experientia 24:431–432

    PubMed  CAS  Google Scholar 

  • Ebert R, Schwabe U (1973) Antilipolytic effect of adenosine and purine bases in isolated fat cells. Arch Pharm (Weinheim) 278:247–259

    CAS  Google Scholar 

  • Eckel RH, Fujimoto WY, Brunzell JD (1977) Development of lipoprotein lipase in cultured 3T3–L1 cells. Biochem Biophys Res Commun 78:288–293

    PubMed  CAS  Google Scholar 

  • Eisen HJ, Goodman HM (1969) Growth hormone and phosphorylase activity in adipose tissue. Endocrinology 84:414–416

    PubMed  CAS  Google Scholar 

  • Evans DJ Jr, Chen LC, Curlin GT, Evans DG (1972) Stimulation of adenyl cyclase by esch-erichia coli enterotoxin. Nature New Biol 236:137–138

    PubMed  CAS  Google Scholar 

  • Fain JN (1962) Effects of dexamethasone and growth hormone on fatty acid mobilization and glucose utilization in adrenalectomized rats. Endocrinology 71:633–635

    CAS  Google Scholar 

  • Fain JN (1967 a) Adrenergic blockade of hormone-induced lipolysis in isolated fat cells. Ann NY Acad Sci 139:879–890

    PubMed  CAS  Google Scholar 

  • Fain JN (1967 b) Studies on the role of RNA and protein synthesis in the lipolytic action of growth hormone in isolated fat cells. Adv Enzyme Regul 5:39–51

    PubMed  CAS  Google Scholar 

  • Fain JN (1971) Effects of menadione and vitamin K5 on glucose metabolism, respiration, lipolysis, cyclic 3′,5′-adenylic acid accumulation, and adenyl cyclase in white fat cells. Mol Pharmacol 7:465–479

    PubMed  CAS  Google Scholar 

  • Fain JN (1973 a) Inhibition of cyclic adenosine 3′,5′-monophosphate accumulation in fat cells by adenosine N6-(phenylisopropyl)adenosine and related compounds. Mol Pharmacol 9:595–604

    PubMed  CAS  Google Scholar 

  • Fain JN (1973 b) Biochemical aspects of drug and hormone action on adipose tissue. Pharmacol Rev 25:67–118

    PubMed  CAS  Google Scholar 

  • Fain JN (1974) Mode of action of insulin. MTP Int Rev Sci Ser. One Biochem. 8:1–24

    CAS  Google Scholar 

  • Fain JN (1977) Cyclic nucleotides in adipose tissue. In: Cramer H, Schultz J (eds) Cyclic nucleotides: mechanisms of action, John Wiley and Sons, New York Chichester, pp 207–228

    Google Scholar 

  • Fain JN (1979 a) Effect of lipolytic agents on adenosine and AMP formation by fat cells. Biochim Biophys Acta 573:510–520

    PubMed  CAS  Google Scholar 

  • Fain JN (1979 b) Inhibition of glucose transport in fat cells and activation of lipolysis by glucocorticoids. Monogr Endocrinol 12:547–560

    PubMed  CAS  Google Scholar 

  • Fain JN (1980) Hormonal regulation of lipid mobilization from adipose tissue. In: Litwack G (ed) Biochemical actions of hormones, vol 7. Academic Press, New York London, pp 119–204

    Google Scholar 

  • Fain JN, Berridge MJ (1979) Relationship between hormonal activation of phosphatidyl-inositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland. Biochem J 178:45–58

    PubMed  CAS  Google Scholar 

  • Fain JN, Butcher FR (1976) Cyclic guanosine 3′,5′-monophosphate and the regulation of lipolysis in rat fat cells. J Cyclic Nucleotide Res 2:71–78

    PubMed  CAS  Google Scholar 

  • Fain JN, Czech MP (1975) Glucocorticoid effects on lipid mobilization and adipose tissue metabolism. In: Blasehko H, Sayers G, Smith D (eds) adrenal gland American Physiological Society, Washington, DC (Handbook of physiology, sect 7, vol 6, pp 169–178)

    Google Scholar 

  • Fain JN, Malbon CC (1979) Regulation of adenylate cyclase by adenosine. Mol Cell Biochem 25:143–169

    PubMed  CAS  Google Scholar 

  • Fain JN, Rosenberg L (1972) Antilipolytic action of insulin on fat cells. Diabetes 21:414–425

    PubMed  CAS  Google Scholar 

  • Fain JN, Rosenthal JW (1971) Calorigenic action of triiodothyronine on white fat cells: effects of ouabain oligomycin, and catecholamines. Endocrinology 89:1205–1211

    PubMed  CAS  Google Scholar 

  • Fain JN, Saperstein R (1970) The involvement of RNA synthesis and cyclic AMP in the activation of fat cell lipolysis by growth hormone and glucocorticoids. In: Jeanrenaud B, Hepp D (eds) Adipose tissue: regulation and metabolic functions. Academic Press, New York London, pp 20–27

    Google Scholar 

  • Fain JN, Shepherd RE (1975) Free fatty acids as feedback regulators of adenylate cyclase and cyclic AMP accumulation in rat fat cells. J Biol Chem 250:6586–6592

    PubMed  CAS  Google Scholar 

  • Fain JN, Shepherd RE (1979) Hormonal regulation of lipolysis: role of cyclic nucleotides, adenosine and free fatty acids. Adv Exp Biol Med 111:43–78

    CAS  Google Scholar 

  • Fain JN, Wieser PB (1975) Effects of adenosine deaminase on cyclic adenosine monophosphate accumulation, lipolysis and glucose metabolism of fat cells. J Biol Chem 250:1027–1034

    PubMed  CAS  Google Scholar 

  • Fain JN, Kovacev VP, Scow RO (1965) Effect of growth hormone and dexamethasone on lipolysis and metabolism in isolated fat cells of the rat. J Biol Chem 240:3522–3529

    PubMed  CAS  Google Scholar 

  • Fain JN, Galton DJ, Kovacev VP (1966) Effect of drugs on the lipolytic action of hormones in isolated fat cells. Mol Pharmacol 2:237–247

    PubMed  CAS  Google Scholar 

  • Fain JN, Dodd A, Novak L (1971) Relationship of protein synthesis and cyclic AMP to lipolytic action of growth hormone and glucocorticoids. Metabolism 20:109–118

    PubMed  CAS  Google Scholar 

  • Fain JN, Pointer RH, Ward WF (1972) Effects of adenosine nucleotides on adenylate cyclase, phosphodiesterase, cyclic adenosine monophosphate accumulation, and lipolysis in fat cells. J Biol Chem 247:6866–6872

    PubMed  CAS  Google Scholar 

  • Fain JN, Psychoyos S, Czernik AJ, Frost S, Cash WD (1973 a) Indomethacin, lipolysis and cyclic AMP accumulation in white fat cells. Endocrinology 93:632–639

    PubMed  CAS  Google Scholar 

  • Fain JN, Jacobs MD, Clement-Cormier YC (1973 b) Interrelationship of cyclic AMP, lipolysis and respiration in brown fat cells. Am J Physiol 224:346–351

    PubMed  CAS  Google Scholar 

  • Fain JN, Shepherd RE, Malbon CC, Moreno FJ (1978) Hormonal Regulation of the breakdown of triglyceride. In: Dietschy JN (ed) Disturbances in lipids and lipoprotein metabolism. American Physiological Society, Washington DC, pp 213–228

    Google Scholar 

  • Fain JN, Li S-Y, Moreno FJ (1979) Regulation of cyclic AMP metabolism and lipolysis in isolated rat fat cells by insulin, N6-(phenylisopropyl)adenosine and 2′,5′-dideoxyadenosine. J Cyclic Nucleotide Res 5:189–196

    PubMed  CAS  Google Scholar 

  • Fain JN, Kabnick KS, Li S-Y (1981) Effects of melittin on adipocyte metabolism unrelated to lysophospholipid accumulation. Biochim Biophys Acta 677:274–279

    PubMed  CAS  Google Scholar 

  • Fassina G, Contessa AR (1967) Digitoxin and prostaglandin E1 as inhibitors of catechol-amine-stimulated lipolysis and their interaction with Ca2+ in the process. Biochem Pharmacol 16:1447–1453

    PubMed  CAS  Google Scholar 

  • Feller DR, Piascik MT, Miller DD (1978) Activation of adrenoceptors and adenylate cyclase in adipocytes by catecholamines and tetrahydroisoquinolines. In: Szabadi E, Bradshaw CM, Bevan P (eds) Recent advances in the pharmacology of adrenoceptors. Elsevier/North-Holland Biomedical, Amsterdam Oxford New York, pp 111–120

    Google Scholar 

  • Flatmark T, Pedersen JI (1975) Brown adipose tissue mitochondria. Biochim Biophys Acta 416:53–103

    PubMed  CAS  Google Scholar 

  • Flier JS, Kahn CR, Jarrett DB, Roth J (1976) Characterization of antibodies to the insulin receptor: a cause of insulin-resistant diabetes in man. J Clin Invest 58:1442–1449

    PubMed  CAS  Google Scholar 

  • Forn J, Greengard P (1976) Regulation by lipolytic and antilipolytic compounds of the phosphorylation of specific proteins in isolated intact fat cells. Arch Biochem Biophys 176:721–733

    PubMed  CAS  Google Scholar 

  • Foss I, Sletten K, Trygstad O (1973) Studies on the primary structure and biological activity of a human neurophysin. FEBS Lett 30:151–156

    PubMed  CAS  Google Scholar 

  • Fredholm BB (1978) Local regulation of lipolysis in adipose tissue by fatty acids, prostaglandins and adenosine. Med Biol 59:249–261

    Google Scholar 

  • Fredholm BB, Hedqvist P (1975) Indomethacin and the role of prostaglandins in adipose tissue. Biochem Pharmacol 24:61–66

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Hjemdahl P (1979) Uptake and release of adenosine in isolated rat fat cells. Acta Physiol Scand 105:257–267

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Rosell S (1970) Release of prostaglandin-like material from canine subcutaneous adipose tissue by nerve stimulation. Acta Physiol Scand 79:18 A

    Google Scholar 

  • Fredrikson G, Stralfors P, Nilsson NO, Belfrage P (1981) Hormone-sensitive lipase of rat adipose tissue: purification and some properties. J Biol Chem 256:6311–6320

    PubMed  CAS  Google Scholar 

  • Freinkel N (1961) Extrathyroidal actions of pituitary thyrotropin: effects on the carbohydrate, lipid and respiratory metabolism of rat adipose tissue. J Clin Invest 40:476–489

    PubMed  CAS  Google Scholar 

  • Garcia-Sainz JA, Fain JN (1980 a) Effect of insulin, catecholamines and calcium on phospholipid metabolism in isolated white fat cells. Biochem J 186:781–789

    PubMed  CAS  Google Scholar 

  • Garcia-Sainz JA, Fain JN (1980 b) Effect of adrenergic amines on phosphatidylinositol labelling and glycogen synthase activity in fat cells from euthyroid and hypothyroid rats. Mol Pharmacol 18:116–121

    Google Scholar 

  • Garcia-Sainz JA, Hoffmann BB, Li S-H, Lefkowitz RJ, Fain JN (1980) Role of alpha1 adrenoceptors in the turnover of phosphatidylinositol and alpha2 adrenoceptors in the regulation of cyclic AMP accumulation in hamster adipocytes. Life Sci 27:953–961

    CAS  Google Scholar 

  • Gill DM, Meren R (1978) ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of the activation of adenylate cyclase. Proc Natl Acad Sci USA 75:3050–3054

    PubMed  CAS  Google Scholar 

  • Girardier L, Seydoux J (1971) Cytomembrane phenomena during stimulation of brown fat thermogenesis by norepinephrine in non-shivering thermogenesis. In: Jansky L (ed) Nonshivering thermogenesis. Academia, Prague, pp 255–270

    Google Scholar 

  • Girardier L, Seydoux J, Clausen T (1968) Membrane potential of brown adipose tissue. J Gen Physiol 52:925–940

    PubMed  CAS  Google Scholar 

  • Giudicelli Y (1978) Thyroid hormone modulation of the number of β-adrenergic receptors in rat fat cell membranes. Biochem J 176:1007–1010

    PubMed  CAS  Google Scholar 

  • Giudicelli Y, Pecquery R (1978) Beta-adrenergic receptors and catecholamine-sensitive adenylate cyclase in rat fat cell membranes: influence of growth, cell size and aging. Eur J Biochem 90:413–419

    PubMed  CAS  Google Scholar 

  • Giudicelli Y, Agli B, Lacasa D (1979 a) Beta-adrenergic receptor desensitization in rat adipocyte membranes. Biochim Biophys Acta 585:85–93

    PubMed  CAS  Google Scholar 

  • Giudicelli Y, Lacasa D, Agli B (1979 b) Evidence for a second desensitized state of beta-adrenergic receptor with low affinity for beta-antagonists and normal reactivity towards beta-agonists in adipocyte membranes previously exposed to beta-antagonists. Eur J Biochem 99:457–462

    PubMed  CAS  Google Scholar 

  • Goodman HM (1970) Permissive effects of hormones of lipolysis. Endocrinology 86:1064–1074

    PubMed  CAS  Google Scholar 

  • Goodman HM, Bray GA (1966) Role of thyroid hormones in lipolysis. Am J Physiol 210:1053–1058

    PubMed  CAS  Google Scholar 

  • Goodman HM, Schwartz J (1974) Growth hormone and lipid metabolism. In: Knobil E, Sawyer (eds). The pituitary gland and its neuroendocrine Catral. American Physiological Society, Washington, DC (Handbook of Physiology, sect 7, vol 4, part 2, pp 211–231)

    Google Scholar 

  • Gordon RS Jr, Cherkes A (1956) Unesterified fatty acids in human blood plasma. J Clin Invest 35:206–212

    PubMed  CAS  Google Scholar 

  • Gorman RR (1975) Prostaglandin endoperoxides: possible new regulators of cyclic nucleotide metabolism. J Cyclic Nucleotide Res 1:1–9

    CAS  Google Scholar 

  • Gorman RR, Tepperman HM, Tepperman J (1973) Epinephrine binding and the selective restoration of adenylate cyclase activity in fat-fed rats. J Lipid Res 14:279–285

    PubMed  CAS  Google Scholar 

  • Gorman RR, Hamberg M, Samuelsson B (1975) Inhibition of basal and hormone-stimulated adenylate cyclase in adipocyte ghosts by the prostaglandin endoperoxide prostaglandin H2. J Biol Chem 250:6460–6463

    PubMed  CAS  Google Scholar 

  • Goswami A, Rosenberg IN (1978) Thyroid hormone modulation of epinephrine-induced lipolysis in rat adipocytes: a possible role of calcium. Endocrinology 103:2223–2233

    PubMed  CAS  Google Scholar 

  • Gozariu L, Forster K, Faulhaber JD, Minne H, Ziegler R (1974) Parathyroid hormone and calcitonin: influences upon lipolysis of human adipose tissue. Horm Metab Res 6:243–245

    PubMed  CAS  Google Scholar 

  • Guernsey DL, Morishige WK (1979) Na+ pump activity and nuclear T3 receptors in tissues of genetically obese (ob/ob) mice. Metabolism 28:629–632

    PubMed  CAS  Google Scholar 

  • Guillory RJ, Racker E (1968) Oxidative phosphorylation in brown adipose mitochondria. Biochim Biphys Acta 153:490–493

    CAS  Google Scholar 

  • Guinovart JJ, Lawrence JC Jr, Larner J (1979) Hormonal effects on fat cell adenosine 3′,5′-monophosphate dependent protein kinase. Biochim Biophys Acta 539:181–194

    Google Scholar 

  • Habermann E (1972) Bee and wasp venoms. Science 177:314–322

    PubMed  CAS  Google Scholar 

  • Hagen JH (1961) Effect of glucagon on the metabolism of adipose tissue. J Biol Chem 236:1023–1027

    PubMed  CAS  Google Scholar 

  • Hales CN, Campbell AK, Luzio JP, Siddle K (1977) Calcium as mediator of hormone action. Biochem Soc Trans 5:866–872

    PubMed  CAS  Google Scholar 

  • Hales CN, Luzio JP, Siddle K (1978) Hormonal control of adipose tissue lipolysis. Biochem Soc Symp 43:97–135

    PubMed  CAS  Google Scholar 

  • Halestrap AP, Denton RM (1973) Insulin and the regulation of adipose tissue acetyl-coenzyme A carboxylase. Biochem J 132:509–517

    PubMed  CAS  Google Scholar 

  • Harms HH (1976) Stereochemical Aspects of β-adrenoceptor antagonist-receptor interaction in adipocytes. Differentiation of β-adrenoceptors in human and rat adipocytes. Life Sci 19:1447–1452

    PubMed  CAS  Google Scholar 

  • Harms HH, Zaagsma J, Van der Wal B (1974) Beta-adrenoceptor studies. III. On the beta-adrenoceptors in rat adipose tissue. Eur J Pharmacol 25:87–91

    PubMed  CAS  Google Scholar 

  • Heaton GM, Wagenvoord RJ, Kemp A Jr, Nicholls DG (1978) Brown adipose tissue mitochondria: photoaffinity labelling of the regulatory site of energy dissipation. Eur J Biochem 82:515–521

    PubMed  CAS  Google Scholar 

  • Hecht JP, Dellacha JM, Santome JA, Paladini AC, Hurwitz E, Sela M (1972) Lipolytic activity of bovine growth hormone bound to Sepharose beads. FEBS Lett 20:83–86

    PubMed  CAS  Google Scholar 

  • Hepp KD, Renner R (1972) Insulin action on the adenyl cyclase system: antagonism to activation of lipolytic hormones. FEBS Lett 20:191–194

    PubMed  CAS  Google Scholar 

  • Herd PA, Hammond RP, Hamolsky MW (1973) Sodium pump activity during norepineph-rine-stimulated respiration in brown adipocytes. Am J Physiol 224:1300–1304

    PubMed  CAS  Google Scholar 

  • Hewlett EL, Guerrant RL, Evand DJ Jr, Greenough WB III (1974) Toxins of vibrio cholerae and escherichia coli stimulate adenyl cyclase in rat fat cells. Nature 249:371–373

    PubMed  CAS  Google Scholar 

  • Hittelman KJ, Bertin R, Butcher RW (1974) Cyclic AMP metabolism in brown adipocytes of hamsters exposed to different temperatures. Biochim Biophys Acta 338:398–407

    CAS  Google Scholar 

  • Holmgren A (1979) Reduction of disulfides by thioredoxin. Exceptional reactivity of insulin and suggested functions of thioredoxin in mechanism of hormone action. J Biol Chem 254:9113–9119

    PubMed  CAS  Google Scholar 

  • Horwitz B (1973) Ouabain-sensitive component of brown fat thermogenesis. Am J Physiol 224:352–355

    PubMed  CAS  Google Scholar 

  • Horwitz BA (1979) Cellular events underlying catecholamine-induced thermogenesis: cation transport in brown adipocytes. Fed Proc 38:2170–2176

    PubMed  CAS  Google Scholar 

  • Huttunen JK, Steinberg D (1971) Activation and phosphorylation of purified adipose tissue hormone-sensitive lipase by cyclic AMP-dependent protein kinase. Biochim Biophys Acta 239:411–427

    PubMed  CAS  Google Scholar 

  • Huttunen JK, Steinberg D, Mayer SE (1970 a) ATP-dependent and cyclic AMP-dependent activation of rat adipose tissue lipase by protein kinase from rabbit skeletal muscle. Proc Natl Acad Sci USA 67:290–295

    PubMed  CAS  Google Scholar 

  • Huttunen JK, Steinberg D, Mayer SE (1970 b) Protein kinase activation and phosphorylation of purified hormone-sensitive lipase. Biochem Biophys Res Commun 41:1350–1356

    PubMed  CAS  Google Scholar 

  • Illiano G, Cuatrecasas P (1971) Endogenous prostaglandins modulate lipolytic processes in adipose tissue. Nature New Biol 234:72–74

    PubMed  CAS  Google Scholar 

  • Illiano G, Cuatrecasas P (1972) Modulation of adenylate cyclase activity in liver and fat cell membranes by insulin. Science 175:906–908

    PubMed  CAS  Google Scholar 

  • Illiano G, Tell GPE, Siegel MI, Cuatrecasas P (1973) Guanosine 3′,5′-cyclic monophosphate and the action of insulin. Proc Natl Acad Sci USA 70:2443–2447

    PubMed  CAS  Google Scholar 

  • Ismail-Beigi F, Edelman IS (1970) Mechanism of thyroid calorigenesis: role of active sodium transport. Proc Natl Acad Sci USA 67:1071–1078

    CAS  Google Scholar 

  • Iverius PH, Ostlund-Lindqvist AM (1976) Lipoprotein lipase from bovine milk. J Biol Chem 251:7791–7795

    PubMed  CAS  Google Scholar 

  • Jakobs KH (1978) Inhibition of platelet adenylate cyclase by alpha-adrenergic agonists. In: Folco G, Paoletti (eds) Molecular biology and pharmacology of cyclic nucleotides. Elsevier, Amsterdam Oxford New York, pp 265–277

    Google Scholar 

  • Janski AM, Srere PA, Cornell NW, Veech RL (1979) Phosphorylation of ATP citrate lyase in response to glucagon. J Biol Chem 254:9365–9368

    PubMed  CAS  Google Scholar 

  • Jarett L, Seals JR 1979) Pyruvate dehydrogenase activation in adipocyte mitochondria by an insulin generated mediator from muscle. Science 206:1407–1408

    PubMed  CAS  Google Scholar 

  • Jeanrenaud B, Hepp D (eds) (1970) Adipose-tissue, regulation and metabolic functions. Thieme, Stuttgart

    Google Scholar 

  • Jones LM, Michell RH (1978) Stimulus-response coupling at alpha-adrenergic receptors. Biochem Soc Trans 6:673–688

    PubMed  CAS  Google Scholar 

  • Jungas RL (1966) Role of cyclic 3′,5′-AMP in the response of adipose tissue to insulin. Proc Natl Acad Sci USA 56:757–763

    PubMed  CAS  Google Scholar 

  • Jungas RL (1975) Metabolic effects on adipose tissue in vitro. In: Hasselblatt A, Bruch-hausen FV (eds) Insulin action. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology, vol XXXII/2, pp 371–412)

    Google Scholar 

  • Kahn CR, Baird K, Flier JS, Jarrett DB (1977) Effects of autoantibodies to the insulin receptor on isolated adipocytes. J Clin Invest 60:1094–1106

    PubMed  CAS  Google Scholar 

  • Kanfer JN, Carter TP, Katzen HM (1976) Lipolytic action of cholera toxin on fat cells. Reexamination of the concept implicating GM1 ganglioside as the native membrane receptor. J Biol Chem 251:7610–7619

    PubMed  CAS  Google Scholar 

  • Kaplan JC, Pichard AL, Laudat MH, Laudat P (1973) Kinetic and electrophoretic abnormality of cyclic AMP phosphodiesterase in genetically obese mouse adipocytes. Biochem Biophys Res Commun 51:1008–1014

    PubMed  CAS  Google Scholar 

  • Kappeler H (1966) Zur Pharmakologie der Lipolysehemmung. I. Wirkungsweise adenosin-haltiger Nucleoside und Nucleotide auf die Lipolyse des Fettgewebes in vitro. Diabetologia 2:52–61

    PubMed  CAS  Google Scholar 

  • Kather H, Geiger M (1977) Adrenaline-sensitive adenylate cyclase of human fat cell ghosts: properties and hormone-sensitivity. Eur J Clin Invest 7:363–371

    PubMed  CAS  Google Scholar 

  • Kather H, Simon B (1977) Catecholamine-sensitive adenylate cyclase of human fat cell ghosts: a comparative study using different beta-adrenergic agents. Metabolism 26:1179–1184

    PubMed  CAS  Google Scholar 

  • Katocs AS Jr, Largis EE, Allen DO (1974) Role of Ca2+ in adrenocorticotropic hormone-stimulated lipolysis in the perifused fat cell system. J Biol Chem 249:2000–2004

    PubMed  CAS  Google Scholar 

  • Khoo JC (1976) Ca2+-dependent activation of phosphorylase by phosphorylase kinase in adipose tissue. Biochim Biophys Acta 422:87–97

    PubMed  CAS  Google Scholar 

  • Khoo JC, Gill GN (1979) Comparison of cyclic nucleotide specificity of guanosine 3′:5′-monophosphate-dependent protein kinase and adenosine 3′:5′-monophosphate-depen-dent protein kinase. Biochim Biophys Acta 584:21–32

    PubMed  CAS  Google Scholar 

  • Khoo JC, Steinberg D (1974) Reversible protein kinase activation of a hormone-sensitive lipase from chicken adipose tissue. J Lipid Res 15:602–610

    PubMed  CAS  Google Scholar 

  • Khoo JC, Steinberg D, Thompson B, Mayer SE (1973) Hormonal regulation of adipocyte enzymes: the effects of epinephrine and insulin on the control of lipase, phosphorylase kinase, phosphorylase, and glycogen synthase. J Biol Chem 248:3823–3830

    PubMed  CAS  Google Scholar 

  • Khoo JC, Aguino AA, Steinberg D (1974) The mechanism of activation of hormone-sensitive lipase in human adipose tissue. J Clin Invest 53:1124–1131

    PubMed  CAS  Google Scholar 

  • Khoo JC, Steinberg D, Huang JJ, Vagelos PR (1976) Triglyceride, diglyceride, monogly-ceride, and cholesterol ester hydrolases in chicken adipose tissue activated by adenosine 3′,5′-monophosphate-dependent protein kinase. J Biol Chem 251:2882–2890

    PubMed  CAS  Google Scholar 

  • Khoo JC, Sperry PJ, Gill GN, Steinberg D (1977) Activation of hormone-sensitive lipase and phosphorylase kinase by purified cyclic GMP-dependent protein kinase. Proc Natl Acad Sci USA 74:4843–4847

    PubMed  CAS  Google Scholar 

  • Kimura N, Nagata N (1977) The requirement of guanine nucleotides for glucagon stimulation of adenylate cyclase in rat liver plasma membranes. J Biol Chem 252:3829–3835

    PubMed  CAS  Google Scholar 

  • Kishimoto T, Kikutani H, Nishizawa Y, Sakaguchi N, Yamamura Y (1979) Involvement of anti-Ig-activated serine protease in the generation of cytoplasmic factor(s) that are responsible for the transmission of Ig-receptor-mediated signals. J Immunol 123:1504–1510

    PubMed  CAS  Google Scholar 

  • Kissebah AH, Hope-Gill H, Vydelingum N, Tulloch BR, Clarke PV, Fraser TR (1975) Mode of insulin action. Lancet 144–147

    Google Scholar 

  • Kitabgi P, Rosselin G, Bataille D (1976) Interactions of glucagon and related peptides with chicken adipose tissue. Horm Metab Res 8:266–270

    PubMed  CAS  Google Scholar 

  • Knight BL (1974) Adenosine 3′,5′-cyclic phosphate, lipolysis and oxygen consumption in brown adipose tissue from newborn rabbits. Biochem Biophys Acta 343:287–296

    PubMed  CAS  Google Scholar 

  • Knight BL (1975) Adenosine 3′:5′-cyclic monophosphate-dependent protein kinase in brown fat from newborn rabbits. Biochim J 152:577–583

    CAS  Google Scholar 

  • Knight BL, Iliffe J (1973) The effect of glucose, insulin and noradrenaline on lipolysis, and on the concentrations of adenosine 3’:5’-monophosphate and adenosine 5’-triphosphate in adipose tissue. Biochem J 132:77–82

    PubMed  CAS  Google Scholar 

  • Kono T, Barham FW (1973) Effects of insulin on the levels of adenosine 3′,5′-monophosphate and lipolysis in isolated rat epididymal fat cells. J Biol Chem 248:7417–7426

    PubMed  CAS  Google Scholar 

  • Kono T, Robinson FW, Sarver JA (1975) Insulin-sensitive phosphodiesterase: its localization, hormonal stimulation, and oxidative stabilization. J Biol Chem 250:7826–7835

    PubMed  CAS  Google Scholar 

  • Krahl ME (1961) The action of insulin on cells. Academic Press, New York London

    Google Scholar 

  • Kunos G (1977) Thyroid hormone-dependent interconversion of myocardial alpha- and be-ta-adrenoreceptors in the rat. Br J Pharmacol 59:177–189

    PubMed  CAS  Google Scholar 

  • Kuo JF (1970) Differential effects of Ca2+, EDTA, and adrenergic blocking agents on the actions of some hormones on adenosine 3′,5′-monophosphate levels in isolated adipose cells as determined by prior labeling with (8–14C)adenine. Biochim Biophys Acta 208:509–516

    PubMed  CAS  Google Scholar 

  • Kupiecki FP (1971) Pharmacological control of free fatty acids. Prog Biochem Pharmacol 6:274–316

    CAS  Google Scholar 

  • Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214:597–598

    PubMed  CAS  Google Scholar 

  • Lang U, Schwyzer R (1976) The ACTH fat cell system as a model for hormone-receptor interaction. In: Parsons JA (ed) Peptide hormones. Macmillan, London, pp 337–348

    Google Scholar 

  • Lang U, Fauchere J-L, Pelican G-M, Karlaganis G, Schwyzer R (1976) Hormone-receptor interactions. Adrenocorticotrophin-(7–24)-octadecapeptide stimulates adipocyte membrane adenylate cyclase without causing lipolysis in fat cells. FEBS Lett 66:246–249

    PubMed  CAS  Google Scholar 

  • Larner J (1972) Insulin and glycogen synthase. Diabetes 21:428–438

    PubMed  CAS  Google Scholar 

  • Larner J, Lawrence JC, Walkenbach RJ, Roach PJ, Hazen RJ, Huang LC (1978) Insulin control of glycogen synthesis. Adv Cyclic Nucleotide Res 9:425–439

    PubMed  CAS  Google Scholar 

  • Larner J, Galasko J, Cheng G, DePaoli-Roach AA, Huang L, Daggy LP, Kellogg J (1979) Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation. Science 206:1408–1410

    PubMed  CAS  Google Scholar 

  • Lawrence JC Jr, Larner J (1977) Evidence for alpha-adrenergic activation of phosphorylase and inactivation of glycogen synthase in rat adipocytes. Mol Pharmacol 13:1060–1075

    PubMed  CAS  Google Scholar 

  • Lawrence JC Jr, Larner J (1978 a) Activation of glycogen synthase in rat adipocytes by insulin and glucose involves increased glucose transport and phosphorylation. J Biol Chem 253:2104–2113

    PubMed  CAS  Google Scholar 

  • Lawrence JC Jr, Larner J (1978 b) Effects of insulin, methoxamine, and calcium on glycogen synthase in rat adipocytes. Mol Pharmacol 14:1079–1091

    PubMed  CAS  Google Scholar 

  • Lawrence JC Jr, Guinovart JJ, Larner J (1977) Activation of rat adipocyte glycogen synthase by insulin. J Biol Chem 252:444–450

    PubMed  CAS  Google Scholar 

  • Laychock SG, Franson RC, Weglicki WB, Rubin RP (1977) Identification and partial characterization of phospholipases in isolated adrenocortical cells. Biochem J 164:753–756

    PubMed  CAS  Google Scholar 

  • Lee K-H, Kim K-H (1979) Stimulation by epinephrine of in vivo phosphorylation and inactivation of acetyl coenzyme A carboxylase of rat epididymal adipose tissue. J Biol Chem 254:1450–1453

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Roth J, Pastan I (1970) Effects of calcium on ACTH stimulation of the adrenal: separation of hormone binding from adenyl cyclase activation. Nature 228:864–866

    PubMed  CAS  Google Scholar 

  • Levin L, Farber RK (1952) Hormones and metabolism. Hormonal factors which regulate the mobilization of depot fat to the liver. Recent Prog Horm Res 7:399–435

    Google Scholar 

  • Lewis GP, Piper PJ, Vigo C (1979) The effects of glucocorticoids on the distribution and mobilization of arachidonic acid in fat cell ghosts. Br J Pharmacol 67:393–400

    PubMed  CAS  Google Scholar 

  • Li CH (1978) Hormonal proteins and peptides, vol 5: Lipotropin and related peptides. Academic Press, New York London

    Google Scholar 

  • Lindberg O, Bieber LL, Houstek J (1976) Brown adipose tissue metabolism; an attempt to apply results from in vitro experiments on tissue in vivo. In: Jansky L, Musacchia XJ (eds) Regulation of depressed metabolism and thermogenesis. Thomas, Springfield, pp 117–136

    Google Scholar 

  • Livingston JN, Gurny PA, Lockwood DH (1977) Insulin-like effects of polyamines in fat cells. J Biol Chem 252:560–562

    PubMed  CAS  Google Scholar 

  • Lohmar P, Li CH (1968) Biological properties of ovine beta lipotropin hormone. Endocrinology 82:898–904

    PubMed  CAS  Google Scholar 

  • Londos C, Wolff J (1977) Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sci USA 74:5482–5486

    PubMed  CAS  Google Scholar 

  • Londos C, Salomon Y, Lin MC, Harwood JP, Schramm M, Wolff J, Rodbell M (1974) 5’-Guanylylimidodiphosphate, a potent activator of adenylate cyclase systems in eukary-otic cells. Proc Natl Acad Sci USA 71:3087–3090

    PubMed  CAS  Google Scholar 

  • Londos C, Cooper DMF, Schlegel W, Rodbell M (1978) Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sci USA 75:5362–5366

    PubMed  CAS  Google Scholar 

  • Lopez E, White JE, Engel FL (1959) Contrasting requirements for the lipolytic action of corticotropin and epinephrine on adipose tissue in vitro. J Biol Chem 234:2254–2258

    PubMed  CAS  Google Scholar 

  • Loten EG, Sneyd JGT (1970) An effect of insulin on adipose tissue adenosine 3′:5′-cyclic monophosphate phosphodiesterase. Biochem J 120:187–193

    PubMed  CAS  Google Scholar 

  • Malaisse WJ, Hutton JC, Kawazu S, Sener A (1978) The stimulus-secretion coupling of glucose-induced insulin release. Metabolic effects of menadione in isolated islets. Eur J Biochem 87:121–130

    PubMed  CAS  Google Scholar 

  • Malbon CC, Cabelli RJ (1978) Evaluation of the negative cooperativity model for fat cell beta-adrenergic receptors. Biochim Biophys Acta 544:93–101

    PubMed  CAS  Google Scholar 

  • Malbon CC, Gill DM (1979) ADP-ribosylation of membrane proteins and activation of adenylate cyclase by cholera toxin in fat cell ghosts from euthyroid and hypothyroid rats. Biochim Biophys Acta 586:518–527

    PubMed  CAS  Google Scholar 

  • Malbon CC, Moreno FJ, Cabelli RJ, Fain JN (1978) Fat cell adenylate cyclase and beta-adrenergic receptors in altered thyroid states. J Biol Chem 253:671–678

    PubMed  CAS  Google Scholar 

  • Malgieri JA, Shepherd RE, Fain JN (1975) Lack of feedback regulation of cyclic 3′:5′-AMP accumulation by free fatty acids in chicken fat cells. J Biol Chem 250:6593–6598

    PubMed  CAS  Google Scholar 

  • Manganiello V, Vaughan M (1973) An effect of insulin on cyclic adenosine 3′,5′-monophos-phate phosphodiesterase activity in fat cells. J Biol Chem 248:7164–7170

    PubMed  CAS  Google Scholar 

  • Manganiello VC, Lovell-Smith CJ, Vaughan M (1976) Effects of choleragen on hormonal responsiveness of adenylate cyclase in human fibroblasts and rat fat cells. Biochim Biophys Acta 451:62–71

    PubMed  CAS  Google Scholar 

  • May JM, de Haen C (1979 a) Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells. J Biol Chem 254:2214–2220

    PubMed  CAS  Google Scholar 

  • May JM, de Haen C (1979 b) The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. J Biol Chem 254:9017–9021

    PubMed  CAS  Google Scholar 

  • McDonald JM, Bruns DE, Jarett L (1976 a) Characterization of calcium binding to adipocyte plasma membranes. J Biol Chem 251:5345–5351

    PubMed  CAS  Google Scholar 

  • McDonald JM, Bruns DE, Jarett L (1976 b) Ability of insulin to increase calcium binding to adipocyte plasma membranes. Proc Natl Acad Sci USA 73:1542–1546

    PubMed  CAS  Google Scholar 

  • McDonald JM, Bruns DE, Jarett L (1978) Ability of insulin to increase calcium uptake by adipocyte endoplasmic reticulum. J Biol Chem 253:3504–3508

    PubMed  CAS  Google Scholar 

  • Meisner H, Carter JR Jr (1977) Regulation of lipolysis in adipose tissue. Horiz Biochem Biophys 4:91–129

    PubMed  CAS  Google Scholar 

  • Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415:81–147

    CAS  Google Scholar 

  • Michell RH (1979) Inositol phospholipids in membrane function. Trends Biochem Sci 4:128–131

    CAS  Google Scholar 

  • Michell RH, Jafferji SS, Jones LM (1977) The possible involvement of phosphatidylinositol breakdown in the mechanism of stimulus-response coupling at receptors which control cell-surface calcium gates. Adv Exp Med Biol 83:447–465

    PubMed  CAS  Google Scholar 

  • Miller DW, Allen DW (1971) Antilipolytic activity of 4-(2-hydroxy-3-isopropylaminopro-poxy) acetanilide (practolol). Proc Soc Exp Biol Med 136:715–718

    PubMed  CAS  Google Scholar 

  • Mitchell P (1979) Keilin’s respiratory chain concept and its chemiosomatic consequences. Science 206:1148–1159

    PubMed  CAS  Google Scholar 

  • Mollay C, Kreil G (1973) Fluorimetric measurements on the interaction of mellitin with lecithin. Biochim Biophys Acta 316:196–203

    PubMed  CAS  Google Scholar 

  • Mollay C, Kreil G (1974) Enhancement of bee venom phospholipase A2, activity by melittin, direct lytic factor from cobra venom and polymyxin B. FEBS Lett 46:141–144

    PubMed  CAS  Google Scholar 

  • Moskowitz J, Fain JN (1970) Stimulation by growth hormone and dexamethasone of labeled cyclic adenosine 3′,5′-monophosphate accumulation by white fat cells. J Biol Chem 245:1101–1107

    PubMed  CAS  Google Scholar 

  • Moyle WR, Kong YC, Ramachandran J (1973) Steroidogenesis and cyclic AMP accumulation in rat adrenal cells. J Biol Chem 248:2409–2417

    PubMed  CAS  Google Scholar 

  • Mukherjee C, Jungas RL (1975) Activation of pyruvate dehydrogenase in adipose tissue by insulin. Evidence for an effect of insulin on pyruvate dehydrogenase phosphate phosphatase. Biochem J 148:229–235

    PubMed  CAS  Google Scholar 

  • Mukherjee SP, Lynn WS (1977) Reduced nicotinamide adenine dinucleotide phosphate oxidase in adipocyte plasma membrane and its activation by insulin. Arch Biochem Bio-phys 184:69–76

    CAS  Google Scholar 

  • Mukherjee SP, Lane RH, Lynn WS (1978) Endogenous hydrogen peroxide and peroxida-tive metabolism in adipocytes in response to insulin and sulfhydryl reagents. Biochem Pharmacol 27:2589–2594

    PubMed  CAS  Google Scholar 

  • Nicholls DG (1976) The bioenergetics of knows adipose tissue mitochondria. FEBS Lett 61:103–110

    PubMed  CAS  Google Scholar 

  • Nicholls DG (1977) Hormonal control of brown adipose tissue metabolism. Biochem Soc Trans 5:908–912

    PubMed  CAS  Google Scholar 

  • Nicholls DG, Lindberg O (1973) Brown adipose tissue mitochondria. The Influence of albumin and nucleotides on passive ion permeabilities. Eur J Biochem 37:523–530

    PubMed  CAS  Google Scholar 

  • Nikkila EY, Pykalisto O (1968) Regulation of adipose tissue lipoprotein lipase synthesis by intracellular free fatty acid. Life Sci 7:1303–1309

    PubMed  CAS  Google Scholar 

  • Nilsson NO, Stralfors P, Fredrikson G, Belfrage P (1980) Regulation of adipose tissue lipolysis: effects of noradrenaline and insulin on phosphorylation of hormonesensitive lipase and on lipolysis in intact rat adipocytes. FEBS Lett 111:125–130

    PubMed  CAS  Google Scholar 

  • Nimmo HG, Houston B (1978) Rat adipose tissue glycerol phosphate acyltransferase can be inactivated by cyclic AMP-dependent protein kinase. Biochem J 176:607–610

    PubMed  CAS  Google Scholar 

  • Nyberg G, Smith U (1977) Human adipose tissue in culture. VII. The long-term of effect of growth hormone. Horm Metab Res 9:22–27

    PubMed  CAS  Google Scholar 

  • Ohisalo JJ, Stouffer JE (1979) Adenosine, thyroid status and regulation of lipolysis. Biochem J 178:249–251

    PubMed  CAS  Google Scholar 

  • Olsson RA, Davis CJ, Khouri EM, Patterson RE (1976) Evidence for an adenosine receptor on the surface of dog coronary myocytes. Circ Res 39:93–98

    PubMed  CAS  Google Scholar 

  • Pacuszka T, Moss J, Fishman PH (1978) A sensitive method for the detection of GM1-ganglioside in rat adipocyte preparations based on its interaction with choleragen. J Biol Chem 253:5103–5108

    PubMed  CAS  Google Scholar 

  • Paetzke-Brunner K, Schon H, Wieland OH (1978) Insulin activates pyruvate dehydrogenase by lowering the mitochondrial acetyl-CoA/CoA ratio as evidenced by digitonin fractionation of isolated fat cells. FEBS Lett 93:307–311

    PubMed  CAS  Google Scholar 

  • Patten RL (1970) The reciprocal regulation of lipoprotein lipase activity and hormone-sensitive lipase activity in rat adipocytes. J Biol Chem 245:5577–5584

    PubMed  CAS  Google Scholar 

  • Pawlson LG, Loveil-Smith CJ, Manganiello VC, Vaughan M (1974) Effects of epinephrine, adrenocorticotrophic hormone, and theophylline on adenosine 3′,5′-monophosphate phosphodiesterase activity in fat cells. Proc Natl Acad Sci USA 71:1639–1642

    PubMed  CAS  Google Scholar 

  • Pereira JN, Holland GF (1966) The effect of nicotinamide adenine dinucleotide on lipolysis in adipose tissue in vitro. Experientia 22:658–659

    CAS  Google Scholar 

  • Piascik MT, Osei-Gyimah P, Miller DD, Feller DR (1978) Stereoselective interaction of te-trahydroisoquinolines in β-adrenoceptor systems. Eur J Pharmacol 48:393–401

    PubMed  CAS  Google Scholar 

  • Pilch PF, Thompson PA, Czech MP (1980) Coordinate modulation of D-glucose transport activity and bilayer fluidity in plasma membranes derived from control and insulin-treated adipocytes. Proc Natl Acad Sci USA 77:915–918

    PubMed  CAS  Google Scholar 

  • Pillion DJ, Czech MP (1978) Antibodies against intrinsic adipocyte plasma membrane proteins activate D-glucose transport independent of interaction with insulin binding sites. J Biol Chem 253:3761–3764

    PubMed  CAS  Google Scholar 

  • Pillion DJ, Grantham JR, Czech MP (1979) Biological properties of antibodies against rat adipocyte intrinsic membrane proteins. J Biol Chem 254:3211–3220

    PubMed  CAS  Google Scholar 

  • Prusiner SB, Cannon B, Lindberg O (1968) Oxidative metabolism in cells isolated from brown adipose tissue. 1. Catecholamine and fatty acid stimulation of respiration. Eur J Biochem 6:15–22

    PubMed  CAS  Google Scholar 

  • Raben MS, Hollenberg CH (1959) Effect of growth hormone on plasma fatty acids. J Clin Invest 38:484–488

    PubMed  CAS  Google Scholar 

  • Raben MS, Matsuzaki F (1966) Effect of purines on epinephrine-induced lipolysis in adipose tissue. J Biol Chem 241:4781–4786

    PubMed  CAS  Google Scholar 

  • Ramakrishna S, Benjamin WB (1979) Fat cell protein phosphorylation: identification of phosphoprotein-2 as ATP-citrate lyase. J Biol Chem 254:9232–9236

    PubMed  CAS  Google Scholar 

  • Rao AJ, Ramachandran J (1977) Growth hormone and the regulation of lipolysis. In: Li H (ed) Hormonal proteins and peptides, vol IV. Academic Press, New York London, pp 43–60

    Google Scholar 

  • Rasmussen H, Goodman DBP (1977) Relationships between calcium and cyclic nucleotides in cell activation. Physiol Rev 57:421–509

    PubMed  CAS  Google Scholar 

  • Reckless JPD, Gilbert CH, Galton DJ (1976) Alpha-adrenergic receptor activity, cyclic AMP and lipolysis in adipose tissue of hypothyroid man and rat. J Endocrinol 68:419–430

    PubMed  CAS  Google Scholar 

  • Reed N, Fain JN (1968 a) Stimulation of respiration in brown fat cells by epinephrine, dibutyryl-3′,5′-adenosine monophosphate, and m-chloro(carbonyl cyanide)phenylhydrazone. J Biol Chem 243:2843–2848

    PubMed  CAS  Google Scholar 

  • Reed N, Fain JN (1968 b) Potassium-dependent stimulation of respiration in brown fat cells by fatty acids and lipolytic agents. J Biol Chem 243:6077–6083

    PubMed  CAS  Google Scholar 

  • Reed N, Fain JN (1970) Hormonal regulation of the metabolism of free brown fat cells. In: Lindberg O (ed) Brown adipose tissue, Elsevier, Amsterdam Oxford New York, pp 207–224

    Google Scholar 

  • Renold AE, Cahill GF Jr (sect eds) (1965) Handbook of physiology, sect 5: Adipose tissue. American Physiological Society, Washington, DC

    Google Scholar 

  • Rich C, Bierman EL, Schwartz IL (1959) Plasma nonesterified fatty acids in hyperthyroid states. J Clin Invest 38:275–278

    PubMed  CAS  Google Scholar 

  • Rimon G, Hanski E, Braun S, Levitzki A (1978) Mode of coupling between hormone receptors and adenylate cyclase elucidated by modulation of membrane fluidity. Nature 276:394–396

    PubMed  CAS  Google Scholar 

  • Robison GA, Butcher RW, Sutherland EW (1971) Cyclic AMP. Academic Press, New York London

    Google Scholar 

  • Rodbell M (1964) Metabolism of isolated fat cells. 1. Effects of hormone on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    PubMed  CAS  Google Scholar 

  • Rodbell M (1965) Modulation of lipolysis in adipose tissue by fatty acid concentration in fat cell. Ann NY Acad Sci 131:302–333

    PubMed  CAS  Google Scholar 

  • Rodbell M (1967) Metabolism of isolated fat cells. V. Preparation of “ghosts” and their properties; adenyl cyclase and other enzymes. J Biol Chem 242:5744–5750

    PubMed  CAS  Google Scholar 

  • Rodbell M (1975) On the mechanism of activation of fat cell adenylate cyclase by guanine nucleotides. An explanation for the biphasic inhibitory and stimulatory effects of the nucleotides and the role of hormones. J Biol Chem 250:5826–5834

    PubMed  CAS  Google Scholar 

  • Rodbell M, Jones AB, Cingolani GEC, Birnbaumer L (1968) The actions of insulin and catabolic hormones on the plasma membrane of the fat cells. Recent Prog Horm Res 24:215–254

    PubMed  CAS  Google Scholar 

  • Rodbell M, Birnbaumer L, Pohl SL (1970) Adenyl cyclase in fat cells, III. Stimulation by secretin and the effects of trypsin on the receptors for lipolytic hormones. J Biol Chem 245:718–722

    PubMed  CAS  Google Scholar 

  • Rodbell M, Birnbaumer L, Pohl SL, Krans H (1971) The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J Biol Chem 246:1877–1882

    PubMed  CAS  Google Scholar 

  • Rosen OM, Rangel-Aldao R, Ehrlichman NJ (1977) Soluble cyclic AMP-dependent protein kinase: review of the enzyme isolated from bovine cardiac muscle. Curr Top Cell Regul 12:39–74

    PubMed  CAS  Google Scholar 

  • Rosenqvist U, Efendic S, Jereb B, Ostman J (1971) Influence of the hypothyroid state on lipolysis in human adipose tissue in vitro. Acta Med Scand 189:381–384

    PubMed  CAS  Google Scholar 

  • Rubin RP, Laychock SG (1978) Prostaglandins and calcium-membrane interactions in secretory glands. Ann NY Acad Sci 307:377–390

    PubMed  CAS  Google Scholar 

  • Rudman D (1963) The adipokinetic action of polypeptide and amine hormones upon the adipose tissue of various animal species. J Lipid Res 4:119–129

    PubMed  CAS  Google Scholar 

  • Sahyoun N, Cuatrecasas P (1975) Mechanism of activation of adenylate cyclase by cholera toxin. Proc Natl Acad Sci USA 72:3438–3442

    PubMed  CAS  Google Scholar 

  • Sakai T, Thompson WJ, Lavis VR, Williams RH (1974) Cyclic nucleotide phosphodiesterase activities from isolated fat cells: correlation of subcellular distribution with effects of nucleotides and insulin. Arch Biochem Biophys 162:331–339

    PubMed  CAS  Google Scholar 

  • Schimmel RJ (1973) The influence of extracellular calcium ion on hormone-activated lipoly-sis. Biochim Biophys Acta 326:262–278

    Google Scholar 

  • Schimmel RJ (1976) The role of calcium ion in epinephrine activation of lipolysis. Horm Metab Res 8:195–201

    PubMed  CAS  Google Scholar 

  • Schimmel RJ (1979) Inhibition of lipolysis in hamster epididymal adipocytes by selective alpha-adrenergic agents. Evidence for cyclic AMP-dependent and independent mechanisms. Biochim Biphys Acta 587:217–226

    CAS  Google Scholar 

  • Schoenle C, Zapf J, Froesch ER (1979) Effect of insulin on glucose metabolism and glucose transport in fat cells of hormone-treated hypophysectomized rats: evidence that growth hormone restricts glucose transport. Endocrinology 105:1237–1242

    PubMed  CAS  Google Scholar 

  • Schrey MP, Rubin RP (1979) Characterization of a calcium-mediated activation of arachidonic acid turnover in adrenal phospholipids by corticotropin. J Biol Chem 254:11234–11241

    PubMed  CAS  Google Scholar 

  • Schwabe U, Ebert R (1972) Different effects of lipolytic hormones and phosphodiesterase inhibitors on cyclic 3′,5′-AMP levels in isolated fat cells. Arch Pharm (Weinheim) 274:287–298

    CAS  Google Scholar 

  • Schwabe U, Ebert R (1974) Stimulation of cyclic adenosine 3′,5′-monophosphate accumulation and lipolysis in fat cells by adenosine deaminase. Arch Pharm (Weinheim) 282:33–44

    CAS  Google Scholar 

  • Schwabe U, Ebert R, Erbler HC (1973) Adenosine release from isolated fat cells and its significance for the effects of hormones on cyclic 3′,5′-AMP levels and lipolysis. Arch Pharm (Weinheim) 276:133–148

    CAS  Google Scholar 

  • Schwyzer R (1978) Studies on polypeptide receptors. A critical view on the mechanism of ACTH action. Bull Schweiz Akad Med Wiss 34:263–274

    PubMed  CAS  Google Scholar 

  • Scow RO, Chernick SS (1970) Transport and utilization of free fatty acids. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry, vol 18. Elsevier, Amsterdam Oxford New York, pp 19–50

    Google Scholar 

  • Seals JR, Jarett L (1980) Activation of pyruvate dehydrogenase by direct addition of insulin to an isolated plasma membrane-mitochondria mixture: evidence for generation of insulin’s second messenger in a subcellular system. Proc Natl Acad Sci USA 77:77–81

    PubMed  CAS  Google Scholar 

  • Seals JR, McDonald JM, Jarett L (1979 a) Insulin effect on protein phosphorylation of plasma membranes and mitochondria in a subcellular system from rat adipocytes. I. Identification of insulin-sensitive phosphoproteins. J Biol Chem 254:6991–6996

    PubMed  CAS  Google Scholar 

  • Seals JR, McDonald JM, Jarett L (1979 b) Insulin effect on protein phosphorylation of plasma membranes and mitochondria in a subcellular system from rat adipocytes. II. Characterization of insulin-sensitive phosphoproteins and conditions for observation of the insulin effect. J Biol Chem 254:6997–7001

    PubMed  CAS  Google Scholar 

  • Sessa G, Freer JH, Colacicco G, Weissmann G (1969) Interaction of a lytic polypeptide, mellitin, with lipid membrane systems. J Biol Chem 244:3375–3582

    Google Scholar 

  • Severson DL, Khoo JC, Steinberg D (1977) Role of phosphoprotein phosphatases in reversible deactivation of chicken adipose tissue hormone-sensitive lipase. J Biol Chem 252:1484–1489

    PubMed  CAS  Google Scholar 

  • Shanahan MF, Czech MP (1977 a) Partial purification of the D-glucose transport system in rat adipocyte plasma membranes. J Biol Chem 252:6554–6561

    PubMed  CAS  Google Scholar 

  • Shanahan MF, Czech MP (1977 b) Purification and reconstitution of the adipocyte plasma membrane D-glucose transport system. J Biol Chem 252:8341–8343

    PubMed  CAS  Google Scholar 

  • Shepherd RE, Malbon CC, Smith CJ, Fain JN (1977) Lipolysis and adenosine 3′,5′-cyclic AMP metabolism in isolated white fat cells from genetically obese hyperglycemic mice (ob/ob). J Biol Chem 252:7242–7248

    Google Scholar 

  • Shier WT (1979) Activation of high levels of endogenous phospholipase A2 in cultured cells. Proc Natl Acad Sci USA 76:195–199

    PubMed  CAS  Google Scholar 

  • Shier WT, Baldwin JH, Nilsen-Hamilton M, Hamilton RT, Thanassi N (1976) Regulation of guanylate and adenylate cyclase activities by lysolecithin. Proc Natl Acad Sci USA 73:1586–1590

    PubMed  CAS  Google Scholar 

  • Shonk RF, Miller DD, Feller DR (1971) Influence of substituted tetrahydroisoquinolines and catecholamines on lipolysis in vitro. Biochem Pharmacol 20:3403–3412

    PubMed  CAS  Google Scholar 

  • Sica V, Cuatrecasas P (1973) Effects of insulin, epinephrine, and cyclic adenosine monophosphate on pyruvate dehydrogenase of adipose tissue. Biochemistry 12:2282–2291

    PubMed  CAS  Google Scholar 

  • Siddle K, Hales CN (1974) The relationship between the concentration of adenosine 3’:5’-cyclic monophosphate and the anti-lipolytic ation of insulin in isolated rat fat cells. Biochem J 142:97–103

    PubMed  CAS  Google Scholar 

  • Sjostrom L, Smith U, Bjorntorp P, Jacobsson B, Hallgren P (1977) Human adipose tissue maintained in a continuous flow system. J Biol Chem 252:8833–8839

    PubMed  CAS  Google Scholar 

  • Skala JP, Knight RL (1977) Protein kinases in brown adipose tissue of developing rats; state of activation of protein kinase during development and cold exposure and its relationship to adenosine 3′:5′-monophosphate, lipolysis and heat production. J Biol Chem 252:1064–1070

    PubMed  CAS  Google Scholar 

  • Smith U, Isaksson O, Nyberg G, Sjostrom L (1976) Human adipose tissue in culture. IV. Evidence for the formation of a hormone antagonist by catecholamines. Eur J Clin Invest 6:35–42

    PubMed  CAS  Google Scholar 

  • Smith U, Sternstrom G, Sjostrom L, Isaksson O, Jacobsson B (1977) Studies on the catecholamine resistance in fat cells from patients with phaeochromocytoma. Eur J Clin Invest 7:355–361

    PubMed  CAS  Google Scholar 

  • Smith TL, Eichberg J, Hauser G (1979) Postsynaptic localization of the alpha receptor-mediated stimulation of phosphatidylinositol turnover in pineal gland. Life Sci 24:2179–2184

    PubMed  CAS  Google Scholar 

  • Soderling TR, Corbin JD, Park CR (1973) Regulation of adenosine 3′,5′-monophosphate-dependent protein kinase. II. Hormonal regulation of the adipose tissue enzyme. J Biol Chem 248:1822–1829

    PubMed  CAS  Google Scholar 

  • Solomon SS (1975) Effect of insulin and lipolytic hormones on cyclic AMP phosphodiesterase activity in normal and diabetic rat adipose tissue. Endocrinology 96:1366–1373

    PubMed  CAS  Google Scholar 

  • Solomon SS, Palazzolo M, King LE Jr (1977) Cyclic nucleotide phosphodiesterase. Insulin activation detected in adipose tissue by gel electrophoresis. Diabetes 26:967–972

    PubMed  CAS  Google Scholar 

  • Sooranna SR, Saggerson ED (1975) Studies on the role of insulin in the regulation of glyceride synthesis in rat epididymal adipose tissue. Biochem J 150:441–451

    PubMed  CAS  Google Scholar 

  • Sooranna SR, Saggerson ED (1976) Interactions of insulin and adrenaline with glycerol phosphate acylation processes in fat cells from rat- FEBS Lett 64:36–39

    PubMed  CAS  Google Scholar 

  • Sooranna SR, Saggerson ED (1979) Inactivation of rat adipocyte pyruvate dehydrogenase by palmitate. Biochem J 184:59–62

    PubMed  CAS  Google Scholar 

  • Spooner PM, Chernick SS, Garrison MM, Scow RO (1979) Development of lipoprotein lipase activity and accumulation of triacylglycerol in differentiating 3T3–L1 adipocytes. J Biol Chem 254:1305–1311

    PubMed  CAS  Google Scholar 

  • Stein JM, Hales CN (1972) The effect of adrenaline and of adrenergic blocking agents on 32P incorporation into fat cell phospholopids. Biochem J 28:531–541

    Google Scholar 

  • Stein JM, Hales CN (1974) The effect of insulin on 32Pi incorporation into rat fat cell phospholipids. Biochim Biophys Acta 337:41–49

    PubMed  CAS  Google Scholar 

  • Steinberg D (1976) Interconvertible enzymes in adipose tissue regulated by cyclic AMP-de-pendent protein kinase. Adv Cyclic Nucleotide Res 7:157–198

    PubMed  CAS  Google Scholar 

  • Steinberg D, Mayer SE, Khoo JC, Miller EA, Miller RE, Fredholm B, Eichner R (1975) Hormonal regulation of lipase, phosphorylase, and glycogen synthase in adipose tissue. Adv Cyclic Nucleotide Res 5:549–568

    PubMed  CAS  Google Scholar 

  • Steiner DF, Freinkel N (eds) (1972) Handbook of Physiology, sect 7, Endocrinology, vol 1, Endocrine pancreas. American Physiological Society, Washington, DC

    Google Scholar 

  • Takeda M, Nakaya Y (1976) Effect of guanosine 3′,5′-monophosphate on glucose oxidation and epinephrine-stimulated lipolysis in isolated rat epididymal fat cells. J Biochem (Tokyo) 80:717–722

    CAS  Google Scholar 

  • Taylor SI, Mukherjee C, Jungas RL (1973) Studies on the mechanism of activation of adipose tissue pyruvate dehydrogenase by insulin. J Biol Chem 248:73–81

    PubMed  CAS  Google Scholar 

  • Taylor WM, Halperin ML (1979) Stimulation of glucose transport in rat adipocytes by insulin, adenosine, nicotinic acid and hydrogen peroxide. Biochem J 178:381–389

    PubMed  CAS  Google Scholar 

  • Taylor WM, Mak ML, Halperin ML (1976) Effect of 3′:5′-cyclic AMP on glucose transport in rat adipocytes. Proc Natl Acad Sci USA 73:4359–4363

    PubMed  CAS  Google Scholar 

  • Thajchayapong P, Queener SF, McClintock R, Allen DO, Bell NH (1976) Demonstration that cyclic adenosine 3′,5′-monophosphate mediates the lipolytic action of parathyroid hormone. Horm Metab Res 8:190–195

    PubMed  CAS  Google Scholar 

  • Thompson WJ, Appleman MM (1971) Characterization of cyclic nucleotide phosphodiesterases of rat tissues. J Biol Chem 246:3145–3150

    PubMed  CAS  Google Scholar 

  • Tsai S-C, Fales HM, Vaughan M (1973) Inactivation of hormone-sensitive lipase from adipose tissue with adenosine triphosphate, magnesium, and ascorbic acid. J Biol Chem 248:5278–5281

    PubMed  CAS  Google Scholar 

  • Turpin BP, Duckworth WC, Solomon SS (1977) Perifusion of isolated adipose cells. Modulation of lipolysis by adenosine. J Clin Invest 60:442–448

    PubMed  CAS  Google Scholar 

  • Van Inwegen RG, Robison GA, Thompson WJ, Armstrong KJ, Stouffer JE (1975) Cyclic nucleotide phosphodiesterase and thyroid hormones. J Biol Chem 250:2452–2456

    PubMed  Google Scholar 

  • Vaughan M, (1961) Effect of hormones on glucose metabolism in adipose tissue. J Biol Chem 236:2196–2199

    PubMed  CAS  Google Scholar 

  • Vaughan M, Steinberg D (1963) Effect of hormones on lipolysis and exteriflcation of free fatty acids during incubation of adipose tissue in vitro. J Lipid Res 4:193–199

    PubMed  CAS  Google Scholar 

  • Vaughan M, Pierce NF, Greenough WB III (1970) Stimulation of glycerol production in fat cells by cholera toxin. Nature 226:658–659

    PubMed  CAS  Google Scholar 

  • Vydelingum N, Kissebah AH, Wynn V (1978) The role of calcium in insulin action. V. Importance of cyclic guanosine 3′,5′-monophosphate and calcium ions in insulin stimulation of lipoprotein lipase activity and protein synthesis in adipose tissue. Horm Metab Res 10:38–46

    PubMed  CAS  Google Scholar 

  • Walkenbach RJ, Hazen R, Larner J (1978) Reversible inhibition of cyclic AMP-dependent protein kinase by insulin. Mol Cell Biochem 19:31–41

    PubMed  CAS  Google Scholar 

  • Weiss L, Loffler G, Schirmann A, Wieland O (1971) Control of pyruvate dehydrogenase interconversion in adipose tissue by insulin. FEBS Lett 15:229–231

    PubMed  CAS  Google Scholar 

  • Wells JN, Hardmann JG (1977) Cyclic nucleotide phosphodiesterases. Adv Cyclic Nucleotide Res 8:119–144

    PubMed  CAS  Google Scholar 

  • Wenke M, Lincova D, Cernohorsky M, Cepelik J (1966) The relation between tracheorelax-ant and fat mobilizing action of some derivatives of noradrenaline and 2-amino-l-p-hy-droxyphenylethanol. J Pharm Pharmacol 18:190–191

    PubMed  CAS  Google Scholar 

  • Wenkeova J, Kuhn E, Wenke M (1976) Some adrenomimetic drugs affecting lipolysis in human adipose tissue in vitro. Eur J Pharmacol 35:1–6

    PubMed  CAS  Google Scholar 

  • Werner S, Low H (1973) Stimulation of lipolysis and calcium accumulation by parathyroid hormone in rat adipose tissue in vitro after adrenalectomy and administration of high doses of cortisone acetate. Horm Metab Res 5:292–296

    PubMed  CAS  Google Scholar 

  • Westermann E, Stock K, Bieck P (1969) Phenylisopropyl-adenosine (PIA): ein potenter Hemmstoff der Lipolyse in vivo und in vitro. Med Ernaehr 10:143–147

    Google Scholar 

  • White JE, Engel FL (1958) Lipolytic action of corticotropin on rat adipose tissue in vitro. J Clin Invest 37:1556–1563

    PubMed  CAS  Google Scholar 

  • Whitehouse S, Randle PJ (1973) Activation of pyruvate dehydrogenase in perfused rat heart by dichloroacetate. Biochem J 134:651–653

    PubMed  CAS  Google Scholar 

  • Wieser PB, Fain JN (1975) Insulin, prostaglandin E1, phenylisopropyl adenosine and nicotinic acid as regulators of fat cell metabolism. Endocrinology 96:1221–1225

    PubMed  CAS  Google Scholar 

  • Wieser PB, Malgieri JA, Ward WF, Pointer RH, Fain JN (1974) Effects of bovine growth hormone preparations, fragments of growth hormpne and pituitary anti-insulin peptide on lipolysis and glucose metabolism of isolated fat cells and adipose tissue. Endocrinology 95:206–212

    PubMed  CAS  Google Scholar 

  • Williams LT, Jarett L, Lefkowitz RJ (1976) Adipocyte β-adrenergic receptors. Identification and subcellular localization by (-)-[3H]dihydroalprenolol. J Biol Chem 251:3096–3104

    PubMed  CAS  Google Scholar 

  • Wise LS, Green H (1978) Studies of lipoprotein lipase during the adipose conversion of 3T3 cells. Cell 13:233–242

    PubMed  CAS  Google Scholar 

  • Wise LS, Jungas RL (1978) Evidence for a dual mechanism of lipolysis activation by epinephrine in rat adipose tissue. J Biol Chem 253:2624–2627

    PubMed  CAS  Google Scholar 

  • Witters LA, Kowaloff EM, Avruch J (1979) Glucagon regulation of protein phosphorylation. Identification of acetyl coenzyme A carboxylase as a substrate. J Biol Chem 254:245–248

    PubMed  CAS  Google Scholar 

  • Wong EHA, Loten EG, Park CR (1978) The correlation of cyclic AMP and protein kinase activity in adipocytes with lipolysis stimulated by ACTH: the effect of adenosine deaminase and actinomycin. J Cyclic Nucleotide Res 4:359–374

    PubMed  CAS  Google Scholar 

  • Yamamura H, Rodbell M, Fain JN (1976) Hydroxybenzylpindolol and hydroxybenzylpro-pranolol: partial beta-adrenergic agonists of adenylate cyclase in the rat adipocyte. Mol Pharmacol 12:693–700

    PubMed  CAS  Google Scholar 

  • Yamamura H, Lad PM, Rodbell M (1977) GTP stimulates and inhibits adenylate cyclase in fat cell membranes through distinct regulatory processes. J Biol Chem 252:7964–7966

    PubMed  CAS  Google Scholar 

  • Yunes R, Goldhammer AR, Garner WK, Cordes EH (1977) Phospholipases: melittin facilitation of bee venom phospholipase A2-catalyzed hydrolysis of unsonicated lecithin liposomes. Arch Biochem Biophys 183:105–112

    PubMed  CAS  Google Scholar 

  • Zinman B, Hollenberg CH (1974) Effect of insulin and lipolytic agents on rat adipocyte low Km cyclic adenosine 3′:5′-monophosphate phosphodiesterase. J Biol Chem 249:2182–2187

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fain, J.N. (1982). Regulation of Lipid Metabolism by Cyclic Nucleotides. In: Kebabian, J.W., Nathanson, J.A. (eds) Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 58 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68393-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68393-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68395-4

  • Online ISBN: 978-3-642-68393-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics