Skip to main content

The Role of Cyclic Nucleotides in the Thyroid Gland

  • Chapter
Cyclic Nucleotides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 58 / 2))

  • 57 Accesses

Abstract

In this review we have analyzed the available evidence concerning the action of thyroid-stimulating hormone (TSH) and the role cyclic AMP plays in mediating the intracellular effects of this hormone. The binding of TSH to thyroid plasma membranes, the coupling of binding to activation of adenylate cyclase and the role of gangliosides and phospholipids in these processes have been briefly reviewed. The stimulation of adenylate cyclase and cyclic AMP formation by TSH and the different regulatory mechanisms involved have been discussed in some detail. TSH rapidly activates protein kinase and maximal activation of the enzyme is achieved prior to maximal elevations of cyclic AMP. Protein kinase activities can be isolated from thyroid cytosol and membranes and some work has been undertaken to identify some of the substrates that are phosphorylated. TSH stimulates morphological and biochemical changes in the thyroid of which most can be mimicked by cyclic AMP or dibutyryl cyclic AMP. However, some processes, for example 32PO4 incorporation into phospholipids, are independent of cyclic AMP and as yet no second messenger has been implicated in colloid exocytosis. Various control mechanisms have been elucidated in TSH stimulation of cyclic AMP of which some may be of physiological importance. Iodide and thyroid hormones have been postulated to exert a negative feedback on TSH-stimulated cyclic AMP formation and adrenergic agents through the α-adrenergic receptor can also inhibit TSH stimulation. Cholinergic agents may also play some inhibitory role but the exact nature of this action is not clear. Thyroid-stimulating immunoglobulins can raise thyroidal cyclic AMP levels but there are important differences in their mode of action compared to TSH. Adrenergic agents can also increase cyclic AMP levels by activation of β-receptors, and separate receptors have also been found for cholera toxin and prostaglandins. The way in which the action of TSH is controlled or terminated may be linked with the phenomenon of desensitization. For example, prior exposure of thyroid tissue to TSH results in refractoriness to further stimulation of the hormone via the adenylate cyclase-cyclic AMP system. Various loci have been implicated for this process. Lastly, the TSH stimulation and cyclic AMP levels in various thyroid diseases are examined and possible causes for the alterations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz J, Iyengar R, Birnbaumer L (1979) Review: guanyl nucleotide regulation of hormonally-responsive adenylyl cyclases. Mol Cell Endocrinol 16:129–146

    Article  PubMed  CAS  Google Scholar 

  • Adams DD, Kennedy TH (1967) Occurrence in thyrotoxicosis of a gamma globulin which protects LATS from neutralization by an extract of thyroid gland. J Clin Endocrinol Metab 27:173–177

    Article  PubMed  CAS  Google Scholar 

  • Adams DD, Purves HD (1956) Abnormal responses in the assay of thyrotrophin. Proc Univ Otago Med Sch 34:11–12

    Google Scholar 

  • Adiga PR, Murthy PVN, McKenzie JM (1971) Stimulation by thyrotropin, long-acting thyroid stimulator and dibutyryl 3′,5′-adenosine monophosphate of protein and ribonucleic acid synthesis and ribonucleic acid polymerase activities in porcine thyroid in vitro. Biochemistry 10:702–710

    Article  PubMed  CAS  Google Scholar 

  • Ahn CS, Rosenberg IN (1968) Prompt stimulation of the organic binding of iodine in the thyroid by adenosine 3′,5′-phosphate in vivo. Proc Natl Acad Sci USA 60:830–835

    Article  PubMed  CAS  Google Scholar 

  • Ahn CS, Rosenberg IN (1970) Iodine metabolism in thyroid slices: effects of TSH dibutyryl cyclic 3′,5′ AMP, NaF and prostaglandin E1. Endocrinology 86:396–405

    Article  PubMed  CAS  Google Scholar 

  • Aiyoshi Y, Yamashita K, Yamashita S, Ogata E (1978) Effects of norepinephrine on cyclic nucleotide levels in dog thyroid slices. Endocrinology 102:1527–1533

    Article  PubMed  CAS  Google Scholar 

  • Amir SM, Carraway TF, Kohn LD, Winand R (1973) The binding of thyrotropin to isolated bovine thyroid plasma membranes. J Biol Chem 248:4092–4100

    PubMed  CAS  Google Scholar 

  • Amir SM, Goldfine ID, Ingbar SH (1976) Properties of the interaction between bovine thyrotropin and bovine thyroid plasma membranes. J Biol Chem 251:4693–4699

    PubMed  CAS  Google Scholar 

  • Azukizawa MG, Kurtzman G, Pekary AE, Hershman JM (1977) Comparison of the binding characteristics of bovine thyrotropin and human chorionic gonadotropin to thyroid plasma membranes. Endocrinology 101:1880–1889

    Article  PubMed  CAS  Google Scholar 

  • Bastomsky CH, McKenzie JM (1967) Cyclic AMP: mediator of thyroid stimulation by thyrotropin. Am J Physiol 213:753–758

    PubMed  CAS  Google Scholar 

  • Bech K, Nistrup Madsen S (1978) Human thyroid adenylate cyclase in non-toxic goitre: sensitivity of TSH, fluoride and thyroid stimulating immunoglobulins. Clin Endocrinol 8:457–466

    Article  CAS  Google Scholar 

  • Bech K, Nistrup Madsen S (1979) adenylate cyclase stimulating immunoglobulins in thyroid diseases. Clin Endocrinol 11:47–58

    Article  CAS  Google Scholar 

  • Bjorkman U, Ekholm R (1973) Thyroglobulin synthesis and intracellular transport studied in bovine thyroid slices. J Ultrastruct Res 45:231–253

    Article  PubMed  CAS  Google Scholar 

  • Boeynaems JM, Waelbroeck M, Dumont JE (1979 a) Cholinergic and alpha-adrenergic stimulation of prostaglandin release by dog thyroid in vitro. Endocrinology 105:988–995

    Article  PubMed  CAS  Google Scholar 

  • Boeynaems JM, Galand N, Dumont JE (1979 b) Inhibition by iodide of the cholinergic stimulation of prostaglandin synthesis in dog thyroid. Endocrinology 105:996–1000

    Article  PubMed  CAS  Google Scholar 

  • Brown J, Munro DS (1967) A new in vitro assay for thyroid-stimulating hormone. J Endocrinol 38:439–449

    Article  PubMed  CAS  Google Scholar 

  • Burke G (1968) Effects of cyclic 3′,5′-adenosine monophosphate and dibutyryl cyclic 3′,5′-adenosine monophosphate on basal and stimulated thyroid function. J Clin Endocrinol Metab 28:1816–1823

    Article  PubMed  CAS  Google Scholar 

  • Burke G (1969) Effects of adrenergic blocking agents on basal and stimulated thyroid function. Metabolism 18:961–967

    Article  PubMed  CAS  Google Scholar 

  • Burke G (1970) Effects of prostaglandins on basal and stimulated thyroid function. Am J Physiol 218:1445–1452

    PubMed  CAS  Google Scholar 

  • Burke G (1973) Effects of thyrotropin and N6, O2-dibutyryl cyclic 3′,5′-adenosine monophosphate on prostaglandin levels in the thyroid. Prostaglandins 3:291–297

    Article  PubMed  CAS  Google Scholar 

  • Carayon P, Guibot M, Jaquet PL, Lissitzky S (1978) Interaction de la TSH avec les membranes plasmiques de thyroides humaines normales et pathologiques. Ann Endocrinol (Paris) 39:57–58

    CAS  Google Scholar 

  • Carayon P, Guibout M, Lissitzky S (1979) The interaction of radioiodinated thyrotropin with human plasma membranes from normal and diseased thyroid glands. Ann Endocrinol (Paris) 40:211–227

    CAS  Google Scholar 

  • Cassel D, Levkovitz H, Selinger Z (1977) The regulatory GTPase cycle of turkey erthrocyte adenylate cyclase. J Cyclic Nucleotide Res 3:393–406

    PubMed  CAS  Google Scholar 

  • Chapman RS, Malan PG (1975) Thyroidal stimulation by thyrotrophin: differential release of tri-iodothyronine relative to thyroxine. J Endocrinol 65:17P

    Google Scholar 

  • Clark OH, Castner BJ (1979) Thyrotropin receptors in normal and neoplastic human thyroid tissue. Surgery 85:624–630

    PubMed  CAS  Google Scholar 

  • Corbin JD, Brostrom CO, Alexander BL, Krebs EG (1972) Adenosine-3′,5′-monophosphate-dependent protein kinase from adipose tissue. J Biol Chem 247:3736–3743

    PubMed  CAS  Google Scholar 

  • Cuatrecasas P (1973) Interaction of vibrio cholerae enterotoxin with cell membranes. Biochemistry 12:3547–3558

    Article  PubMed  CAS  Google Scholar 

  • Dawes PJD, Petersen VB Rees Smith B, Hall R (1978) Solubilization and partial characterization of human and porcine thyrotropin receptors. J Endocrinol 78:89–102

    Article  PubMed  CAS  Google Scholar 

  • Decoster C, Van Sande J, Mockel J (1976) Role of cyclic GMP in thyroid metabolism. Arch Int Physiol Biochim 84:1061–1062

    PubMed  CAS  Google Scholar 

  • Dekker A, Field JB (1970) Correlation of effects of thyrotropin, prostaglandins and ions on glucose oxidation, cyclic AMP and colloid droplet formation in dog thyroid slices. Metabolism 19:453–464

    Article  PubMed  CAS  Google Scholar 

  • Delbauffe D, Pavlovic-Hournac M (1976) Hormonal regulation of thyroidal protein Phosphokinase activities. FEBS Lett 69:59–62

    Article  PubMed  CAS  Google Scholar 

  • Delbauffe D, Ohayon R, Pavlovic-Hournac M (1979) Hormonal regulation of thyroidal protein Phosphokinase activities — 2. Differential sensitivity of type-I and type-II cAMP-dependent enzymes to the treatment of rats with thyroxine. Mol Cell Endocrinol 14:141–155

    Article  PubMed  CAS  Google Scholar 

  • DeMeyts P, Roth J, Neville DM Jr, Gavin JR, Lesniak MA (1973) Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun 55:154–161

    Article  CAS  Google Scholar 

  • DeRubertis F, Yamashita K, Dekker A, Larsen PR, Field JB (1972) Effects of thyroidstimulating hormone on adenylate cyclase activity and intermediary metabolism of “cold” thyroid nodules and normal human thyroid tissue. J Clin Invest 51:1109–1117

    Article  PubMed  CAS  Google Scholar 

  • DeRubertis FR, Chayoth R, Zor U, Field JB (1975) Evidence for persistent binding of biologically active TSH to thyroid in vitro. Endocrinology 96:1579–1586

    Article  PubMed  CAS  Google Scholar 

  • Dumont JE (1971) The action of thyrotropin on thyroid metabolism. Vitam Horm 29:287–412

    Article  PubMed  CAS  Google Scholar 

  • Eckholm R, Elmqvist LG (1968) Inhibition of endocytosis in the thyroid follicle cell by actinomycin. Exp Cell Res 48:640–643

    Article  Google Scholar 

  • Ekholm R, Smeds S (1966) On dense bodies and droplets in the follicular cells of the guinea pig thyroid. J Ultrastruct Res 16:71–82

    Article  PubMed  CAS  Google Scholar 

  • Ekholm R, Engstrom G, Ericson LE, Melander A (1975) Exocytosis of protein into the thyroid follicle lumen: an early effect of TSH. Endocrinology 97:337–346

    Article  PubMed  CAS  Google Scholar 

  • Ensor JM, Munro DS (1969) A comparison of in vitro actions of TSH and cyclic AMP on the mouse thyroid gland. J Endocrinol 43:477–485

    Article  PubMed  CAS  Google Scholar 

  • Erneux C, Van Sande J, Dumont J, Boeynaems J (1977) Cyclic nucleotide hydrolysis in the thyroid gland: general properties and key role in interrelation between concentration and cyclic AMP and cyclic GMP. Eur J Biochem 72:137–147

    Article  PubMed  CAS  Google Scholar 

  • Fallon EF, Agrawal R, Furth E, Steiner AL (1974) Cyclic guanosine and adenosine 3′,5′-monophosphates in canine thyroid: localization by immunofluorescence. Science 184:1089–1091

    Article  PubMed  CAS  Google Scholar 

  • Field JB (1975) Thyroid-stimulating hormone and cyclic 3′,5′-monophosphate in the regulation of thyroid gland function. Metabolism 24:381–393

    Article  PubMed  CAS  Google Scholar 

  • Field JB, Pastan I, Johnson P, Herring B (1959) In vitro stimulation of the hexose monophosphate pathway in thyroid by thyroid stimulating hormone, Biochem Biophys Res Commun 1:284–287

    Article  CAS  Google Scholar 

  • Field JB, Pastan I, Herring B, Johnson P (1961) Studies in the mechanism of action of thyroid stimulating hormone on glucose oxidation. Biochim Biophys Acta 50:513–520

    Article  PubMed  CAS  Google Scholar 

  • Field JB, Remer A, Bloom G, Kriss JR (1968) In vitro stimulation by long-acting thyroid stimulator of thyroid glucose oxidation and 32P incorporation into phospholipids. J Clin Invest 47:1553–1560

    Article  PubMed  CAS  Google Scholar 

  • Field JB, Dekker A, Zor U, Kaneko T (1971) In vitro effects of prostaglandins on thyroid gland metabolism. Ann NY Acad Sci 180:278–282

    Article  PubMed  CAS  Google Scholar 

  • Field JB, Larsen PR, Yamashita K, Mashiter K, Dekker A (1973) Demonstration of iodide transport defect but normal iodide organification in non-functioning nodules of human thyroid glands. J Clin Invest 52:2404–2417

    Article  PubMed  CAS  Google Scholar 

  • Field JB, Larsen PR, Yamashita K, Chayoth R (1974) Effect of TSH on iodine metabolism and intermediary metabolism in tissue from patients with Graves disease. J Clin Endocrinol Metab 39:942–949

    Article  PubMed  CAS  Google Scholar 

  • Field JB, Bloom G, Kerins ME, Chayoth R, Zor U (1975) Activation of protein kinase in thyroid slices by thyroid-stimulating hormone. J Biol Chem 250:4903–4910

    PubMed  CAS  Google Scholar 

  • Field JB, Bloom G, Chou CY, Kerins ME (1977) Inhibition of TSH stimulation of protein kinase, glucose oxidation and phospholipid synthesis in thyroid slices previously exposed to hormone. J Clin Invest 59:659–665

    Article  PubMed  CAS  Google Scholar 

  • Field JB, Bloom G, Chou MCY et al. (1978) Effects of thyroid-stimulating hormone on human thyroid carcinoma and adjacent normal tissue. J Clin Endocrinol Metab 47:1052–1058

    Article  PubMed  CAS  Google Scholar 

  • Field JB, Dekker A, Titus G, Kerins ME, Worden W, Frumess R (1979) In vitro and in vivo refractoriness to thyrotropin stimulation of iodine organification and thyroid hormone secretion. J Clin Invest 64:265–271

    Article  PubMed  CAS  Google Scholar 

  • Friedman Y, Lang M, Burke G (1977) Inhibition of thyroid adenylate cyclase by thyroid hormone: a possible locus for short-loop negative feedback phenomenon. Endocrinology 101:858–868

    Article  PubMed  CAS  Google Scholar 

  • Friedman Y, Lang M, Levasseur S, Burke G (1979) Demonstration of a tonic regulatory thyrotropin effect on thyroid function. Endocrinology 104:467–475

    Article  PubMed  CAS  Google Scholar 

  • Gafni M, Gross J (1975) Effect of elevated doses of thyrotropin on mouse thyroid. Endocrinology 97:1486–1493

    Article  PubMed  CAS  Google Scholar 

  • Gill DM (1976) The arrangement of subunits of cholera toxin. Biochemistry 15:1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Gill DL, Marshall NJ, Ekins RP (1978 a) Binding of thyrotrophin to receptors in fat tissue. Mol Cell Endocrinol 10:89–102

    Article  PubMed  CAS  Google Scholar 

  • Gill DL, Marshall NJ, Ekins RP (1978 b) Characterization of thyrotrophin binding to specific receptors in human fat tissue. Mol Cell Endocrinol 12:41–51

    Article  PubMed  CAS  Google Scholar 

  • Gillman AG, Rall TX (1968) The role of adenosine 3′,5′-phosphate in mediating effects of thyroid stimulating hormone on carbohydrate metabolism of bovine thyroid slices. J Biol Chem 243:5872–5881

    Google Scholar 

  • Giraud A, Couraud F, Lissitsky S (1977) Thyrotropin-induced plasma membrane protein kinase modifications in porcine thyroid cells. Mol Cell Endocrinol 7:297–312

    Article  PubMed  CAS  Google Scholar 

  • Goldberg N, O’Dea R, Haddox M (1973) Cyclic GMP and phosphodiesterases. Adv Cyclic Nucleotide Res 3:155–223

    PubMed  CAS  Google Scholar 

  • Goldberg ND, Graff G, Haddox MK, Stephenson JH, Glass DB, Moser ME (1978) Redox modulation of splenic cell soluble guanylate cyclase activity: activation by hydrophilic and hydrophobic oxidants represented by ascorbic acid and dehydroascorbic acids, fatty acid hydroperoxides and prostaglandin endoperoxides. Adv Cyclic Nucleotide Res 9:101–130

    PubMed  CAS  Google Scholar 

  • Granner DK, Halmi NS (1972) Lack of positive correlation between adenyl cyclase activity and iodide transport in rat thyroids. Endocrinology 91:409–414

    Article  PubMed  CAS  Google Scholar 

  • Grollman EF, Lee G, Ambesi-Impiombato FS et al. (1977) Effects of thyrotropin on the thyroid cell membrane: hyperpolarization induced by hormone-receptor interaction. Proc Natl Acad Sci USA 74:2353–2356

    Article  Google Scholar 

  • Habhab O, Bhalla RC, Halmi NS (1977) Adenylate cyclase activity of normal and goitrous rat thyroid. Proc Soc Exp Biol Med 156:382–387

    PubMed  CAS  Google Scholar 

  • Hall R, Tubman J (1965) Further studies on effects of thyroid stimulating hormone on thyroid nucleotide biosynthesis. J Biol Chem 240:3132–3135

    PubMed  CAS  Google Scholar 

  • Hall R, Amos J, Ormston BJ (1971) Radioimmunoassay of human serum thyrotrophin. Br Med J 2:582–585

    Article  Google Scholar 

  • Halmi NS, Granner DK, Doughman DJ, Peters BH, Muller G (1960) Biphasic effect of TSH on thyroidal iodide collection in rats. Endocrinology 67:70–81

    Article  PubMed  CAS  Google Scholar 

  • Hashizume K, Akasu F, Takazawa K, Endo W, Onaya T (1976) Inhibitory effect of acute administration of excess iodide on the formation of adenosine 3′,5′-monophosphate induced by thyrotropin in mouse thyroid lobes. Endocrinology 99:1463–1468

    Article  PubMed  CAS  Google Scholar 

  • Haye B, Jacquemin C (1977) Incorporation of [14C]arachidonate in pig thyroid lipids and prostaglandins. Biochim Biophys Acta 487:231–242

    PubMed  CAS  Google Scholar 

  • Holmes SD, Dirmikis SM, Martin TJ, Munro DS (1978) Effect of human thyroid stimulating hormone and immunoglobulins on adenylate cyclase activity and the accumulation of cyclic AMP in human thyroid membranes and slices. J Endocrinol 79:121–130

    Article  PubMed  CAS  Google Scholar 

  • Holmes SD, Dirmikis SM, Martin TJ, Munro DS (1979) Evidence that both long-acting thyroid stimulator and long-acting thyroid stimulator-protector stimulate the human thyroid gland. J Endocrinol 80:215–221

    Article  PubMed  CAS  Google Scholar 

  • Holmes SD, Gitlin J, Titus G, Field JB (1980 a) Effect of increased circulating thyroid-stimulating hormone (TSH) on in vitro TSH stimulation of thyroid and adipose tissue. Endocrinology 106:1892–1899

    Article  PubMed  CAS  Google Scholar 

  • Holmes SD, Titus G, Chou M, Field JB (1980 b) Effects of TSH and cholera toxin on the thyroidal adenylate cyclase-cyclic AMP system. Endocrinology 107:2076–2081

    Article  PubMed  CAS  Google Scholar 

  • Huprikar S, Lang M, Friedman Y, Burke G (1979) Parallel regulation of cyclic AMP-dependent protein kinase and phosphoprotein phosphatase in rat thyroid. FEBS Lett 99:167–171

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa T, Saito E, Abe Y, Homma M, Muraki T, Ito K (1976) Presence of TSH receptor in thyroid neoplasms. J Clin Endocrinol Metab 42:395–398

    Article  PubMed  CAS  Google Scholar 

  • Ishii J, Shizume K, Okinaka S (1968) Effect of stimulation of the vagus nerve on the thyroid release of I131-labelled hormones. Endocrinology 82:7–16

    Article  PubMed  CAS  Google Scholar 

  • Kalderon AE, Sheth V (1978) Secretion and adenylate cyclase in thyroid nodules. Arch Pathol Lab Med 102:381–386

    PubMed  CAS  Google Scholar 

  • Kaneko T, Zor U, Field JB (1969) Thyroid-stimulating hormone and prostaglandin E1 stimulation of cyclic 3′,5′-adenosine monophosphate in thyroid slices. Science 163:1062–1063

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Zor U, Field JB (1970) Stimulation of thyroid adenyl cyclase activity and cyclic AMP by LATS. Metabolism 19:430–438

    Article  PubMed  CAS  Google Scholar 

  • Kaneko Y (1976) Cyclic AMP level of human thyroid cells in monolayer culture. TSH induced refractoriness to TSH action. Horm Metab Res 8:202–206

    Article  PubMed  CAS  Google Scholar 

  • Karlsson FA, Dahlberg PA (1979) Human thyrotropin receptors are expressed independently of the state of thyroid hormone production in thyroid tissue. Horm Metab Res 11:399–403

    Article  PubMed  CAS  Google Scholar 

  • Kendall-Taylor P (1972) Adenyl cyclase activity in the mouse thyroid gland. J Endocrinol 52:533–540

    Article  PubMed  CAS  Google Scholar 

  • Kendall-Taylor P (1973) Effects of LATS and LATS-protector on human thyroid adenyl cyclase activity. Br Med J 3:72–75

    Article  PubMed  CAS  Google Scholar 

  • Kerkof PR, Tata JR (1969) The subcellular distribution of 32P-labelled phospholipids, 32P-labelled ribonucleic acid and 125I-labelled iodoprotein in pig thyroid slices. Biochem J 112:729–739

    PubMed  CAS  Google Scholar 

  • Ketelbant-Balasse P, Van Sande J, Neve P, Dumont JE (1976) Time sequence of 3′,5′-cyclic AMP accumulation and ultrastructural changes in dog thyroid slices after acute stimulation by TSH. Horm Metab Res 8:212–215

    Article  PubMed  CAS  Google Scholar 

  • Knopp J, Stolc V, Tong W (1970) Evidence for the induction of iodide transport in bovine thyroid cells treated with thyroid-stimulating hormone or dibutyryl cyclic adenosine 3′,5′-monophosphate. J Biol Chem 245:4403–4408

    PubMed  CAS  Google Scholar 

  • Kolata G (1977) Hormone receptors: how are they regulated. Science 196:747–800

    Article  PubMed  CAS  Google Scholar 

  • Kotani M, Kariya T, Field JB (1975) Studies of thyroid-stimulating hormone binding to bovine plasma membranes. Metabolism 24:959–971

    Article  PubMed  CAS  Google Scholar 

  • Kowalski K, Sato S, Burke G (1972) Thyrotropin and prostaglandin E2-responsive adenyl cyclase in thyroid plasma membranes. Prostaglandins 2:441–452

    Article  PubMed  CAS  Google Scholar 

  • Kuo JF, Greengard P (1969) Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3′,5′-monophosphate dependent protein kinase in various tissues and phyla of the animal kingdom. Proc Natl Acad Sci USA 64:1349–1355

    Article  PubMed  CAS  Google Scholar 

  • Larsen PR, Yamshita K, Dekker A, Field JB (1973) Biochemical observations in functioning human thyroid adenomas. J Clin Endocrinol Metab 36:1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Ledley FD, Mullin BR, Lee G et al. (1976) Sequence similarity between cholera toxin and glycoprotein hormones: implications for structure activity relationship and mechanism of action. Biochem Biophys Res Commun 69:852–859

    Article  PubMed  CAS  Google Scholar 

  • Ledley FD, Lee G, Kohn LD, Habig W-H, Hardgree MC (1977) Tetanus toxin interactions with thyroid plasma membranes. J Biol Chem 252:4049–4055

    PubMed  CAS  Google Scholar 

  • Lee G, Grollman EF, Aloj SM, Kohn LD, Winand RJ (1977) Abnormal adenylate cyclase activity and altered membrane gangliosides in thyroid cells from patients with Graves’ disease. Biochem Biophys Res Commun 77:139–146

    Article  PubMed  CAS  Google Scholar 

  • Levey GS, Pastan I (1970) Activation of thyroid adenyl cyclase by long-acting thyroid stimulator. Life Sci 9:67–73

    Article  CAS  Google Scholar 

  • Levey GS, Roth J, Pastan I (1969) Effect of propranolol and phentolamine on canine and bovine responses to TSH. Endocrinology 84:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Lissitzky S, Fayet G, Verrier B, Hennen G, Jaquet P (1973) Thyroid stimulating hormone binding to cultured thyroid cells. FEBS Lett 29:20–24

    Article  PubMed  CAS  Google Scholar 

  • Maayan ML, Ingbar SH (1968) Epinephrine: effect on uptake of iodine by dispersed cells of calf thyroid gland. Science 162:124–125

    Article  PubMed  CAS  Google Scholar 

  • Maayan ML, Ingbar SH (1970) Effects of epinephrine on iodine and intermediary metabolism in isolated thyroid cells. Endocrinology 187:588–595

    Article  Google Scholar 

  • Maayan ML, Debons AF, Krimsky I, Volpert EM, From A, Dawry F, Siclari E (1977) Inhibition of thyrotropin- and dibutyryl cyclic AMP-induced secretion of thyroxine and triidothyronine by catecholamines. Endocrinology 101:284–291

    Article  PubMed  CAS  Google Scholar 

  • Macchia V, Meldolesi MF, Maselli P (1969) Effect of cyclic 3′,5′-AMP on glucose metabolism in thyroid homogenates. Endocrinology 85:895–898

    Article  PubMed  CAS  Google Scholar 

  • Manley SW, Bourke JW, Hawker RW (1972) Reversible binding of labelled and nonlabelled thyrotrophin by intact thyroid tissue in vitro. J Endocrinol 55:555–563

    Article  PubMed  CAS  Google Scholar 

  • Manley SW, Bourke JR, Hawker RW (1974) The thyrotrophin receptor in guinea-pig thyroid homogenate: general properties. J Endocrinol 61:419–436

    Article  PubMed  CAS  Google Scholar 

  • Marshall NJ, VonBocke S, Malan PG (1975) Studies on isoproterenol stimulation of adenyl cyclase in membrane preparations from bovine thyroid. Endocrinology 96:1520–1524

    Article  PubMed  CAS  Google Scholar 

  • Mashiter K, Field JB (1974) The thyroid gland. In: Ramwell PW (ed) The prostaglandins, vol II. Plenum, New York, p 49

    Google Scholar 

  • Mashiter K, Mashiter GD, Hauger RL, Field JB (1973) Effects of cholera and E. coli enterotoxin on cyclic adenosine 3′,5′-monophosphate levels and intermediary metabolism in the thyroid. Endocrinology 92:541–549

    Article  PubMed  CAS  Google Scholar 

  • Mashiter K, Mashiter G, Field JB (1974) Effects of prostaglandin E1, ethanol and TSH on the adenylate cyclase activity of beef thyroid membranes and cyclic AMP content of dog thyroid slices. Endocrinology 94:370–376

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki S, Kakegawa T, Suzuki M, Hamana K (1978) Thyroid function and polyamines III. Changes in ornithine decarboxylase activity and polyamine contents in the rat thyroid during hyperplasia and involution. Endocrinol Jpn 25:129–139

    Article  PubMed  CAS  Google Scholar 

  • McKenzie KM (1958) The bioassay of thyrotropin in serum. Endocrinology 63:372–382

    Article  PubMed  CAS  Google Scholar 

  • McKenzie JM, Zakarija M (1976) A reconsideration of a thyroid stimulating immunoglobulin as the cause of hyperthyroidism in Graves’ disease. J Clin Endocrinol Metab 42:778–781

    Article  PubMed  CAS  Google Scholar 

  • McKenzie JM, Zakarija M, Sato A (1978) Humoral immunity in Graves’ disease. Clin Endocrinol 7:31–45

    Article  CAS  Google Scholar 

  • Mehdi SQ, Kriss JP (1978) Preparation of radiolabelled thyroid-stimulating immunoglobulins (TSI) by recombining TSI heavy chains with 125I-labelled light chains: direct evidence that the product binds to the membrane thyrotropin receptor and stimulates adenylate cyclase. Endocrinology 103:296–301

    Article  PubMed  CAS  Google Scholar 

  • Mehdi SQ, Nussey SS, Gibbons CP, El Kabir DJ (1973) Binding of thyroid stimulators of human thyroid membranes. Biochem Soc Trans 1:1005–1006

    CAS  Google Scholar 

  • Mehdi SQ, Nussey SS, Shindelman JE, Kriss JP (1977) The influence of lipid substitution on thyrotropin-receptor interactions in artificial vesicles. Endocrinology 101:1406–1412

    Article  PubMed  CAS  Google Scholar 

  • Melander A (1970) Amines and mouse thyroid activity. Acta Endocrinol (Copenh) 65:371–384

    CAS  Google Scholar 

  • Melander A, Ericson LE, Sundler F (1974 a) Sympathetic regulation of thyroid hormone secretion. Life Sci 14:237–246

    Article  PubMed  CAS  Google Scholar 

  • Melander A, Ericson LE, Sundler F, Ingbar SH (1974 b) Sympathetic innervation of the mouse thyroid and its significance in thyroid hormone secretion. Endocrinology 94:959–966

    Article  PubMed  CAS  Google Scholar 

  • Melander A, Ericson LE, Ljunggren JG et al. (1974 c) Sympathetic innervation of the normal human thyroid J Clin Endocrinol Metab 39:713–718

    Article  PubMed  CAS  Google Scholar 

  • Melander A, Sundler F, Westgren U (1975 a) Sympathetic innervation of the mouse thyroid and its significance in thyroid hormone secretion. Endocrinology 96:102–106

    Article  PubMed  CAS  Google Scholar 

  • Melander A, Ranklev E, Sundler F, Westgren U (1975 b) Beta2-adrenergic stimulation of thyroid hormone secretion. Endocrinology 97:332–336

    Article  PubMed  CAS  Google Scholar 

  • Meldolesi MF, Fishman PH, Aloj SM, Kohn LD, Brady RO, (1976) Relationship of gangliosides to structure and function of TSH receptors-their absence on plasma membranes of a thyroid tumor defective in TSH receptor activity. Proc Natl Acad Sci USA 73:4060–4064

    Article  CAS  Google Scholar 

  • Meldolesi M, Fishman PH, Aloj SM et al. (1977) Separation of the glycoprotein and ganglioside components of TSH receptor activity in plasma membranes. Biochem Biophys Res Commun 75:581–588

    Article  PubMed  CAS  Google Scholar 

  • Merlevede W, Weaver G, Landau BR (1963) Effects of thyrotropic hormone on carbohydrate metabolism in thyroid slices. J Clin Invest 42:1160–1171

    Article  PubMed  CAS  Google Scholar 

  • Moore M, Wolff J (1973) Binding of prostaglandin E1 to beef thyroid membranes. J Biol Chem 248:5705–5711

    PubMed  CAS  Google Scholar 

  • Moore WV, Feldman L (1976) Thyroid-stimulating hormone binding to beef thyroid membranes, role of N-acetylneuraminic acid. J Biol Chem 251:4247–4253

    PubMed  CAS  Google Scholar 

  • Moore WV, Wolff J (1974) Thyroid stimulating hormone binding to beef thyroid membranes. Relation to adenyl cyclase activity. J Biol Chem 249:6255–6263

    PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1977) Mechanism of action of choleragen, evidence for ADP rebosyltransferase activity with arginine as an acceptor. J Biol Chem 252:2455–2457

    PubMed  CAS  Google Scholar 

  • Moss J, Osborne JC Jr, Fishman PH, Brewer HB Jr, Vaughan M, Brady RO (1977) Effect of gangliosides and substrate analogues on the hydrolysis of nicotinamide adenine dinucleotide by choleragen. Proc Natl Acad Sci USA 74:74–78

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Ross PS, Agosto G, Birken S, Canfield RE, Vaughan M (1978) Mechanism of action of choleragen and the glycopeptide hormones: is the nicotinamide adenine dinucleotide glycohydrolase activity observed in purified hormone preparations intrinsic to the hormone. Endocrinology 102:415–419

    Article  PubMed  CAS  Google Scholar 

  • Mukhtar ED, Smith BR, Pyle GA, Hall R, Vice P (1975) Relation of thyroid-stimulating immunoglobulins to thyroid function and effects on surgery, radioiodine and antithyroid drugs. Lancet 1:713–715

    Article  PubMed  CAS  Google Scholar 

  • Mullin BR, Fishman PH, Lee G, Aloj SM, Ledley FD, Winand RJ, Kohn LD, Brady RO (1976 a) Thyrotropin-ganglioside interactions and their relationship to the structure and function of thyrotropin receptors. Proc Natl Acad Sci USA 73:842–846

    Article  PubMed  CAS  Google Scholar 

  • Mullin BR, Aloj SM, Fishman PH, Lee G, Kohn LD, Brady RO (1976 b) Cholera toxin interactions with thyrotropin receptors on thyroid plasma membranes. Proc Natl Acad Sci USA 73:1679–1683

    Article  PubMed  CAS  Google Scholar 

  • Mullin BR, Pacuszka T, Lee G, Kohn LD, Brady RO, Fishman PH (1978) Thyroid gangliosides with high affinity for thyrotropin: potential role in thyroid regulation. Science 199:77–79

    Article  PubMed  CAS  Google Scholar 

  • Muto H, Totsuka Y, Chou MCY, Field JB (1980) Effects of antibodies to bovine thyroid plasma membranes on in vitro basal and thyroid stimulating hormone stimulation of bovine thyroid adenylate cyclase. Endocrinology 107:707–713

    Article  Google Scholar 

  • Nadler NJ, Sarkar SK, Leblond CP (1962) Origin of intracellular colloid droplets in the rat thyroid. Endocrinology 71:120–129

    Article  PubMed  CAS  Google Scholar 

  • Nagasaka A, Hidaka H (1976) Human thyroid cyclic nucleotide phosphodiesterase. Its characterization and the effect of several hormones on the activity. Biochim Biophys Acta 438:449–460

    PubMed  CAS  Google Scholar 

  • Nagataki S (1974) Effect of excess quantities of iodide. In: Greep RO (ed) Handbook of Physiology, vol III, sect 7. American Physiological Society, Washington, DC, p 329

    Google Scholar 

  • Nistrup Madsen S, Bech K (1979) TSH and thyroid stimulating antibodies (TSAb) activate thyroid adenylate cyclase through different pathways. Acta Med Scand [Suppl] 624:35–42

    CAS  Google Scholar 

  • Ochi Y, Hosoda S, Hachiya T, Yoshimura M, Miyazaki T, Kajita Y (1979) Studies on a receptor assay for an antibody to human thyroid plasma membrane. Acta Endocrinol (Copenh) 91:89–98

    CAS  Google Scholar 

  • Onaya T, Solomon DH (1970) Stimulation by prostaglandin E1 of endocytosis and glucose oxidation in canine thyroid slices. Endocrinology 86:423–426

    Article  PubMed  CAS  Google Scholar 

  • Onaya T, Kotani M, Yamada T, Ochi Y (1973) New in vitro tests to detect the thyroid stimulator in sera from hyperthyroid patients by measuring colloid droplet formation and cyclic AMP in human thyroid slices. J Clin Endocrinol Metab 36:859–866

    Article  PubMed  CAS  Google Scholar 

  • Onaya T, Miyakawa M, Makiuchi M, Furihata R (1978) Altered responsiveness to thyrotropin in thyroid slices of Graves’ disease preoperatively treated with excess iodide. J Clin Endocrinol Metab 47:405–409

    Article  PubMed  CAS  Google Scholar 

  • Orgiazzi J, Chopra IJ, Williams DE, Solomon DH (1975) Evidence for normal thyroidal adenyl cyclase, cyclic AMP-binding and protein-kinase activities in Graves’ disease. J Clin Endocrinol Metab 40:248–255

    Article  PubMed  CAS  Google Scholar 

  • Orgiazzi J, Williams DE, Chopra IJ, Solomon DH (1976 a) Human thyroid adenyl cyclase-stimulating activity in immunoglobulin G of patients with Graves’ disease. J Clin Endocrinol Metab 42:341–354

    Article  PubMed  CAS  Google Scholar 

  • Orgiazzi J, Chopra IJ, Solomon DH, Williams DE (1976 b) Activite adenylate cyclase des nodules thyroidiens froids. Ann Endocrinol (Paris) 37:107–108

    CAS  Google Scholar 

  • Orgiazzi J, Munari Y, Rostagnat A, Dutrieux N, Mornex R (1977) Adenyl cyclase activity in thyroid carcinomas. Ann Radiol (Paris) 20:757–758

    CAS  Google Scholar 

  • Otten J, Dumont JE (1972) Glucose metabolism in normal human thyroid tissue in vitro. Eur J Clin Invest 2:213–219

    Article  PubMed  CAS  Google Scholar 

  • Pastan I (1966) The effect of dibutyryl cyclic 3′,5′-AMP on the thyroid. Biochem Biophys Res Commun 25:14–16

    Article  PubMed  CAS  Google Scholar 

  • Pastan I, Katzen R (1967) Activation of adenyl cyclase in thyroid homogenates by thyroid stimulating hormone. Biochem Biophys Res Commun 29:792–798

    Article  PubMed  CAS  Google Scholar 

  • Pastan I, Macchia V (1967) Mechanism of thyroid stimulating hormone action. Studies with dibutyryl 3′,5′-adenosine monophosphate and lecithinase C. J Biol Chem 242:5757–5761

    PubMed  CAS  Google Scholar 

  • Pastan I, Wollman SH (1967) Colloid droplet formation in dog thyroid in vitro. J Cell Biol 35:262–266

    Article  PubMed  CAS  Google Scholar 

  • Pastan I, Herring B, Johnson P, Field JB (1961) Stimulation in vitro of glucose oxidation in thyroid by acetylcholine. J Biol Chem 236:340–342

    PubMed  CAS  Google Scholar 

  • Pastan I, Johnson P, Kendig E, Field JB (1963) Pyridine nucleotides in the thyroid. II. The effect of thyroid stimulating hormone, epinephrine, serotonin, acetylcholine, menadione and glucose concentration on the levels of TPN and TPNH. J Biol Chem 238:3366–3368

    PubMed  CAS  Google Scholar 

  • Pekonen F, Weintraub BD (1979) Thyrotropin receptors on bovine thyroid membranes: two types with different affinities and specificities. Endocrinology 105:352–359

    Article  PubMed  CAS  Google Scholar 

  • Petersen VB, Dawes JD, Smith BR, Hall R (1977) The interaction of thyroid stimulating antibodies with solubilized human thyrotrophin receptors. FEBS Lett 83:63–67

    Article  PubMed  CAS  Google Scholar 

  • Pisarev MV, DeGroot LJ, Wilber JF (1970) Cyclic AMP production of goiter. Endocrinology 87:339–342

    Article  PubMed  CAS  Google Scholar 

  • Pochet R, Van Sande J, Erneux C, Dumont JE (1977) Inhibition of thyroid adenylate cyclase by iodide. FEBS Lett 83:33–36

    Article  PubMed  CAS  Google Scholar 

  • Powell-Jones CHJ, Thomas CG Jr, Nayfeh SN (1979) Contribution of negative cooperativity to the thyrotropin-receptor interaction in normal human thyroid: kinetic evaluation. Proc Natl Acad Sci USA 76:705

    Article  PubMed  CAS  Google Scholar 

  • Raff M (1976) Self regulation of membrane receptors. Nature 259:265–266

    Article  Google Scholar 

  • Rapoport B (1976) Dog thyroid cells in monolayer tissue culture: adenosine 3′,5′-cyclic monophosphate response to thyrotropic hormone. Endocrinology 98:1189–1197

    Article  PubMed  CAS  Google Scholar 

  • Rapoport B, Adams J (1976) Induction of refractoriness to TSH stimulation in cultured thyroid cells. Dependence on new protein synthesis. J Biol Chem 251:6653–6661

    PubMed  CAS  Google Scholar 

  • Rapoport B, Adams RJ (1978) Bioassay of TSH using dog thyroid cells in monolayer culture. Metabolism 27:1732–1742

    Article  PubMed  CAS  Google Scholar 

  • Rapoport B, West MN, Ingbar SH (1975) Inhibitory effect of dietary iodine on the thyroid adenylate cyclase response to thyrotrophin in the hypophysectomized rat. J Clin Invest 56:516–519

    Article  PubMed  CAS  Google Scholar 

  • Rapoport B, West MN, Ingbar SH (1976) Mechanism of inhibition by iodine of thyroid adenylate cyclase response to thyrotropic hormone. Endocrinology 99:11–22

    Article  PubMed  CAS  Google Scholar 

  • Rapoport B, Adams RJ, Rose M (1977) Cultured thyroid cell adenosine 3′,5′-cyclic monophosphate response to thyrotropin: loss and restoration of sensitivity to iodide inhibition. Endocrinology 100:755–764

    Article  PubMed  CAS  Google Scholar 

  • Rodbell M (1978) The role of nucleotide regulatory components in the coupling of hormone receptors and adenylate cyclase. In: Folco G, Paoletti R (eds) Molecular biology and pharmacology of cyclic nucleotides. Elsevier North-Holland Biomedical, Amsterdam Oxford New York, p 1

    Google Scholar 

  • Rodbell M, Birnbaumer L, Pohl SL, Krans HMJ (1971) The glucagon sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanyl nucleotides in glucagon action. J Biol Chem 246:1877–1882

    PubMed  CAS  Google Scholar 

  • Rodesch F, Neve P, Willems C, Dumont JE (1969) Stimulation of thyroid metabolism by thyrotropin, cyclic 3′,5′-AMP, dibutyryl cyclic 3′,5′-AMP and prostaglandin E1 . Eur J Biochem 8:26–32

    Article  PubMed  CAS  Google Scholar 

  • Roques F, Tirard A, Lissitzky S (1975) Phosphorylation of purified thyroid plasma membranes incubated with 32P-ATP. Mol Cell Endocrinol 2:303–316

    Article  PubMed  CAS  Google Scholar 

  • Saddock C, Gafni M, Gross J (1978) Effect of iodide on the adenyl cyclase system of the mouse thyroid in vivo. Acta Endocrinol (Copenh) 88:517–527

    Google Scholar 

  • Sand G, Jortay A, Pocket R, Dumont JE (1976) Adenylate cyclae and protein Phosphokinase activities in human thyroid. Comparison of normal glands, hyperfunctioning nodules and carcinomas. Eur J Cancer 12:447–453

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Szabo M, Kowalski K, Burke G (1972) Role of prostaglandins in thyrotropin action on the thyroid. Endocrinology 90:343–356

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Yamada T, Furihata R, Makiuchi M (1974) Effect of guanyl nucleotides on the stimulation of adenyl cyclase activity in human thyroid plasma membranes by TSH and PGE2. Biochim Biophys Acta 332:166–174

    Article  CAS  Google Scholar 

  • Sato A, Zakarija M, McKenzie J (1977) Characteristics of TSH binding to bovine thyroid plasma membranes and the influence of human IgG. Endocr Res Commun 4:95–113

    Article  PubMed  CAS  Google Scholar 

  • Schleusener H, Kotulla P, Finke R, Soije H, Meinkold H, Adlokofer F, Wenzel KW (1978) Relationship between thyroid status and Graves’ disease-specific immunoglobulins. J Clin Endocrinol 47:379–384

    Article  CAS  Google Scholar 

  • Schneider PB (1974) TSH stimulation of 32P incorporation into phospholipids of thyroids from patients with Graves’ disease. J Clin Endocrinol Metab 38:148–150

    Article  PubMed  CAS  Google Scholar 

  • Schumacher M, Hilz H (1978) Protein-bound cAMP, total cAMP and protein kinase activation in isolated bovine thyrocytes. Biochem Biophys Res Commun 80:511–518

    Article  PubMed  CAS  Google Scholar 

  • Scott TW, Freinkel N, Klein JH, Nitzan M (1970) Metabolism of phospholipids, neutral lipids and carbohydrates in dispersed porcine thyroid cells: comparative effects of pituitary thyrotropin and dibutyryl 3′,5′-adenosine monophosphate on the turnover of individual phospholipids in isolated cells and slices from pig thyroid. Endocrinology 87:754–863

    Article  Google Scholar 

  • Sherwin JR (1978) Iodide induced suppression of thyrotropin-stimulated adenosine 3′,5′-monophosphate production in cat thyroid slices. Horm Res 9:271–278

    Article  PubMed  CAS  Google Scholar 

  • Sherwin JR, Tong W (1976) Stimulatory actions of TSH and dibutyryl cAMP on transcription and translation in the regulation of thyroidal protein synthesis. Biochim Biophys Acta 425:502–510

    PubMed  CAS  Google Scholar 

  • Shimizu T, Shishiba Y (1975) Effect of triiodothyronine or iodide on the thyroidal secretion in vitro: inhibition of TSH- and dibutyryl cyclic AMP-induced endocytosis. Endocrinol Jpn 22:55–60

    Article  PubMed  CAS  Google Scholar 

  • Shishiba Y, Takaishi M, Miyachi Y, Ozawa Y (1975) Alterations of thyroidal responsiveness to TSH under the influence of circulating thyroid hormone: Short feedback regulatory effect. Endocrinol Jpn 22:367–371

    Article  PubMed  CAS  Google Scholar 

  • Shuman SJ, Zor U, Chayoth R, Field JB (1976) Exposure of thyroid slices to thyroid-stimulating hormone induces refractoriness of the cyclic AMP system to subsequent hormone stimulation. J Clin Invest 57:1132–1141

    Article  PubMed  CAS  Google Scholar 

  • Smith BR, Hall R (1974 a) Thyroid stimulating immunoglobulins in Graves’ disease. Lancet 2:427–431

    Article  PubMed  CAS  Google Scholar 

  • Smith BR, Hall R (1974 b) Binding of thyroid stimulators to thyroid membranes. FEBS Lett 42:301–303

    Article  PubMed  CAS  Google Scholar 

  • Smith BR, Pyle GA, Petersen VB, Hall R (1977) Interaction of thyroid-stimulating antibodies with the human thyrotrophin receptor. J Endocrinol 75:401–407

    Article  PubMed  CAS  Google Scholar 

  • Spaulding SW, Burrow GN (1972) Several adenosine 3′,5′-monophosphate dependent protein kinases in the thyroid. Endocrinology 91:1343–1349

    Article  PubMed  CAS  Google Scholar 

  • Spaulding SW, Burrow GN (1974) TSH regulation of cyclic AMP-dependent protein kinase activity in the thyroid. Biochem Biophys Res Commun 59:386–391

    Article  PubMed  CAS  Google Scholar 

  • Spaulding SW, Burrow GN (1975 a) B-adrenergic stimulation of cyclic AMP and protein kinase activity in the thyroid. Nature 254:374–349

    Article  Google Scholar 

  • Spaulding SW, Burrow GN (1975 b) Phosphoprotein phosphatase activity in the thyroid. Proc Soc Exp Biol Med 150:568–570

    PubMed  CAS  Google Scholar 

  • Spaulding SW, Schubart UK (1978) Time course of thyrotropin-dependent protein phosphorylation in thyroid slices. Endocrinology 103:2334–2341

    Article  PubMed  CAS  Google Scholar 

  • Sugenoya A, Kidd A, Row VV, Volpe R (1979) Correlation between thyroid-displacing activity by immunoglobulins from patients with Graves’ disease and other thyroid disorders. J Clin Endocrinol Metab 48:398–402

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Field JB (1978) Thyroid plasma membrane-associated protein kinases: properties and substrates of solubilized and insoluble enzymes. Endocrinology 103:1783–1793

    Article  PubMed  CAS  Google Scholar 

  • Szabo M, Burke G (1972) Adenosine 3′,5′-cyclic phosphate phosphodiesterase from bovine thyroid: isolation and properties of a partially purified soluble factor. Biochim Biophys Acta 284:208–219

    PubMed  CAS  Google Scholar 

  • Takahashi H, Jiang NS, Gorman CA, Lee CY (1978) Thyrotropin receptors in normal and pathological human thyroid tissue. J Clin Endocrinol Metab 47:870–876

    Article  PubMed  CAS  Google Scholar 

  • Takasu N, Sato S, Tsukui T, Yamada T, Furihata R, Makiuchi M (1974) Inhibitory action of thyroid hormone on the activation of adenyl cyclase-cyclic AMP system by TSH in human thyroid tissue from euthyroid subjects and thyrotoxic patients. J Clin Endocrinol Metab 39:772–778

    Article  PubMed  CAS  Google Scholar 

  • Takasu N, Sato S, Tsukui T, Yamada T, Miyakawa M, Makiuchi M, Furihata R (1976) Comparison of PGE1 and TSH stimulation of cyclic AMP synthesis in thyroid tissue from euthyroid subjects and thyrotoxic patients. J Clin Endocrinol Metab 43:69–79

    Article  CAS  Google Scholar 

  • Takasu N, Charrier B, Mauchamp J, Lissitsky S (1978) Modulation of adenylate cyclase/cyclic AMP response by thyrotropin and prostaglandin E2 in cultured thyroid cells. Eur J Biochem 90:131–138

    Article  PubMed  CAS  Google Scholar 

  • Tanini A, Rotella C, Toccafondi R (1978) TSH-responsive adenylate cyclase activity in human thyroid adenomas. In: Folco G, Paoletti R (eds) Molecular biology and pharmacology of cyclic nucleotides. Elsevier/North-Holland Biomedical, Amsterdam Oxford New York, p 307

    Google Scholar 

  • Tao M, Solas ML, Lipmann F (1970) Mechanism of activation by adenosine 3′,5′-monophosphate of a protein Phosphokinase from rabbit reticulocytes. Proc Natl Acad Sci USA 67:408–414

    Article  PubMed  CAS  Google Scholar 

  • Tate RL, Schwartz HI, Holmes JM, Kohn LD (1975 a) Thyrotropin receptors in thyroid plasma membranes. J Biol Chem 250:6509–6515

    PubMed  CAS  Google Scholar 

  • Tate RL, Holmes JM, Kohn LD (1975 b) Characteristics of a solubilized TSH receptor from bovine thyroid plasma membranes. J Biol Chem 250:6527–6533

    PubMed  CAS  Google Scholar 

  • Tell GP, Haour F, Saez JM (1978) Hormonal regulation of membrane receptors and cell responsiveness: a review. Metabolism 27:1566–1592

    Article  PubMed  CAS  Google Scholar 

  • Teng CS, Rees Smith B, Anderson J, Hall R (1975) Comparison of thyrotropin receptors in membranes prepared from fat and thyroid tissue. Biochem Biophys Res Commun 66:836–841

    Article  PubMed  CAS  Google Scholar 

  • Thomas-Morvan C (1978) Effect of TSH on cAMP and cGMP levels in thyroid cancers, adenomas and normal human thyroid tissue. Acta Endocrinol (Copenh) 87:106–113

    CAS  Google Scholar 

  • Thomas-Morvan C, Nataf B, Tubiana M (1974) Thyroid proteins and hormone synthesis in human thyroid cancer. Acta Endocrinol (Copenh) 76:651–669

    CAS  Google Scholar 

  • Tonoue T, Tong W, Stolc V (1970) TSH and dibutyryl-cyclic AMP stimulation of hormone release from rat thyroid glands in vitro. Endocrinology 86:271–277

    Article  PubMed  CAS  Google Scholar 

  • Uchimura H, Amir SM, Ingbar SH (1979) Failure of organic iodine enrichment to influence the binding of bovine thyrotropin to rat thyroid tissue. Endocrinology 104:1207–1210

    Article  PubMed  CAS  Google Scholar 

  • Valenta LJ (1976) Thyroid peroxide, thyroglobulin, cAMP and DNA in human thyroid. J Clin Endocrinol Metab 43:466–469

    Article  PubMed  CAS  Google Scholar 

  • Van Sande J, Dumont JE (1973) Effect of thyrotropin, prostaglandin E1 and iodide on cyclic 3′,5′-AMP concentration in dog thyroid slices. Biochim Biophys Acta 313:320–328

    Article  PubMed  Google Scholar 

  • Van Sande J, Decoster C, Dumont JE (1975 a) Control and role of cyclic GMP in the thyroid. Biochem Biophys Res Commun 62:168–175

    Article  PubMed  Google Scholar 

  • Van Sande J, Grenier G, Willems C, Dumont JE (1975 b) Inhibition by iodide of the activation of the thyroid cyclic 3′,5′-AMP system. Endocrinology 96:781–786

    Article  PubMed  Google Scholar 

  • Van Sande J, Pochet R, Dumont JE (1979) Dissociation by cooling of hormone and cholera toxin activation of adenylate cyclase in intact cells. Biochim Biophys Acta 585:282–292

    Article  PubMed  Google Scholar 

  • Verrier B, Fayet G, Lissitzky S (1974) Thyrotropin-binding properties of isolated thyroid cells and their purified plasma membranes. Eur J Biochem 42:355–365

    Article  PubMed  CAS  Google Scholar 

  • Verrier B, Planells R, Lissitzky S (1977) Thyrotropin binding to and adenylate cyclase activity of porcine thyroid plasma membranes. Eur J Biochem 74:243–252

    Article  PubMed  CAS  Google Scholar 

  • Westermark B, Karlsson FA, Walinder O (1979) Thyrotropin is not a growth factor for human thyroid cells in culture. Proc Natl Acad Sci USA 76:2022–2026

    Article  PubMed  CAS  Google Scholar 

  • Williams JA (1972) Cyclic AMP formation and thyroid secretion by incubated mouse thyroid lobes. Endocrinology 91:1411–1417

    Article  PubMed  CAS  Google Scholar 

  • Williams JA, Wolff J (1970) Possible role of microtubules in thyroid secretion. Proc Natl Acad Sci USA 67:1901–1908

    Article  PubMed  CAS  Google Scholar 

  • Williams JA, Wolff J (1971 a) Cytochalasin B inhibits thyroid secretion. Biochem Biophys Res Commun 44:422–427

    Article  PubMed  CAS  Google Scholar 

  • Williams JA, Wolff J (1971 b) Thyroid secretion in vitro: multiple actions of agents affecting secretions. Endocrinology 88:206–217

    Article  PubMed  CAS  Google Scholar 

  • Wilson BD, Wright RL (1970) Mechanism of TSH action: effects of dibutyryl cyclic AMP on RNA synthesis in isolated thyroid cells. Biochem Biophys Res Commun 41:217–224

    Article  PubMed  CAS  Google Scholar 

  • Wilson B, Raghupathy E, Tonoue T, Tong W (1968) TSH-like actions of dibutyryl cAMP in isolated bovine thyroid cells. Endocrinology 83:877–884

    Article  PubMed  CAS  Google Scholar 

  • Winand RJ, Kohn LD (1975) TSH effects on thyroid cells in culture. J Biol Chem 250:6534–6540

    PubMed  CAS  Google Scholar 

  • Winand R, Wadeleux P (1976) Measurement of cyclic AMP in thyroid cell culture, from thyroids of patients with different thyroid disorders. Arch Int Physiol Biochim 84:1124–1126

    PubMed  CAS  Google Scholar 

  • Wolff J, Cook GH (1973) Activation of thyroid membrane adenylate cyclase by purine nucleotides. J Biol Chem 248:350–335

    PubMed  CAS  Google Scholar 

  • Wolff J, Jones AB (1970) Inhibition of hormone-sensitive adenyl cyclase by phenothiazines. Proc Natl Acad Sci USA 65:454–459

    Article  PubMed  CAS  Google Scholar 

  • Wolff J, Jones AB (1971) The purification of bovine thyroid plasma membranes and the properties of membrane bound adenyl cyclase. J Biol Chem 246:3939–3947

    PubMed  CAS  Google Scholar 

  • Wolff J, Moore WV (1973) The effect of indomethacin on the response of thyroid tissue to thyrotropin. Biochem Biophys Res Commun 51:34–39

    Article  PubMed  CAS  Google Scholar 

  • Wolff J, Varrone S (1969) The methylxanthines. A new class of goitrogens. Endocrinology 85:410–414

    Article  PubMed  CAS  Google Scholar 

  • Wollman SH, Spicer SS, Burstone MS (1964) Localization of esterase and acid phosphatase in granules and colloid droplets in rat thyroid epithelium. J Cell Biol 21:191–201

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Rapoport B (1978) Studies on the binding of radiolabeled thyrotropin to cultured human thyroid cells. Endocrinology 103:2011–2019

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Field JB (1972 a) Effects of long-acting thyroid stimulator and thyrotropin stimulation of adenyl cyclase activity in thyroid plasma membranes. J Clin Invest 51:463–471

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Field JB (1972 b) Elevation of cyclic GMP levels in dog thyroid slices caused by acetylcholine and sodium fluoride. J Biol Chem 247:7062–7066

    PubMed  CAS  Google Scholar 

  • Yamashita K, Field JB (1973) The role of phospholipids in TSH stimulation of adenylate cyclase in thyroid plasma membranes. Biochim Biophys Acta 304:686–692

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Oka H, Kaneko T, Ogata E (1976) Impairment and restoration of response to TSH in dog thyroid slices after treatment with phospholipase-A and Lubrol-PX. Horm Metab Res 8:47–50

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Yamashita S, Ogata E (1977) Regulation of cyclic AMP levels in canine thyroid slices by alpha-adrenergic action. Life Sci 21:607–612

    Article  PubMed  CAS  Google Scholar 

  • Yamashita K, Yamashita S, Ogata E (1979) Alpha adrenergic interaction with stimulators of cyclic AMP concentrations in canine thyroid slices. Life Sci 24:563–570

    Article  PubMed  CAS  Google Scholar 

  • Yu SC, Chang L, Burke G (1972) Thyrotropin increases prostaglandin levels in isolated thyroid cells. J Clin Invest 51:1038–1042

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Friedman Y, Richman R, Burke G (1976) Altered thyroidal responsivity to TSH induced by circulating thyroid hormones. J Clin Invest 57:754–755

    Article  Google Scholar 

  • Zakarija M, McKenzie J (1975) Cyclic AMP in the thyroid of the rat fed propylthiouracil: in vitro unresponsiveness to thyrotropin. Endocr Res Commun 2:419–429

    Article  PubMed  CAS  Google Scholar 

  • Zakarija M, McKenzie J (1977) Effects of thyrotropin and thyroid hormones in vivo on thyroid responsiveness to thyrotropin in vitro. Endocr Res Commun 4:343–355

    Article  PubMed  CAS  Google Scholar 

  • Zakarija M, McKenzie JM (1978) Zoological specificity of human thyroid-stimulating antibody. J Clin Endocrinol Metab 47:249–254

    Article  PubMed  CAS  Google Scholar 

  • Zor U, Kaneko T, Lowe IP, Bloom G, Field JB (1969) Effect of thyroid-stimulating hormone and prostaglandins on thyroid adenyl cyclase activation and cyclic adenosine 3′:5′-monophosphate. J Biol Chem 244:5189–5192

    PubMed  CAS  Google Scholar 

  • Zusman DR, Burrow GN (1975) Thyroid-stimulating hormone regulation of ornithine decarboxylase activity in the thyroid. Endocrinology 97:1089–1095

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Holmes, S.D., Field, J.B. (1982). The Role of Cyclic Nucleotides in the Thyroid Gland. In: Kebabian, J.W., Nathanson, J.A. (eds) Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 58 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68393-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68393-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68395-4

  • Online ISBN: 978-3-642-68393-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics