The Ti-Plasmids of Agrobacterium tumefaciens

  • J. Schell
Part of the Encyclopedia of Plant Physiology book series (PLANT, volume 14 / B)


Many species of higher plants, in fact most dicotyledonous plants, are susceptible to crown gall disease (De Cleene and De Ley 1976). This disease is characterized by the formation of tumors, often at the crown separating stem from roots, as a result of infection of wounded sites by gram-negative soil bacteria (Agrobacterium tumefaciens). Although these bacteria are required for tumor induction and are mostly found associated with crown gall harboring plants in nature, they are not necessary for tumor maintenance and growth (BRAUN 1953). In fact, sterile crown gall tissues can readily be cultured indefinitely on simple media lacking any added growth hormones. Crown gall plant cells therefore are persistently altered cells with a capacity for autonomous growth in the absence of any outside Stimulation by the inciting bacteria. The normal mechanisms Controlling growth and differentiation of plant cells do not operate properly in these transformed cells and, as such, crown gall cells can be compared with animal tumor cells.


Hairy Root Agrobacterium Tumefaciens Crown Gall Crown Gall Tumor Transform Plant Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.







tumor-inducing principle


DNA containing the Ti plasmid DNA fragment

T-region (of Ti plasmid)

region transferred into host cell genome

Tra genes

genes controlling Ti plasmid transfer


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beuckeleer De M, Block De M, Greve De H, Depicker A, Vos De R, Vos De G, Wilde De M, Dhaese P, Dobbelaere MR, Engler G, Genetello C, Hernalsteens JP, Holsters M, Jacobs A, Schell J, Seurinck J, Silva B, Haute Van E, Montagu Van M, Vliet Van F, Villarroel R, Zaenen I (1978) The use of the Ti-plasmid as a vector for the introduction of foreign DNA into plants. Proc IVth Int Conf Plant Path Bacteriol, Angers, pp 115–126Google Scholar
  2. Bomhoff G, Klapwijk PM, Kester HCM, Schilperoort RA, Hernalsteens JP, Schell J (1976) Octopine and nopaline synthesis and breakdown genetically controlled by a plasmid of Agrobacterium tumefaciens. Mol Gen Genet 145: 177–181PubMedCrossRefGoogle Scholar
  3. Braun AC (1953) Bacterial and host factors concerned in determining tumor morphology in crown gall. Bot Gaz 114: 363–371CrossRefGoogle Scholar
  4. Braun AC (1980) A history of the crown gall problem. In: Kahl G (ed) The molecular biology of plant tumors. Academic Press, London, New YorkGoogle Scholar
  5. Braun AC, Mandle RJ (1948) Studies on the inactivation of the tumor-inducing principle in crown gall. Growth 12: 255–269PubMedGoogle Scholar
  6. Braun AC, White PR (1943) Bacteriological sterility of tissues derived from secondary crown gall tumors. Phytopathology 33: 85–100Google Scholar
  7. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D (1978) Highly conserved DNA of Ti-plasmids overlaps T-DNA, maintained in plant tumors. Nature (London) 275: 147–149CrossRefGoogle Scholar
  8. Chilton M-D, Saiki RK, Yadav N, Gordon MP, Quetier F (1980) T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proc Natl Acad Sci USA 77: 4060–4064PubMedCrossRefGoogle Scholar
  9. Cleene De M, Ley De J (1976) The host ränge of crown-gall. Bot Rev 42: 389 - 466CrossRefGoogle Scholar
  10. Costantino P, Hooykaas PJJ, Dulk-Ras den H, Schilperoort RA (1980) Tumor formation and rhizogenicity of Agrobacterium rhizogenes carrying Ti-plasmids. Gene 11: 79–87CrossRefGoogle Scholar
  11. Coxon DT, Davies AMC, Fenwiek GR, Seif R, Firmin JL, Lipkin D, Janes NF (1980) Agropine, a new amino acid derivative from crown gall tumours. Tetrahedron Lett 21: 495–498CrossRefGoogle Scholar
  12. Currier TC, Nester EW (1976) Evidence for diverse types of large plasmids in tumor inducing strains of Agrobacterium. J Bacteriol 126: 157–165PubMedGoogle Scholar
  13. Depicker A, Montagu Van M, Schell J (1978) Homologous DNA sequences in different Ti-plasmids are essential for oncogenicity. Nature (London) 275: 150–153CrossRefGoogle Scholar
  14. Depicker A, Wilde De M, Vos De G, Vos De R, Montagu Van M, Schell J (1980) Molecular cloning of overlapping segments of the nopaline Ti-plasmid pTiC58 as a means to restriction endonuclease mapping. Plasmid 3: 193–211PubMedCrossRefGoogle Scholar
  15. Drummond MH, Gordon MP, Nester EW, Chilton M-D (1977) Foreign DNA of bacterial plasmid origin is transcribed in crown gall tumours. Nature (London) 269: 535–536CrossRefGoogle Scholar
  16. Ellis JD, Kerr A (1978) Developing biological control agents for soil borne pathogens. Proc IVth Int Conf Plant Bacteriol, Angers, pp 245–250Google Scholar
  17. Ellis JD, Murphy PJ (1981) Four new opines from crown gall tumours - their detection and properties. Mol Gen Genet 181: 36–43CrossRefGoogle Scholar
  18. Ellis JD, Kerr A, Tempe J, Petit A (1979) Arginine catabolism: a new funetion of both octopine and nopaline Ti-plasmids of Agrobacterium. Mol Gen Genet 173: 263–269PubMedCrossRefGoogle Scholar
  19. Engler G, Holsters M, Montagu Van M, Schell J, Hernalsteens JP, Schilperoort RA (1975) Agrocin 84 sensitivity: a plasmid determined property in Agrobacterium tumefaciens. Mol Gen Genet 138: 345–349PubMedCrossRefGoogle Scholar
  20. Engler G, Depicker A, Maenhaut R, Villarroel-Mandiola R, Montagu Van M, Schell J (1981) Physical mapping of DNA base sequence homologies between an octopine and a nopaline Ti-plasmid of Agrobacterium tumefaciens. J Mol Biol 151: 183–208CrossRefGoogle Scholar
  21. Frimin JL, Fenwiek RG (1977) N2(l-3 dicarboxypropyl) Ornithine in crown gall tumours. Phytochemistry 16: 761–762CrossRefGoogle Scholar
  22. Firmin JL, Fenwiek GR (1978) Agropine - a major new plasmid-determined metabolite in crown gall tumours. Nature (London) 276: 842–844CrossRefGoogle Scholar
  23. Genetello C, Larebeke Van N, Holsters M, Depicker A, Montagu Van M, Schell J (1977) Ti-plasmids of Agrobacterium as conjugative plasmids. Nature (London) 265: 561–563CrossRefGoogle Scholar
  24. Greve De H, Decraemer H, Seurinck J, Montagu Van M, Schell J (1981) The functional Organization of the octopine Agrobacterium tumefaciens plasmid pTiB6S3. Plasmid 6: 235–248PubMedCrossRefGoogle Scholar
  25. Gurley WB, Kemp JD, Albert MJ, Sutton DW, Callis J (1979) Transcription of Ti plasmid-derived sequences in three octopine-type crown gall tumor lines. Proc Natl Acad Sci USA 76: 2828–2832PubMedCrossRefGoogle Scholar
  26. Guyon P, Chilton M-D, Petit A, Tempe J (1980) Agropine in “null type” crown gall tumors: evidence for the generality of the opine concept. Proc Natl Acad Sci USA 77: 2693–2697PubMedCrossRefGoogle Scholar
  27. Hamilton RH, Fall MZ (1971) The loss of tumor initiating ability in Agrobacterium tumefaciens by ineubation at high temperature. Experientia 27: 229–230PubMedCrossRefGoogle Scholar
  28. Hernalsteens JP, Greve De H, Montagu Van M, Schell J (1978) Mutagenesis by insertion of the drug resistance transposon Tn7 applied to the Ti plasmid of Agrobacterium tumefaciens. Plasmid 1: 218–225PubMedCrossRefGoogle Scholar
  29. Hernalsteens JP, Vliet Van F, Beuckeleer De M, Depicker A, Engler G, Lemmers M, Holsters M, Montagu Van M, Schell J (1980) The Agrobacterium tumefaciens Ti plasmid as a host vector system for introducing foreign DNA in plant cells. Nature (London) 287: 654–656CrossRefGoogle Scholar
  30. Holsters M, Silva B, Vliet Van F, Hernalsteens JP, Genetello C, Montagu Van M, Schell J (1978 b) In vivo transfer of the Ti-plasmid of Agrobacterium tumefaciens to Escherichia coli. Mol Gen Genet 163:335–338Google Scholar
  31. Holsters M, Silva B, Vliet Van F, Genetello C, Block De M, Dhaese P, Depicker A, Inze D, Engler G, Villarroel R, Montagu Van M, Schell J (1980) The functional Organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3: 212–230PubMedCrossRefGoogle Scholar
  32. Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rörsch A (1977) Transfer of the Agrobacterium tumefaciens Ti-plasmid to avirulent Agrobacteria and to Rhizobium ex planta. J Gen Microbiol 98: 477–484Google Scholar
  33. Jensen CO (1918) Undersogelser vedrorende nogle svulstlignende dannelser hos planter. Vet Landbohojsk Arsskr 1918: 91–143Google Scholar
  34. Kemp JD, Hack E, Sutton DW, El Wakio M (1978) Unusual amino acids and their relationship to tumorigenesis. Proc IVth Int Conf Plant Path Bacteriol, Angers, pp 183–188Google Scholar
  35. Kerr A (1969) Transfer of virulence between isolates of Agrobacterium. Nature (London) 223: 1175–1176CrossRefGoogle Scholar
  36. Kerr A (1971) Acquisition of virulence by non-pathogenic isolation of Agrobacterium radiobacter. Physiol Plant Pathol 1: 241–246CrossRefGoogle Scholar
  37. Kerr A, Manigault P, Tempe J (1977) Transfer of virulence in vivo and in vitro in Agrobacterium. Nature (London) 265: 560–561CrossRefGoogle Scholar
  38. Klapwijk PM, Schilperoort RA (1979) Negative control of octopine degradation and transfer genes to octopine Ti-plasmids in Agrobacterium tumefaciens. J Bacteriol 139: 424–431PubMedGoogle Scholar
  39. Klapwijk PM, Oudshoorn M, Schilperoort RA (1977) Inducible permease involved in the uptake of octopine, lysopine and octopinic acid by Agrobacterium tumefaciens strains carrying virulence-associated plasmids. J Gen Microbiol 102: 1–11Google Scholar
  40. Klapwijk PM, Scheuldermon T, Schilperoort RA (1978) Coordinated regulation of octopine degradation and conjugative transfer of Ti-plasmids in Agrobacterium tumefaciens: evidence for a common regulatory gene and separate operons. J Bacteriol 136: 775–785PubMedGoogle Scholar
  41. Koekman BT, Ooms G, Klapwijk PM, Schilperoort RA (1979) Genetic map of an octopine Ti-plasmid. Plasmid 2: 347–357PubMedCrossRefGoogle Scholar
  42. Larebeke Van N, Engler G, Holsters M, Eisacker Van den S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature (London) 252: 169–170CrossRefGoogle Scholar
  43. Larebeke Van N, Genetello C, Schell J, Schilperoort RA, Hermans AK, Hernalsteens JP, Montagu Van M (1975) Acquisition of tumour-inducing ability by non-oncogenic agrobacteria as a result of plasmid transfer. Nature (London) 255: 742–743CrossRefGoogle Scholar
  44. Larebeke Van N, Genetello C, Hernalsteens JP, Depicker A, Zaenen I, Messens E, Montagu Van M, Schell J (1977) Transfer of Ti-plasmids between Agrobacterium strains by mobilization with the conjugative plasmid RP4. Mol Gen Genet 152: 119–124CrossRefGoogle Scholar
  45. Lemmers M, Beuckeleer De M, Holsters M, Zambryski P, Depicker A, Hernalsteens JP, Montagu Van M, Schell J (1980) Internal Organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumours. J Mol Biol 144: 355–378CrossRefGoogle Scholar
  46. McPherson JC, Nester EW, Gordon MP (1980) Proteins encoded by Agrobacterium tumefaciens Ti plasmid DNA ( T-DNA) in crown gall tumors. Proc Natl Acad Sci USA 77: 2666–2670Google Scholar
  47. Montagu Van M, Schell J (1979) The plasmids of Agrobacterium tumefaciens. In: Timmis K, Pühler A (eds) Plasmids of medical, environmental and commercial importance. Elsevier, Amsterdam, pp 71–96Google Scholar
  48. Montoya A, Chilton M-D, Gordon MP, Sciaky D, Nester EW (1977) Octopine and nopaline metabolism in Agrobacterium tumefaciens and crown-gall tumor cells: role plasmid genes. J Bacteriol 129: 101–107PubMedGoogle Scholar
  49. Moore L, Warren G, Strobel G (1979) Involvement of a plasmid in het hairy root disease of plants caused by Agrobacterium rhizogenes. Plasmid 2: 617–626PubMedCrossRefGoogle Scholar
  50. Murphy PJ, Roberts WP (1979) A basis for agrocin 84 sensitivity in Agrobacterium. J Gen Microbiol 114: 207–213Google Scholar
  51. New PB, Kerr A (1972) Biological control of crown gall: field measurements and glasshouse experiments. J Appl Bacteriol 35: 279–287CrossRefGoogle Scholar
  52. Ooms G, Klapwijk PM, Poulis JA, Schilperoort RA (1980) Characterization of Tn904 insertions in octopine Ti plasmid mutants of Agrobacterium tumefaciens. J Bacteriol 144: 82–91PubMedGoogle Scholar
  53. Otten LA, Schilperoort RA (1978) A rapid microscale method for the detection of lysopine- and nopaline dehydrogenase activities. Biochim Biophys Acta 527: 497–500PubMedGoogle Scholar
  54. Petit A, Delhaye S, Tempe J, Morel G (1970) Recherches sur les guanidines des tissus de crown gall. Mise en evidence d’une relation biochimique specifique entre les souches d’ Agrobacterium et les tumeurs qu’elles induisent. Physiol Veg 8: 205–213Google Scholar
  55. Petit A, Dessaux Y, Tempe J ( 1978 b) The biological significance of opines. I. A study of opine catabolism by Agrobacterium tumefaciens. Proc IVth Int Conf Plant Path Bacteriol, Angers, pp 143–152Google Scholar
  56. Schell J, Montagu Van M ( 1977 b) The Ti plasmid of Agrobacterium tumefaciens, a natural vector for the introduction of NIF genes in plants? In: Hollaender A (ed) Genetic engineering for nitrogen fixation. Plenum, New York, London, pp 159–179Google Scholar
  57. Schell J, Montagu Van M, Depicker A, Waele De D, Engler G, Genetello C, Hernalsteens JP, Holsters M, Messens E, Silva A, Eisacker Van den S, Larebeke Van N, Zaenen I (1977) Agrobacterium tumefaciens: what segment of the plasmid is responsible for the induction of crown gall tumors? In: Bogorad L, Weil JH (eds) Nucleic acids and protein synthesis in plants. Plenum, New York, London, pp 329–342Google Scholar
  58. Schell J, Montagu Van M, Beuckeleer De M, Block De M, Depicker A, Wilde De M, Engler G, Genetello C, Hernalsteens JP, Holsters M, Seurinck J, Silva B, Vliet Van F, Villarroel R (1979) Interactions and DNA transfer between Agrobacterium tumefaciens, the Ti-plasmid and the plant host. Proc R Soc London Ser B 204: 251–266CrossRefGoogle Scholar
  59. Sciaky D, Montoya AL, Chilton M-D (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid 1: 238–253PubMedCrossRefGoogle Scholar
  60. Smith EF (1916) Studies on the crown gall of plants. Its relation to human cancer. J Cancer Res 1: 231–309Google Scholar
  61. Täte ME, Murphy PJ, Roberts WP, Kerr A (1979) Adenine N6-substituent of agrocin 84 determines its bacteriocin-like specificity. Nature (London) 280: 697–699CrossRefGoogle Scholar
  62. Tempe J, Schell J (1977) Is crown gall a natural instance of gene transfer? In: Legocki AB (ed) Translation of natural and synthetic polynucleotides. Univ Agric, Poznan, pp 416–420Google Scholar
  63. Tempe J, Petit A, Holsters M, Montagu Van M, Schell J (1977) Thermosensitive step associated with transfer of the Ti-plasmid during conjugation: possible relation to transformation in crown gall. Proc Natl Acad Sci USA 74: 2848–2849PubMedCrossRefGoogle Scholar
  64. Tempe J, Estrade C, Petit A (1978) The biological significance of opines. II. The conjugative activity of the Ti-plasmids of Agrobacterium tumefaciens. Proc IVth Int Conf Plant Path Bacteriol, Angers, pp 153–160Google Scholar
  65. Tennhammer-Ekman B, Sköld O (1979) Trimethoprim resistance plasmids of different origin encode different drug-resistant dihydrofolate reduetases. Plasmid 2: 334–346CrossRefGoogle Scholar
  66. Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980) Integration and Organisation of Ti-plasmid sequences in crown gall tumors. Cell 19: 729–739PubMedCrossRefGoogle Scholar
  67. Vos De G, Beuckeleer De M, Montagu Van M, Schell J (1981) Restriction endonuclease mapping of the octopine tumor inducing pTiAch5 of Agrobacterium tumefaciens. Plasmid 6: 249–253PubMedCrossRefGoogle Scholar
  68. Watson B, Currier TC, Gordon MP, Chilton M-D, Nester EW (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123: 255–264PubMedGoogle Scholar
  69. White FF, Nester EW (1980a) Hairy root: plasmid encodes virulence traits in Agrobacterium rhizogenes. J Bacteriol 141: 1134–1141PubMedGoogle Scholar
  70. Willmitzer L, Beuckeleer De M, Lemmers M, Montagu Van M, Schell J (1980) The Ti-plasmid derived T-DNA is present in the nucleus and absent from plastids of crown gall cells. Nature (London) 287: 359–361CrossRefGoogle Scholar
  71. Yadav NS, Postie K, Saiki RK, Thomashow MF, Chilton M-D (1980) T-DNA of a crown gall teratoma is covalently joined to host plant DNA. Nature (London) 287: 458–461CrossRefGoogle Scholar
  72. Zaenen I, Larebeke Van N, Teuchy H, Montagu Van M, Schell J (1974) Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J Mol Biol 86: 109–127PubMedCrossRefGoogle Scholar
  73. Zambryski P, Holsters M, Kruger K, Depicker A, Schell J, Montagu Van M, Goodman HM (1980) Tumor DNA structure in plant cells transformed by A. tumefaciens. Science 209: 1385–1391PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin-Heidelberg 1982

Authors and Affiliations

  • J. Schell

There are no affiliations available

Personalised recommendations