Skip to main content

Biology, Structure, Functions and Possible Origin of Viroids

  • Chapter
Nucleic Acids and Proteins in Plants II

Part of the book series: Encyclopedia of Plant Physiology ((922,volume 14 / B))

Abstract

The great interest viroids have attracted ever since their discovery is reflected in numerous review articles (Diener 1972 a, b, 1974, Semancik 1976, Diener and Hadidi 1977, Diener et al. 1977, Diener 1979a, Dickson 1979, Sänger 1979 a, b, Semancik 1979, Sänger 1980 a, b, Gross and Riesner 1980, Kleinschmidt et al. 1981). Thus, one might get the impression that the viroid field is now in some way overreviewed especially after an entire book on viroids has appeared (Diener 1979 b). However, the rapid progress in viroid research still justifies up-dated treatments which are, nevertheless, obsolete in many parts at the time of their appearance. The same will apply for this contribution which surveys the data on the biology, structure, funetion and possible origin of viroids as available early in 1982.

Abbreviations used for the viroids are listed in Table 1, p. 370

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alwine JC, Kemp DJ, Stark GR (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA 74: 5350–5354

    Article  PubMed  CAS  Google Scholar 

  • Biebricher CK, Orgel LE (1973) An RNA that multiplies indefinitely with DNA-dependent RNA Polymerase: Selection from a random copolymer, Proc Natl Acad Sci USA 70: 934–938

    Google Scholar 

  • Boege F, Sänger HL (1980) RNA-dependent RNA Polymerase from healthy tomato leaf tissue. FEBS Lett 121: 91–96

    Article  CAS  Google Scholar 

  • Boege F, Rohde W, Sänger HL (1982) In vitro transcription of viroid RNA into full length copies by RNA-dependent RNA Polymerase from healthy tomato leaf tissue. Biosci Rep 2: 185–194

    Article  PubMed  CAS  Google Scholar 

  • Brändle E, Zetsche K (1973) Zur Lokalisation der α-Amanitin sensitiven RNA-Polymerase in Zellkernen von Acetabularia. Planta 111: 209–217

    Article  Google Scholar 

  • Branlant C, Krol A, Ebel J-P, Lazar E, Gallinaro H, Jacob M, Sri-Widada J, Jeanteur P (1980) Nucleotide sequences of nuclear U1A RNAs from chicken, rat and man. Nucl Acids Res 8: 4143–4154

    Article  PubMed  CAS  Google Scholar 

  • Branch AD, Dickson E (1980) Tomato DNA contains no detectable regions complementary to potato spindle tuber viroid as assayed by southern hybridization. Virology 104: 10–26

    Article  PubMed  CAS  Google Scholar 

  • Branch AD, Robertson HD, Dickson E (1981) Longer-than-unit-length viroid minus strands are present in RNA from infected plants. Proc Natl Acad Sci USA 78: 6381–6385

    Article  PubMed  CAS  Google Scholar 

  • Branch AD, Robertson AD, Greer C, Gegenheimer P, Peebles C, Abelson J (1982) Cell-free circularization of viroid progeny RNA by an RNA ligase from wheat germ. Science 217: 1147–1149

    Article  PubMed  CAS  Google Scholar 

  • Brown F, Martin SJ (1965) A new model for virus ribonucleic acid replication. Nature (London) 208: 861–863

    Article  CAS  Google Scholar 

  • Busch H, Reddy R, Rothblum L, Choi VC (1982) SnRNAs, SnRNPs, and RNA processing. Annu Rev Biochem 51: 617–654

    Google Scholar 

  • Calavan EC, Frölich EF, Carpenter JB, Roistacher CN, Christiansen DW (1964) Rapid indexing for exoeortis of citrus. Phytopathology 54: 1359–1362

    Google Scholar 

  • Calavan EC, Weathers LG, Christiansen DW (1968) Effect of exoeortis on production and growth of Valencia orange trees on trifoliate orange rootstock. In: Childs JFL (ed) Proc 4th Conf Int Org Citrus Virologists. Univ Florida Press, Gainessville

    Google Scholar 

  • Camacho Henriquez A, Sänger HL (1982 a) Analysis of acid-extractable tomato leaf proteins after infection with a viroid, two viruses and a fungus and partial purification of the “pathogenesis-related” protein pl4. Arch Virol (in press)

    Google Scholar 

  • Camacho Henriquez A, Sänger HL (1982 b) Gelelectrophoretic analysis of phenol-extractable leaf proteins from different viroid/host combinations. Arch Virol (in press)

    Google Scholar 

  • Chiffiot S, Sommer P, Hartmann D, Stussi-Garaud C, Hirth L (1980) Replication of alfalfa mosaic virus RNA: Evidence for a soluble replicase in healthy and infected tobacco leaves. Virology 100: 91–100

    Article  Google Scholar 

  • Conjero V, Semancik JS (1977) Exoeortis viroid: Alteration in the proteins of Gynura aurantiaca accompanying viroid infection. Virology: 77: 221–232

    Article  Google Scholar 

  • Conejero V, Picazo I, Segado P (1979) Citrus exoeortis viroid (CEV): Protein alterations in different hosts following viroid infection. Virology 97: 454–456

    Article  PubMed  CAS  Google Scholar 

  • Crick F, (1979) Split genes and RNA splicing. Science 204: 264 - 271

    Article  PubMed  CAS  Google Scholar 

  • Da Graga JV, Martin MM (1981) Ultrastructural changes in avocado leaf tissue infected with avocado sunblotch. Phytopathol Z 102: 185–194

    Article  Google Scholar 

  • Dale JL, Allen RN (1979) Avocado affected by sunblotch disease contains low molecular weight ribonucleic acid. Aust Plant Pathol 8: 3–4

    Article  CAS  Google Scholar 

  • Davies JW, Kaesberg P, Diener TO (1974) Potato spindle tuber viroid. XII. An investigation of viroid RNA as a messenger for protein synthesis. Virology: 61: 281–286

    Article  PubMed  CAS  Google Scholar 

  • De Bokx JA, Piron PGM (1981) Transmission of potato spindle tuber viroid by aphids. Neth J Plant Pathol 87: 31–34

    Article  Google Scholar 

  • Dickson E (1979) Viroids: Infections RNA in plants. In: Hall TC, Davies JW (eds) Nucleic acids in plant Vol II. CRC Press, Boca Raton

    Google Scholar 

  • Dickinson AG, Frazer GW (1979) The scrapie replication-site hypothesis and its implications for pathogenesis. In: Prusiner SB, Hadlow WJ (eds) Slow transmissible diseases of the nervous system Vol 2. Academic Press, London New York

    Google Scholar 

  • Dickson E (1981) A model for the involvement of viroids in RNA splicing. Virology 115: 216–221

    Article  PubMed  CAS  Google Scholar 

  • Dickson E, Robertson HD (1976) Potential regulatory roles for RNA in cellular development. Cancer Res 36: 3387–3393

    PubMed  CAS  Google Scholar 

  • Dickson E, Prensky W, Robertson HD (1975) Comparative studies of two viroids: Analysis of potato spindle tuber and citrus exoeortis viroids by RNA fmgerprinting and polyacrylamide-gel electrophoresis. Virology 68: 309–316

    Article  PubMed  CAS  Google Scholar 

  • Dickson E, Diener TO, Robertson HD (1978) Potato spindle tuber and citrus exoeortis viroid undergo no major sequence changes during replication in two different hosts. Proc Natl Acad Sci USA 75: 951–954

    Article  PubMed  CAS  Google Scholar 

  • Dickson E, Robertson HD, Niblett CL, Horst RK, Zaitlin M (1979) Minor differences between nucleotide sequences of mild and severe strains of potato spindle tuber viroid. Nature (London) 277: 60–62

    Article  CAS  Google Scholar 

  • Diener TO (1971a) Potato spindle tuber virus: A plant virus with properties of a free nucleic acid. III. Subcellular location of PSTV-RNA and the question of whether virions exist in extracts or in situ. Virology 43: 75–89

    Article  PubMed  CAS  Google Scholar 

  • Diener TO (1971b) Potato spindle tuber “virus”. IV. A replicating, low molecular weight RNA. Virology 45: 411 - 428

    Article  PubMed  CAS  Google Scholar 

  • Diener TO (1972a) Viroids. Adv Virus Res 17: 295–313

    Article  CAS  Google Scholar 

  • Diener TO (1972b) Is the scrapie agent a viroid? Nature (New Biol) 235: 218–219

    Article  CAS  Google Scholar 

  • Diener TO (1973a) Virus terminology and the viroid: a rebuttal. Phytopathology 63: 1328–1329

    Article  Google Scholar 

  • Diener TO (1973 b) Similarities between the scrapie agent and the agent of potato spindle tuber disease. Ann Clin Res 5:268–278

    Google Scholar 

  • Diener TO (1974) Viroids: The smallest known agents of infetious disease. Ann Rev Microbiol 28: 23–39

    Article  CAS  Google Scholar 

  • Diener TO (1978) Are viroids autoinducing regulatory RNAs? In: Persistent Viruses, Academic Press, London New York

    Google Scholar 

  • Diener TO (1979a) Viroids: Structure and funetion. Science 205: 859–866

    Article  PubMed  CAS  Google Scholar 

  • Diener TO ( 1979 b) Viroids and viroid diseases. Wiley and Sons, New York

    Google Scholar 

  • Diener TO (1981 a) Are viroids escaped introns? Proc Natl Acad Sci USA 78:5014–5015

    Google Scholar 

  • Diener TO (1981b) Viroids: abnormal products of plant-metabolism. Annu Rev Plant Physiol 32: 313–325

    Article  CAS  Google Scholar 

  • Diener TO (1982) Viroids - minimal biological-systems. Bioscience 32: 38–44

    Article  CAS  Google Scholar 

  • Diener TO, Hadidi A (1977) Viroids. In: Fraenkel-Conrat H, Wagner RR (eds) Comprehensive virology vol XI. Plenum, New York

    Google Scholar 

  • Diener TO, Lawson RH (1973) Chrysanthemum stunt: A viroid disease. Virology 51: 94–101

    Article  PubMed  CAS  Google Scholar 

  • Diener TO, Smith DR (1975) Potato spindle tuber viroid. XIII. Inhibition of replication by actinomycin D. Virology 63: 421–427

    Article  PubMed  CAS  Google Scholar 

  • Diener TO, Hadidi A, Owens RA (1977) Methods for studying viroids. In: Koprowski H, Maramosch K (eds), Vol 6. Academic Press, London New York

    Google Scholar 

  • Diener TO, McKinley MP, Prusiner SB (1982) Viroids and prions. Proc Natl Acad Sci USA 79: 5220–5224

    Article  PubMed  CAS  Google Scholar 

  • Domdey H, Jank P, Sänger HL, Gross HJ (1978) Studies on the primary and secondary structure of potato spindle tuber viroid: Products of digestion with ribonuclease A and ribonuclease Tx and modification with bisulfite. Nucl Acids Res 5: 1221–1236

    Article  PubMed  CAS  Google Scholar 

  • Drummond M (1979) Crown gall disease. Nature (London) 281: 343–347

    Article  CAS  Google Scholar 

  • Duda CT (1976) Plant RNA Polymerases. Annu Rev Plant Physiol 27: 119–132

    Article  CAS  Google Scholar 

  • Duda CT, Zaitlin M, Siegel A (1973) In vitro synthesis of double-stranded RNA by an enzyme system isolated from tobacco leaves. Biochim Biophys Acta 319: 62–71

    PubMed  CAS  Google Scholar 

  • Duran-Villa N, Semancik JS (1982) Differential response of tomato tissue infected with citrus exoeortis viroid to exogenous auxin. Phytopathology (in press) tuber virus. Phytopathology 57:1347–1352

    Google Scholar 

  • Fernow KH, Peterson LC, Plaisted RL (1969) The tomato test for eliminating spindle tuber from potato planting stock. Am Potato J 46: 424–429

    Article  Google Scholar 

  • Flores R, Chroboczek J, Semancik JS (1978) Some properties of the CEV-Pj protein from citrus exoeortis viroid-infected Gynura aurantiaca D.C. Physiol Plant Pathol 13: 193–201

    Article  CAS  Google Scholar 

  • Flores R, Rodriguez JL (1981) Altered pattern of root-formation on cuttings of Gynura aurantiaca infected by citrus exoeortis viroid. Phytopathology 71: 964–966

    Article  Google Scholar 

  • Fraenkel-Conrat H (1979) RNA-dependent RNA polymerases of Plants. Trends Biochem Sci 4: 184–186

    Article  CAS  Google Scholar 

  • French RC, Price MA, Derrick KS (1982) Circular double-stranded-RNA in potato spindle tuber viroid-infected tomatoes. Nature (London) 295: 259–260

    Article  CAS  Google Scholar 

  • Galindo J, Smith DR, Diener TO (1982) Etiology of planta macho, a viroid disease of tomato. Phytopathology 72: 49–54

    Article  CAS  Google Scholar 

  • Geelen JLMC, Weathers LG, Semancik JS (1976) Properties of RNA polymerases of healthy and citrus exoeortis viroid-infected Gynura aurantiaca DC. Virology 69: 539–546

    Article  PubMed  CAS  Google Scholar 

  • Gilbert W, Dressler D (1968) DNA-replication: The rolling circle model. Cold Spring Harbor Symp Quant Biol 33: 473–484

    PubMed  CAS  Google Scholar 

  • Gilliland JM, Symons RH (1968) Properties of a plant virus-induced RNA Polymerase in cucumbers infected with cucumber mosaic virus. Virology 36: 232–240

    Article  PubMed  CAS  Google Scholar 

  • Goldmann D, Merril CR (1982) Silver staining of DNA in Polyacrylamide gels: Linearity and effect of fragment size. Electrophoresis 3: 24–26

    Article  Google Scholar 

  • Goss RW (1928) Transmission of potato spindle-tuber by grasshoppers (Locustidae). Phytopathology 18: 445–448

    Google Scholar 

  • Goss RW (1930) Insect transmission of potato-virus diseases. Phytopathology 20: 136

    Google Scholar 

  • Goss RW (1931) Infection experiments with spindle tuber and unmottled curly dwarf of the potato. Univ Nebraska Agric Exp Stan Res Bull 53: 36

    Google Scholar 

  • Gould AR (1981) Studies on encapsidated viroid-like RNA II. Puriflcation and characterization of a viroid-like RNA associated with velvet tobacco mottle virus (VTMoV). Virology 108: 123–133

    Article  PubMed  CAS  Google Scholar 

  • Gould AR, Hatta T (1981) Studies on encapsidated viroid-like RNA. III. Comparative studies on RNAs isolated from velvet tobacco mottle virus and Solanum nodiflorum mottle virus. Virology 109: 137–147

    Article  PubMed  CAS  Google Scholar 

  • Gould AR, Francki RIV, Randles JW (1981) Studies on encapsidated viroid-like RNA IV. Requirement for infectivity and speciflcity of 2 RNA components from velvet tobacco mottle virus. Virology 110: 420–426

    Article  PubMed  CAS  Google Scholar 

  • Grabowski PJ, Zang AJ, Cech TR (1981) The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of Tetrahymena. Cell 23: 447–476

    Article  Google Scholar 

  • Grill LK, Semancik JS (1978) RNA sequences complementary to citrus exoeortis viroid in nucleic acid preparations from infected Gynura aurantiaca. Proc Natl Acad Sci USA 75: 896–900

    Article  PubMed  CAS  Google Scholar 

  • Grill LK, Semancik JS (1980) Viroid synthesis: the question of inhibition by actinomycin D. Nature (London) 283: 399–400

    Article  CAS  Google Scholar 

  • Grill LK, Negruk VI, Semancik JS (1980) Properties of the complementary RNA sequences associated with infection by the citrus exoeortis viroid. Virology 107: 24–33

    Article  PubMed  CAS  Google Scholar 

  • Gross HJ, Riesner D (1980) Viroids: A class of subviral pathogens. Angew Chem Int Ed Engl 19: 231–243

    Article  PubMed  CAS  Google Scholar 

  • Gross HJ, Domdey H, Sänger HL (1977) Comparative oligonucleotide fmgerprints of three plant viroids. Nucl Acids Res 4: 2021–2028

    Article  PubMed  CAS  Google Scholar 

  • Gross HJ, Domdey H, Lossow C, Jank P, Raba M, Alberty H, Sänger HL (1978) Nucleotide sequence and secondary structure of potato spindle tuber viroid. Nature (London) 273: 203–208

    Article  CAS  Google Scholar 

  • Gross HJ, Liebl U, Alberty H, Krupp G, Domdey H, Ramm K, Sänger HL (1981) A severe and a mild potato spindle tuber viroid isolate differ in 3 nucleotide exchanges only. Biosci Rep 1:235–241

    Article  PubMed  CAS  Google Scholar 

  • Gross HJ, Krupp G, Domdey H, Raba M, Alberty H, Lossow CH, Ramm K, Sänger HL (1982) Nucleotide sequence and secondary structure of citrus exoeortis and Chrysanthemum stunt viroid. Eur J Biochem 121: 249–257

    Article  PubMed  CAS  Google Scholar 

  • Hadidi A, Diener TO (1977) De novo synthesis of potato spindle tuber viroid as measured by incorporation of 32P. Virology 78: 99–107

    Article  PubMed  CAS  Google Scholar 

  • Hadidi A, Diener TO (1978) In vivo synthesis of potato spindle tuber viroid: kinetic relationship between the circular and linear forms. Virology 86: 57–65

    Article  PubMed  CAS  Google Scholar 

  • Hadidi A, Jones DM, Gillespie DH, Wong-Staal F, Diener TO (1976) Hybridization of potato spindle tuber viroid to cellular DNA of normal plants. Proc Natl Acad Sci USA 73: 2453–2457

    Article  PubMed  CAS  Google Scholar 

  • Hadidi A, Cress DE, Diener TO (1981) Nuclear DNA from uninfected or potato spindle tuber viroid-infected tomato plants contains no detectable sequences complementary to cloned double-stranded viroid cDNA. Proc Nat Acad Sei USA 78: 6932–6935

    Article  PubMed  CAS  Google Scholar 

  • Hall TC, Wepprich RK, Davies JW, Weathers LG, Semancik JS (1974) Functional distinetions between the ribonucleic acids form citrus exoeortis viroid and plant viruses: Cell-free translation and aminoacylation reactions. Virology 61: 486–492

    Article  PubMed  CAS  Google Scholar 

  • Hardy SF, German TL, Loesch-Fries LS, Hall TC (1979) Highly active template-specific RNA-dependent RNA Polymerase from barley leaves infected with brome mosaic virus. Proc Natl Acad Sci USA 76: 4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Hari V (1980) Ultrastructure of potato spindle tuber viroid-infected tomato leaf tissue. Phytopathology 70: 385–387

    Article  Google Scholar 

  • Haseloff J, Symons RH (1981) Chrysanthemum stunt viroid-primary sequence and secondary structure. Nucl Acids Res 9: 2741–2752

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Symons R (1982) Comparative sequence and structure of viroid-like RNAs of two plant viruses. Nucl Acids Res 10: 3681–3691

    Article  PubMed  CAS  Google Scholar 

  • Haseloff J, Mohamed NA, Symons RH (1982) Viroid RNAs of the cadang-cadang disease of coconuts. Nature (London) 299: 316–322

    Article  CAS  Google Scholar 

  • Henco K, Riesner D, Sänger HL (1977) Conformation of viroids. Nucl Acids Res 4: 177–194

    Article  PubMed  CAS  Google Scholar 

  • Henco K, Sänger HL, Riesner D (1979) Fine structure melting of viroids as studied by kinetic methods. Nucl Acids Res 6: 3041–3059

    Article  PubMed  CAS  Google Scholar 

  • Hollings M (1965) Disease control though virus-free stock. Annu Rev Phytopathol 3: 367–396

    Article  Google Scholar 

  • Hollings M, Stone OM (1970) Attempts to eliminate Chrysanthemum stunt from Chrysanthemum by meristem-tip culture after heat-treatment. Ann Appl Biol 65: 311–315

    Article  Google Scholar 

  • Hollings M, Stone OM (1973) Some properties of Chrysanthemum stunt, a virus with the characteristics of an uncoated ribonucleic acid. Ann Appl Biol 74: 333–348

    Article  CAS  Google Scholar 

  • Horst RK (1975) Detection of a latent infectious agent that protects against infection by Chrysanthemum chlorotic mottle viroid. Phytopathology 65: 1000–1003

    Article  Google Scholar 

  • Horst RK, Romaine CP (1975) Chrysanthemum chlorotic mottle: A viroid disease. NY Food Life Sci Q 8: 11–14

    Google Scholar 

  • Horst RK, Langhans RW, Smith SH (1977) Effects of Chrysanthemum stunt, chlorotic mottle, aspermy and mosaic on flowering and rooting of Chrysanthemums. Phytopathology 67: 9–14

    Article  Google Scholar 

  • Hsu M, Coco-Prados M (1979) Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature (London) 280: 339–340

    Article  CAS  Google Scholar 

  • Ikegami M, Fraenkel-Conrat H (1978) RNA-dependent RNA Polymerase of tobacco plants. Proc Natl Acad Sci USA 75: 2122–2124

    Article  PubMed  CAS  Google Scholar 

  • Imperial JS, Rodrigue JB, Randles JM (1981) Variation in the viroid-like RNA associated with cadang-cadang disease: evidence for an increase in molecular-weight with disease progress. J Gen Virol 56: 77–85

    Article  CAS  Google Scholar 

  • Ingram DS (1976) Growth of biotrophic parasites in tissue culture. In: Heitefuss R, Williams PH (eds) Physiological plant pathology. Encyclopedia of plant physiologie new ser Vol IV. Springer, Berlin Heidelberg New York, pp 743–759

    Google Scholar 

  • Jacobsen JV (1977) Regulation of ribonucleic acid metabolism by plant hormones. Annu Rev Plant Physiol 28: 537–564

    Article  CAS  Google Scholar 

  • Jendrisak JJ, Burgess RR (1975) A new method for the large-scale puriflcation of wheat germ DNA-dependent RNA Polymerase II. Biochemistry 14: 4639–4645

    Article  PubMed  CAS  Google Scholar 

  • Jenden EO, Poludan K, Hyldig-Nielson JJ, Jorgensen P, Marcker KA (1981) The structure of a chromosomal leg-haemoglobin gene from soybean. Nature (London) 291: 677–679

    Article  Google Scholar 

  • Kamen RI (1975) Structure and funetion of the Q3 replicase. In: Zinder ND (ed) RNA Phages. Cold Spring Harbor Lab, Cold Spring Harbor 203–234

    Google Scholar 

  • Keller JR (1951) Report on indicator plants for Chrysanthemum stunt virus and on a previously unreported Chrysanthemum virus. Phytopathology 41: 947–949

    Google Scholar 

  • Keller JR (1953) Investigations on Chrysanthemum stunt virus and Chrysanthemum virus Q. Cornell Univ Agric Exp Stan Memoir 324: 40

    Google Scholar 

  • KiKuchi Y, Tyc K, Filipowicz W, Sänger HL, Gross HJ (1982) Circularization of linear viroid RNA via 2’-phosphomonoester, 3’, 5-phosphodiester bonds by a novel type of RNA ligase from wheat germ and Chlamodomonas. Nucl Acids Res (in press)

    Google Scholar 

  • Kimberlin RH (1982) Scrapie agent: Prions or virinos? Nature (London) 297: 107–108

    Article  CAS  Google Scholar 

  • Kleinschmidt AK, Klotz G, Seliger H (1981) Viroid structure. Annu Rev Biophys Bioeng 10: 115–132

    Article  PubMed  CAS  Google Scholar 

  • Klotz G, Sänger HL (1981) Electron microscopic evidence for viroid conformers. Eur J Cell Biol 25: 5–7

    PubMed  CAS  Google Scholar 

  • Klump H, Riesner D, Sänger HL (1978) Calorimetric studies on viroids. Nucl AcidsRes 5: 1581–1587

    Article  PubMed  CAS  Google Scholar 

  • Konarska M, Filipowica W, Domdey H, Gross HJ (1981) Formation of a 2’-phosphomonoester, 3/,5’-phosphoester linkage by a novel RNA ligase in wheat germ. Nature (London) 293: 112–116

    Article  CAS  Google Scholar 

  • Kozak M (1979) Inability of circular nRNA to attach to eucaryotic ribosomes. Nature (London) 280: 82–85

    Article  CAS  Google Scholar 

  • Langowski J, Henco K, Riesner D, Sänger HL (1978) Common structural features of different viroids: Serial arrangement of double helical sections and internal loops. Nucl Acids Res 5: 1589–1610

    Article  PubMed  CAS  Google Scholar 

  • Lawson RH (1968) Cineraria varieties as starch lesion test plants for Chrysanthemum stunt virus. Phytopathology 58: 690–695

    Google Scholar 

  • Lazar E, Walter B, Stussi-Garaud C, Hirth L (1979) RNA dependent RNA polymerases from healthy and tobacco necrosis virus-infected Phaseolus aureus: Assay of localization in fractions of cellular homogenates. Virology 96: 553–563

    Article  PubMed  CAS  Google Scholar 

  • Lerner MR, Boyle JA, Mount SM, Wolin SL, Steitz JA (1980) Are snRNPs involved in splicing. Nature (London) 283: 220–224

    Article  CAS  Google Scholar 

  • Lindell TJ, Weinberg F, Morris PW, Roeder RG, Rutter WJ (1970) Specific inhibition of nuclear RNA Polymerase II by a-amanitin. Science 170: 447–449

    Article  PubMed  CAS  Google Scholar 

  • Lizaraga RE, Salazar LF, Roca WM, Schilde-Rentschler L (1980) Elimination of potato spindle tuber viroid by low temperature and meristem culture. Phytopathology 70: 754–755

    Article  Google Scholar 

  • Macquair G Monsion M, Bachelie JC, Faydi C, Dunez J (1981) The slab gel-electrophoretic assay for detection and investigation of Chrysanthemum chlorotic mottle viroid ( CCHMV) in infected plants. Agron Trop 1: 99–103

    Google Scholar 

  • Mahy BWJ, Hastie ND, Armstrong SH (1972) Inhibition of influenza virus replication by α-amanitin: Mode of action. Proc Natl Acad Sci USA 69: 1421–1424

    Article  PubMed  CAS  Google Scholar 

  • Matthews REF (1978) Are viroids negative-strand viruses? Nature 276: 850

    Article  CAS  Google Scholar 

  • May JT, Symons RH (1971) Specificity of the cucumber mosaic virus-induced RNA Polymerase for RNA and polynucleotide templates. Virology 44: 517–526

    Article  PubMed  CAS  Google Scholar 

  • May JT, Gilliland JM, Symons RH (1969) Plant virus-induced RNA Polymerase: Properties of the enzyme partly purified from cucumber cotyledons infected with cucumber mosaic cirus. Virology 39: 54–65

    Article  PubMed  CAS  Google Scholar 

  • May JT, Gilliland JM, Symons RH (1970) Properties of a plant virus-induced RNA Polymerase in particulate fractions of cucumber infected with cucumber mosaic virus. Virology 41: 653–664

    Article  PubMed  CAS  Google Scholar 

  • McClean APD (1931) Bunchy top disease of tomato. S Af Dept Sei Bull 100: 36

    Google Scholar 

  • McClements WL, Kaesberg P (1977) Size and secondary structure of potato spindle tuber viroid. Virology 76: 477–484

    Article  PubMed  CAS  Google Scholar 

  • Morris TJ (1979) Evidence for a Single infectious species of potato spindle tuber viroid. Intervirology 11: 89–96

    Article  PubMed  CAS  Google Scholar 

  • Morris TJ, Smith EM (1977) Potato spindle tuber disease: Procedures for the detection of viroid RNA and certiflcation of disease-free potato tubers. Phytopathology 67: 145–150

    Article  CAS  Google Scholar 

  • Morris TJ, Wright NS (1975) Detection on Polyacrylamide gel of a diagnostic nucleic acid from tissue infected with potato spindle tuber viroid. Am Potato J 52: 57–63

    Article  CAS  Google Scholar 

  • Mühlbach H-P (1982) Plant cell cultures and protoplasts in plant virus research. Curr Top Microbiol Immunol 99: 81–129

    Article  PubMed  Google Scholar 

  • Mühlbach H-P, Sänger HL (1977) Multiplication of cucumber pale fruit viroid in inoculated tomato leaf protoplasts. J Gen Virol 35: 377–386

    Article  Google Scholar 

  • Mühlbach H-P, Sänger HL (1979) Viroid replication is inhibited by α-amanitin. Nature (London) 278: 185–188

    Article  Google Scholar 

  • Mühlbach H-P, Sänger HL (1981) Continous replication of potato spindle tuber viroid ( PSTV) in permanent cell-cultures of potato and tomato. Biosci Rep 1: 79–87

    Article  PubMed  Google Scholar 

  • Mühlbach H-P, Camacho-Henriquez A, Sänger HL (1977) Isolation and properties of protoplasts from leaves of healthy and viroid-infected tomato plants. Plant Sci Lett 8: 183–189

    Article  Google Scholar 

  • Niblett CL, Dickson E, Fernow KH, Horst RK, Zaitlin M (1978) Cross protection among four viroids. Virology 91: 198–203

    Article  PubMed  CAS  Google Scholar 

  • Niblett CL, Dickson E, Horst RK, Romaine CP (1980) Additional hosts and an efficient purification procedure for four viroids. Phytopathology 70: 610–615

    Article  CAS  Google Scholar 

  • O’Brien MJ, Raymer WB (1964) Symptomless hosts of the potato spindle tuber virus. Phytopathology: 54: 1045–1047

    Google Scholar 

  • Ohno T, Akiya J, Higuchi M, Okada Y, Yoshikawa N, Takahashi T, Hashimoto J (1982) Puriflcation and characterization of hop stunt viroid. Virology 118: 54–63

    Article  PubMed  CAS  Google Scholar 

  • Ohshima Y, Itoh M, Okada N, Miyata T (1981) Novel models for RNA splicing that involve a small nuclear RNA. Proc Natl Acad Sci USA 78: 4471–4474

    Article  PubMed  CAS  Google Scholar 

  • Owens RA (1978) In vitro synthesis and characterization of DNA complementary to potato spindle tuber viroid. Virology 89: 380–387

    Article  PubMed  CAS  Google Scholar 

  • Owens RA, Cress DE (1980) Molecular cloning and characterization of potato spindle tuber viroid cDNA sequences. Proc Natl Acad Sei USA 77: 5302–5306

    Article  CAS  Google Scholar 

  • Owens RA, Diener TO (1977) Synthesis of RNA complementary to potato spindle tuber viroid using replicase. Virology 79: 109–120

    Article  PubMed  CAS  Google Scholar 

  • Owens RA, Diener TO (1981) Sensitive and rapid diagnosis of potato spindle tuber viroid disease by nucleic-acid hybridization. Science 213: 670–672

    Article  PubMed  CAS  Google Scholar 

  • Owens RA, Diener TO (1982) RNA intermediates in potato spindle tuber viroid replication. Proc Natl Acad Sci USA 79: 113–117

    Article  PubMed  CAS  Google Scholar 

  • Owens RA, Erbe E, Hadidi A, Steere RL, Diener TO (1977) Separation and infectivity of circular and linear forms of potato spindle tuber viroid. Proc Natl Acad Sci USA 74: 3859–3863

    Article  PubMed  CAS  Google Scholar 

  • Owens RA, Smith DR, Diener TO (1978) Measurement of viroid sequence homology by hybridization with complementary DNA prepared in vitro. Virology 89: 388–394

    Article  PubMed  CAS  Google Scholar 

  • Paliwal YC, Singh RP (1981) Cytopathological changes induced by potato spindle tuber viroid in Scopolia sinensis. Can J Bot 59: 677–682

    Article  Google Scholar 

  • Palukaitis P, Symons RH (1978) Synthesis and characterization of complementary DNA probe for Chrysanthemum stund viroid. FEBS Lett 92: 268–272

    Article  CAS  Google Scholar 

  • Palukaitis P, Symons RH (1980) Puriflcation and characterization of the circular form of Chrysanthemum stunt viroid. J Gen Virol 46: 477–489

    Article  CAS  Google Scholar 

  • Palukaitis P, Halla T, Alexander D McE, Symons RH (1979) Characterization of a viroid associated with avocado sunblotch disease. Virology 99: 145–151

    CAS  Google Scholar 

  • Palukaitis P, Rakowski AG, Alexander DM, Symons RH (1981) Rapid indexing of the sunblotch disease of avocados using a complementary-DNA probe to avocado sunblotch viroid. Ann Appl Biol 98: 439–449

    Article  Google Scholar 

  • Pfannenstiel MA, Slack SA, Lane LC (1980) Detection of PSTV in field-grown potatoes by an improved electrophoretic assay. Phytopathology 70: 1015–1018

    Article  CAS  Google Scholar 

  • Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216: 136–144

    Article  PubMed  CAS  Google Scholar 

  • Rackwitz HR, Rohde W, Sänger HL (1981) DNA-dependent RNA polymerase-II of plant-origin transcribes viroid RNA into full-length copies. Nature (London) 291:297–301

    Google Scholar 

  • Randles JW (1975) Association of two ribonucleic acid species with cadang-cadang disease of coconut palm. Phytopathology 65: 163–167

    Article  CAS  Google Scholar 

  • Randles JW, Palukaitis P (1979) In vitro synthesis and characterization of DNA complementary to cadang-cadang-associated RNA. J Gen Virol 43: 649–662

    Article  CAS  Google Scholar 

  • Randles JW, Rillo EP, Diener TO (1976) The viroidlike structure and cellular location of anomalous RNA associated with the cadang-cadang disease. Virology 74: 128–139

    Article  PubMed  CAS  Google Scholar 

  • Randles JW, Boccardo G, Retuerma ML, Rillo EP (1977) Transmission of the RNA species associated with cadang-cadang of coconut palm, and the insensitivity of the disease to antibiotics. Phytopathology 67: 1211–1216

    Article  CAS  Google Scholar 

  • Randles JW, Davies C, Hatta T, Gould AR, Francki RIB (1981) Studies on encapsidated viroid-like RNA. I. Characterization of velvet tobacco mottle virus. Virology 108: 111–122

    Google Scholar 

  • Reanny DC (1975) A regulatory role for viral RNA in eucaryotes. J Theor Biol 49: 461–492

    Google Scholar 

  • Reddy R, Ro-Choi TS, Henning D, Busch H (1974) Primary sequence of U-l nuclear ribonucleic acid of Novikoff hepatoma ascites cells. J Biol Chem 249: 6486–6494

    PubMed  CAS  Google Scholar 

  • Riesner D, Henco K, Rokohl U, Klotz G, Kleinschmidt AK, Gross HJ, Domdey H, Sänger HL (1979) Structure and structure formation of viroids. J Mol Biol 133: 85–115

    Article  PubMed  CAS  Google Scholar 

  • Riesner D, Steger G, Schumacher J, Gross HJ, Sänger HL (1981) Structure and funetion of viroids. Biophys Struct Mech 7: 240–241

    Article  Google Scholar 

  • Roberts RJ (1978) Intervening sequences excised in vitro. Nature (London) 274: 530

    Article  CAS  Google Scholar 

  • Roberts R (1980) Small RNAs and splicing. Nature (London) 283: 132–133

    Article  CAS  Google Scholar 

  • Robertson HD, Dickson E (1974) RNA processing and the control of gene expression. In: Process. Brookhaven Symp Biol 26: 240–266

    Google Scholar 

  • Rodriguez JL, Garcia-Martinez JL, Flores R (1979) The relationship between plant growth substances content and infection of Gynura aurantiaca D. C. by citrus exoeortis viroid. Physiol Plant Pathol 13: 355–363

    Google Scholar 

  • Rogers J, Wall R (1980) A mechanism for RNA splicing. Proc Natl Acad Sci USA 77: 1877–1879

    Article  PubMed  CAS  Google Scholar 

  • Rohde W, Sänger HL (1981) Detection of complementary RNA intermediates of viroid replication by northern blot hybridization. Biosci Rep 1: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Rohde W, Schnölzer M, Sänger HL (1981b) Sequence-speciflc priming of the in vitro synthesis of DNA complementary to citrus exoeortis viroid. FEBS Lett 130: 208–212

    Article  PubMed  CAS  Google Scholar 

  • Rohde W, Rackwitz H-R, Boege F, Sänger HL (1982) Viroid RNA is aeeepted as a template for in vitro transcription by DNA-dependent DNA Polymerase I and RNA Polymerase from Escherichia coli. Biosci Rep (in press)

    Google Scholar 

  • Roistacher CN, Calavan EC, Blue RL (1969) Citrus exoeortis virus - Chemical inactivation on tools, tolerance to heat and Separation of isolates. Plant Dis Rep 53: 333–336

    Google Scholar 

  • Roistacher CN, Calavan EC, Blue RL, Navarro L, Gonzales R (1977) A new more sensitive citron indicator for detection of mold isolates of citrus exoeortis viroid ( CEV ). Plant Dis Rep 61: 135–139

    Google Scholar 

  • Romaine CP, Horst RK (1975) Suggested viroid etiology for Chrysanthemum chlorotic mottle disease. Virology 64: 86–95

    Article  PubMed  CAS  Google Scholar 

  • Romaine CP, Zaitlin M (1978) RNA-dependent RNA polymerases in uninfected and tobacco mosaic virus-infected tobacco leaves: Viral-induced Stimulation of a host Polymerase activity. Virology 86: 241–253

    Google Scholar 

  • Rott R, Scholtissek C (1970) Specific inhibition of influenza replication by α-amanitin. Nature (London) 228: 56

    Article  CAS  Google Scholar 

  • Sänger HL (1972) An infectious and replicating RNA of low molecular weight: The agent of the exoeortis disease of citrus. Adv Biosci 8: 103–116

    Google Scholar 

  • Sänger HL (1979a) Structure and funetion of viroids. In: Prusiner SB, Headlow WJ (eds) Slow transmissible diseases of the nervous system. Vol 2. Academic Press, London New York

    Google Scholar 

  • Sänger HL (1979 b) Viroide, eine neue Klasse molekularer Krankheitserreger. Mitt Ber Robert-Koch-Stiftung 1:71–99

    Google Scholar 

  • Sänger HL (1980 a) Structure and possible functions of viroids. Ann NY Acad Sci 354:251–278

    Google Scholar 

  • Sänger HL (1980b) Viroids: Biology, structure and possible functions. In: Leaver CJ (ed) Genome Organisation and expression in plants. Plenum, New York London

    Google Scholar 

  • Sänger HL, Knight CA (1963) Action of actinomycin D on RNA synthesis in healthy and virus-infected tobacco leaves. Biochem Biophys Res Commun 13: 455–461

    Article  Google Scholar 

  • Sänger HL, Ramm K (1975) Radioactive labelling of viroid-RNA. In: Markham R, Davies DR, Hopwood DA, Hörne RW (eds) Modification of the information content of plant cells, North-Holland/American Elsevier, Amsterdam, pp 229–252

    Google Scholar 

  • Sänger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are singlestranded covalently closed circular RNA molecules existing as highly basepaired rodlike structures. Proc Natl Acad Sci USA 73: 3852–3856

    Article  PubMed  Google Scholar 

  • Sänger HL, Ramm K, Domdey H, Gross HJ, Henco K, Riesner D (1979) Conversion of circular viroid molecules to linear strands. FEBS Lett 99: 117–122

    Article  Google Scholar 

  • Sammons DW, Adams LD, Nishizawa E (1981) Ultrasensitive silver-based color staining of polypeptides in Polyacrylamide gels. Electrophoresis 2: 135–141

    Article  CAS  Google Scholar 

  • Sanger F, Air GM, Barreil BG, Brown NL, Coulson AR, Fiddes JC, Hutchinson III CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage 0X174 DNA. Nature (London) 265: 687–695

    Article  CAS  Google Scholar 

  • Sasaki R, Goto H, Arima K, Sasaki Y (1974a) Effect of polyribonucleotides on eukaryotic DNA-dependent RNA polymerases. Biochim Biophys Acta 366: 435–442

    PubMed  CAS  Google Scholar 

  • Sasaki Y, Goto H, Wake T, Sasaki R (1974b) Purine ribonucleotide homopolymer formation activity of RNA Polymerase from cauliflower. Biochim Biophys Acta 366: 443–453

    PubMed  CAS  Google Scholar 

  • Sasaki Y, Goto H, Ohta H, Kamikubo R (1976) Template activity of synthetic deoxyribonucleotide polymers in the eukaryotic DNA-dependent RNA Polymerase reaction. Eur J Biochem 70: 369–375

    Article  PubMed  CAS  Google Scholar 

  • Sassone-Corsi P, Corden J, Kedinger C, Chambon P (1981) Promotion of specific in vitro transcription by excised “TATA” box sequences inserted in a foreign nucleotide environment. Nucl Acids Res 9: 3941–3958

    Article  PubMed  CAS  Google Scholar 

  • Schaller J, Voss H, Gucker S (1969) Structure of the DNA of bacteriophage fd. II. Isolation and characterisation of a DNA Fr action with double strand-like properties. J Mol Biol 44: 445–458

    Google Scholar 

  • Schultz ES, Folsom D ( 1923 a) Transmission, Variation, and control of certain degeneration diseases of Irish potatoes. J Agric Res 25: 43–117

    Google Scholar 

  • Schultz ES, Folsom DA (1923c) A “spindling-tuber disease” of Irish potatoes. Science 57: 149

    Article  PubMed  CAS  Google Scholar 

  • Seitz U, Seitz U (1971) Selektive Hemmung der Synthese der AMP-reichen RNS durch α-Amanitin in Zellen höherer Pflanzen. Planta 97: 224 - 229

    Article  CAS  Google Scholar 

  • Semancik JS (1976) Structure and replication of plant viroids. In: Animal virology. Academic Press, London New York

    Google Scholar 

  • Semancik JS (1979) Small pathogenic RNA in plants - the viroids. Annu Rev Phytopathol 17: 461–484

    Article  CAS  Google Scholar 

  • Semancik JS, Desjardins PR (1980) Multiple small RNA species and the viroid hypothesis for the sunblotch disease of avocado. Virology 104: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Semancik JS, Geelen JLMC (1975) Detection of DNA complementary to pathogenic viroid RNA in exoeortis disease. Nature (London) 256: 753–756

    Article  CAS  Google Scholar 

  • Semancik JS, Vanderwoude WJ (1976) Exoeortis viroid: Cythopathic effects at the plasma membrane in association with pathogenic RNA. Virology 69: 719–726

    Article  PubMed  CAS  Google Scholar 

  • Semancik JS, Weathers LG (1972a) Exoeortis disease: Evidence for a new species of “infectious” low molecular weight RNA in plants. Nature (New Biol) 237: 242–244

    CAS  Google Scholar 

  • Semancik JS, Magnuson DS, Weathers LG (1973) Potato spindle tuber disease produced by pathogenic RNA from citrus exoeortis disease: Evidence for the identity of the causal agent. Virology 52: 292–294

    Article  PubMed  CAS  Google Scholar 

  • Semancik JS, Tsuruda D, Zaner L, Geelen JLMC, Weathers JG (1976) Exoeortis disease: Subcellular distribution of pathogenic (viroid) RNA. Virology 69: 669–676

    Article  PubMed  CAS  Google Scholar 

  • Semancik JS, Conjero V, Gerhart J (1977) Citrus exoeortis viroid: Survey of protein synthesis in Xenopus laevis oocytes following addition of viroid RNA. Virology 80: 218–221

    Article  PubMed  CAS  Google Scholar 

  • Semancik JS, Grill LK, Civerolo EL (1978) Accumulation of viroid RNA in tumor cells after double infection by Agrobacterium tumefaciens and citrus exoeortis viroid. Phytopathology 68: 1288–1292

    Article  CAS  Google Scholar 

  • Sharp PA (1981) Speculations on RNA splicing. Cell 23: 643–646

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Sänger HL (1976) Chromatographie behaviour of the viroids of the exoeortis disease of citrus and of the spindle tuber disease of citrus. Phytopathol 87: 143–160

    Article  CAS  Google Scholar 

  • Singh RP (1973) Experimental host ränge of the potato spindle tuber “virus”. Am Potato J 50: 111–123

    Article  Google Scholar 

  • Singh RP (1977) Piperonyl butoxyde as a protectant against potato spindle tuber viroid infection. Phytopathology 67: 933–935

    Article  CAS  Google Scholar 

  • Singh RP, Bagnall RH (1968) Infectious nucleic acid from host tissues infected with potato spindle tuber virus. Phytopathology 58: 696–699

    CAS  Google Scholar 

  • Singh RP, Clark MC (1971) Infectious low-molecular-weight ribonucleic acid. Biochem Biophys Res Commun 44: 1077–1082

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Clark MC (1973) Similarity of host response to both potato spindle tuber and citrus exoeortis viruses. FAO Plant Prot Bull 21: 121–125

    Google Scholar 

  • Singh RP, Finnie RE, Bagnall RH (1970) Relative prevalence of mild and severe strains of potato spindle tuber virus in Eastern Canada. Am Potato J 47: 289–293

    Article  Google Scholar 

  • Singh RP, Finnie RE, Bagnall RH (1971) Losses due to the potato spindle tuber virus. Am Potato J 48: 262–267

    Article  Google Scholar 

  • Singh RP, Michniewicz JJ, Narang SA (1974) Multiple forms of potato spindle-tuber metavirus ribonucleic acid. Can J Biochem 52: 809–812

    Article  PubMed  CAS  Google Scholar 

  • Singh RP, Michniewicz JJ, Narang SA (1975) Piperonyl butoxyde, a potent inhibitor of potato spindle tuber viroid in Scopolia sinensis. Can J Biochem 53: 1130–1132

    Article  PubMed  CAS  Google Scholar 

  • Sogo JM, Koller T, Diener TO (1973) Potato spindle tuber viroid. X. Visualization and size determination by electron microscopy. Virology 55: 70–80

    Google Scholar 

  • Somerville LL, Wang K (1981) The ultrasensitive silver “protein” stain also detects nanograms of nucleic acids. Biochem Biophys Res Commun 102: 53–58

    Article  PubMed  CAS  Google Scholar 

  • Stace-Smith R, Mellor FC (1970) Eradication of potato spindle tuber virus by thermotherapy and axillary bud culture. Phytopathology 60: 1857–1858

    Article  Google Scholar 

  • Stanley WM (1935) Isolation of a crystalline protein prossessing the properties of tobaccomosaic virus. Science 81: 644–645

    Article  PubMed  CAS  Google Scholar 

  • Sun SM, Slightom JL, Hall TC (1981) Intervening sequences in a plant gene–comparison of the partial sequence of cDNA and genomic DNA of French bean phaseolin. Nature (London) 289: 37–41

    Article  CAS  Google Scholar 

  • Symons RH (1981) Avocado sunblotch viroid - primary sequence and proposed secondary structure. Nucl Acids Res 9: 6527–6537

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Diener TO (1975) Potato spindle tuber viroid. XIV. Replication in nuclei isolated from infected leaves. Virology 64: 106–114

    Google Scholar 

  • Takanami Y, Fraenkel-Conrat H (1982) No viral gene is able to elicit RNA-dependent RNA Polymerase in cucumber mosaic virus-infected cucumber cotelydons. Virology 116: 372–374

    Article  PubMed  CAS  Google Scholar 

  • Takebe I, Otsuki Y (1969) Infection of tobacco mesophyll protoplasts by tobacco mosaic virus. Proc Natl Acad Sci USA 64: 843–848

    Article  PubMed  CAS  Google Scholar 

  • Tien P, Davies C, Hatta T, Francki RIB (1981) Viroid-like RNA encapsidated in lucerne transient streak virus. FEBS Lett 132: 353–356

    Article  Google Scholar 

  • Tinocco I Jr, Uhlenbeck OC, Levine MD (1971) Estimation of secondary structure in ribonucleic acids. Nature (London) 230: 362–367

    Article  Google Scholar 

  • Trapnell BC, Tolstoshev P, Crystal RG (1980) Secondary structures for splice junctions in eukaryotic and viral messenger RNA precursors. Nucl Acids Res 8: 3659–3672

    Article  PubMed  CAS  Google Scholar 

  • Van Dorst HJM, Peters D (1974) Some biological observations on pale fruit, a viroidincited disease of cucumber. Neth J Plant Path 80: 85–96

    Article  Google Scholar 

  • Van Montagu M, Schell J (1982) The Ti plasmids of Agrobacterium. Curr Top Microbiol Immunol 96: 236–254

    Google Scholar 

  • Visvader JE, Gould AR, Bruening GE, Symons RH (1982) Citrus exoeortis viroid-nucleotide- sequence and secondary structure of an Australian isolate. FEBS Lett 137: 288–292

    Article  PubMed  CAS  Google Scholar 

  • Wahn K, Rosenberg de Gomez R, Sänger HL ( 1980 a) Cytopathologie von viroid-inflziertem Pflanzenge webe. I. Veränderungen des Plasmalemmas und der Zell wand bei Gynura aurantiaca DC nach Infektion mit dem Viroid der Citrus Exoeortis Krankheit ( CEV ). Phytopathol Z 98: 1–18

    Google Scholar 

  • Walter B (1981) Un viroide de la Tomate en Afrique de l’Ouest: identite avec le viroide du “potato spindle tuber”? CR Acad Sci Paris 292 111: 537–542

    Google Scholar 

  • Weathers LG, Calavan EC (1961) Additional indicator plants for exoeortis and evidence for strain differences in the virus. Phytopathology 51: 262–264

    Google Scholar 

  • Weinmann R, Roeder RG (1974) Role of DNA-dependent RNA Polymerase III in the transcription of the tRNA and 5S RNA genes. Proc Natl Acad Sci USA 71: 1790–1795

    Article  PubMed  CAS  Google Scholar 

  • White JL, Murakishi HH (1977) In vitro replication of tobacco mosaic virus RNA in tobacco callus cultures: Solubilization of membrane-bound replicase and partial purification. J Virol 21: 484–492

    Google Scholar 

  • Wieland Th, Faulstich H (1978) Amatoxins, Phallotoxins, Phallolysin and Antamanide: The biologically active components of poisonous Amanita mushrooms. Crit Rev Biochem 5: 185–260

    Article  CAS  Google Scholar 

  • Wild U, Ramm K, Sänger HL, Riesner D (1980) Loops in viroids. Eur J Biochem 103: 227–235

    Article  PubMed  CAS  Google Scholar 

  • Willmitzer L, Schmalenbach W, Schell J (1981) Transcription of T-DNA in octopine and nopaline crown gall tumours is inhibited by low concentrations of α-amanitin. Nucl Acids Res 9: 4801–4812

    Article  PubMed  CAS  Google Scholar 

  • Wintermeyer W, Zachau HG (1973) Mg2 +-katalysierte, spezifische Spaltung von tRNA. Biochim Biophys Acta 299: 82–90

    PubMed  CAS  Google Scholar 

  • Zaitlin M, Niblett CL, Dickson E, Goldberg RB (1980) Tomato DNA contains no detectable regions complementary to potato spindle tuber viroid as assayed by Solution and filter hybridization. Virology 104: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Zelcer A, Vanadels J, Leonhard DA, Zaitlin M (1981) Plant-cell suspension cultures sustain longterm replication of potato spindle tuber viroid. Virology 109: 314–322

    Article  PubMed  CAS  Google Scholar 

  • Zelcer A, Zaitlin M, Robertson HD, Dickson E (1982) Potato spindle tuber viroidinfected tissues contain RNA complementary to the entire viroid. J Gen Virol 59: 139–148

    Article  CAS  Google Scholar 

  • Zieve GW (1981) Two groups of small stable RNAs. Cell 35: 296–297

    Article  Google Scholar 

  • Zylber EA, Penman S (1971) Products of RNA polymerases in HeLa cell nuclei. Proc Natl Acad Sci USA 68: 2861–2865

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Sänger, H.L. (1982). Biology, Structure, Functions and Possible Origin of Viroids. In: Parthier, B., Boulter, D. (eds) Nucleic Acids and Proteins in Plants II. Encyclopedia of Plant Physiology, vol 14 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68347-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68347-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68349-7

  • Online ISBN: 978-3-642-68347-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics