Ore Genesis pp 667-674 | Cite as

Uniformitarianism and Ore Genesis

  • D. T. Rickard
Conference paper
Part of the Special Publication of the Society for Geology Applied to Mineral Deposits book series (MINERAL DEPOS., volume 2)

Abstract

A large variety of on-going ore-forming systems have been discovered in recent years. These cover the whole spectrum of ore geology from synsedimentary through volcanic to even orthomagmatic processes. It appears that a large number of those systems which are thought to have been responsible for ore deposition throughout geologic time are observable at present. This has caused ore geology to develop from being one of the least uniformitarian of the natural sciences to becoming one of the most actualistic. Ore deposits are not the result of exceptional processes occurring rarely in earth’s history but are seen as normal consequences of geologic evolution.

Keywords

Sulphide Manganese Uranium Sandstone Shale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amstutz GC (1969) The logic of some relations in ore genesis. In: James CH (ed) Sedimentary ores. Spec Publ 1, Univ Leicester, pp 13–30Google Scholar
  2. Arrhenius GOS, Bonatti E (1965) Neptunism and volcanism in the ocean. In: Sears M (ed) Progr Oceanogr 3:7–22Google Scholar
  3. Barbier J (1979) Sur la notion de concentration pédologique dans la genèse des gîtes à Pb-Zn-Cu-Ba. Miner Deposita 14:311–321CrossRefGoogle Scholar
  4. Bernard A (1958) Contribution à l’étude de la province métallifère sous-cévénole. Thèse, Nancy, 2 vols, 640 ppGoogle Scholar
  5. Bernard A (1973) Metallogenic processes of intra-karstic sedimentation. In: Amstutz GC, Bernard AJ (eds) Ores in sediments. Springer, Berlin Heidelberg New York, pp 43–57CrossRefGoogle Scholar
  6. Bonatti E, Fisher DE, Joensuu O, Rydell HS, Beyth M (1972) Iron-manganese-barium deposit from the northern Afar Rift. Econ Geol 67:717–730CrossRefGoogle Scholar
  7. Bonatti E, Guerstein-Honnorez BM, Honnorez J (1976) Copper-iron-sulfide mineralzations from the equatorial Mid-Atlantic Ridge. Econ Geol 71:1515–1525CrossRefGoogle Scholar
  8. Boström K, Peterson MNA (1966) Precipitates from hydrothermal exhalations on the East Pacific Rise. Econ Geol 61:1258–1265CrossRefGoogle Scholar
  9. Browne PRL (1978) Hydrothermal alteration in active geothermal fields. Annu Rev Earth Planet Sci 6:229–250CrossRefGoogle Scholar
  10. Carpenter AB, Trout ML, Picket EE (1974) Preliminary report on the origin and chemical evolution of lead- and zinc-rich oil field brines in central Mississippi. Econ Geol 69:1191–1206CrossRefGoogle Scholar
  11. Degens ET, Ross DA (eds) (1969) Hot brines and recent heavy metal deposits in the Red Sea. Springer, Berlin Heidelberg New York, 600 ppGoogle Scholar
  12. Doi K, Hirono S, Sakamaki Y (1975) Uranium mineralization by groundwater in sedimentary rocks, Japan. Econ Geol 70:628–646CrossRefGoogle Scholar
  13. Erhardt H (1956) La genèse de sols en tant que phénomène géologique. Masson, Paris, 90 ppGoogle Scholar
  14. Ferguson J, Lambert IB (1972) Volcanic exhalations and metal enrichments at Matupi Harbor, New Britain, T.P.N.G. Econ Geol 67:25–37CrossRefGoogle Scholar
  15. Francheteau J, and members of the CYAMEX team (1979) Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature (London) 277:523–528CrossRefGoogle Scholar
  16. Green DH (1972) Archaean greenstone belts may include terrestrial equivalents of lunar materia. Earth Planet Sci Lett 15:263–270CrossRefGoogle Scholar
  17. Gustafson LB, Titley SR (1978) Preface. Econ Geol 73:597–599Google Scholar
  18. Hine R, Bye SM, Cook FW, Leckie JF, Torr GL (1978) The Esis porphyry copper deposit, east New Britain, Papua New Guinea. Econ Geol 73:761–767CrossRefGoogle Scholar
  19. Hjelmqvist S (1951) Resa till Lipariska öarna. Geol Fören Stockhol Förh 73:473–491CrossRefGoogle Scholar
  20. Holland HD (1979) Metals in black shales — a reassessment. Econ Geol 74:1676–1680CrossRefGoogle Scholar
  21. Honnorez J, Honnorez-Guerstein B, Valette J, Wauschkuhn A (1973) Present day formation of an exhalative sulfide deposit at Vulcano (Thyrrhenian Sea), Part II: Active crystallization of fuma-rolic sulfides in the volcanic sediments of the Baia di Levante. In: Amstutz GC, Bernard AJ (eds) Ores in sediments. Springer, Berlin Heidelberg New York, pp 139–166CrossRefGoogle Scholar
  22. Hosking KFG (1969) Discussion: In: James CH (ed) Sedimentary ores. Spec Publ No 1, Univ Leicester, pp 57–58Google Scholar
  23. Hutton J (1788) Theory of the Earth. Trans R Soc Edinburgh 1:209–304Google Scholar
  24. Ishihara S (ed) (1974) Geology of Kuroko deposits. Soe Min Geol Jpn Spec Iss 6:465 ppGoogle Scholar
  25. Jedwab J (1979) Copper, zinc and lead minerals suspended in ocean waters. Geochim Cosmochim Acta43:101–110CrossRefGoogle Scholar
  26. Lebedev LM, Nikitina IB (1968) Chemical properties and ore content of hydrothermal solutions at Cheleken. Dokl Acad Sci USSR 183:180–182Google Scholar
  27. Lindgren W (1933) Mineral deposits. McGraw Hill, New York, 930 ppGoogle Scholar
  28. Morrissey CJ, Whitehead D (1970) Origin of the Tynagh ore-body, Ireland. Proc 9th Commonwealth Mining Metall Cong 2:131–145Google Scholar
  29. Müller D (1979) Sulphide inclusions in manganese nodules of the Northern Pacific. Miner Deposita 14:375–380CrossRefGoogle Scholar
  30. Oftedahl Ch (1958) A theory of exhalative-sedimentary ores. Geol Fören Stockholm Förh 80: 1–19CrossRefGoogle Scholar
  31. Park CF (1961) A magnetite “flow” in northern Chile. Econ Geol 56:431–436CrossRefGoogle Scholar
  32. Puchelt H (1973) Recent iron sediment formation at the Kameni islands, Santorini. In: Amstutz GC, Bernard AJ (eds) Ores in sediments. Springer, Berlin Heidelberg New York, pp 227–245CrossRefGoogle Scholar
  33. Ramdohr P (1973) The opaque minerals in stony meteorites. Elsevier, Amsterdam, 245 ppGoogle Scholar
  34. Ramdohr P (1979) The ore minerals and their intergrowths. Pergamon Press, London, 1300 ppGoogle Scholar
  35. Rickard DT (1973) Limiting conditions for synsedimentary ore formation. Econ Geol 68:605–617CrossRefGoogle Scholar
  36. Skinner BJ, Peck DL (1969) An immiscible sulfide melt from Hawaii. Econ Geol Monogr 4:310–322Google Scholar
  37. Skinner BJ, White DE, Rose HJ, Mays RE (1967) Sulfides associated with the Salton Sea geothermal brine. Econ Geol 62:316–320CrossRefGoogle Scholar
  38. Skornyakova IS (1964) Dispersed iron and manganese in Pacific Ocean sediments. Int Geol Rev 7: 2161–2174CrossRefGoogle Scholar
  39. Spurr JE (1923) The ore magmas. McGraw Hill, New York, 2 vols, 915 ppGoogle Scholar
  40. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221CrossRefGoogle Scholar
  41. Tatsumi T (1970) Volcanism and ore genesis. Tokyo Univ Press, 448 ppGoogle Scholar
  42. Taupitz K-C (1954) Über Sedimentation, Diagenese, Metamorphose, Magmatismus und die Entstehung der Erzlagerstätten. Chemie Erde 17:104–164Google Scholar
  43. White DE (1967) Mercury and base metal deposits with associated thermal and mineral waters. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt Rinehart and Wilson, New York, pp 575–631Google Scholar
  44. White DE, Hem JD, Waring GA (1963) Chemical composition of subsurface waters. USGS Prof Pap 440-F:67 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • D. T. Rickard
    • 1
  1. 1.Ore Research Group, Geological InstituteStockholm UniversityStockholmSweden

Personalised recommendations