Ore Genesis pp 351-370 | Cite as

The Formation of Chromite and Titanomagnetite Deposits Within the Bushveld Igneous Complex

  • D. D. Klemm
  • R. Snethlage
  • R. M. Dehm
  • J. Henckel
  • R. Schmidt-Thomé
Part of the Special Publication of the Society for Geology Applied to Mineral Deposits book series (MINERAL DEPOS., volume 2)

Abstract

A brief analysis of the early tectonic history of southern Africa reveals that the intrusion of the Bushveld Complex is situated at the intersection of several lineaments. Based on gravity measurements, the Bushveld can be divided into five subcomplexes.

The differentiation of the Bushveld magma can be explained by two model systems: MgO — SiO2 — Fe3O4 — Cr2O3 and MgO — SiO2 — FeO — Fe2O3. However, these model systems can neither explain the formation of the chromitite seams of the Critical Zone nor the massive titanomagnetite layers of the Upper Zone.

fO2-Measurements on chromites indicate that the formation of chromitite seams is caused by periodical fluctuations of the fO2. A similar mechanism has been postulated before by various authors for the accumulation of massive titanomagnetite layers.

Detailed geochemical analyses of host rock magnetites are interpreted. Several field evidences indicate the existence of local, but enormous volatile activity and the formation of anomalous magnetite layers by an increase of the fO2, caused by contamination of the magma with sedimentary fragments.

A new model is presented, which explains the formation of massive chromite and titanomagnetite seams as a function of the fO2, as well as their extreme lateral consistency within the Bushveld Complex.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arculus RJ, Osborn EF (1975) Phase relations in the system MgO-iron oxide-Cr2O3-SiO2. Annu Rep Geophys Lab Carnegie Inst, Washington, pp 507–512Google Scholar
  2. Atkins FB (1969) Pyroxenes of the Bushveld intrusion, South Africa. Inst Petrol 10:222–249Google Scholar
  3. Biljon WJ van (1976) Goud is nie waar dit gevind word nie! In oorsig van die struktuur, gesteentes en ertsafsettings van die Transvaal. Trans Geol Soc S Afr 79:155–167Google Scholar
  4. Bisschoff AA (1971) Tholeiitic intrusions in the Vredefort Dome. Trans Geol Soc S Afr 75:23–30Google Scholar
  5. Bisschoff AA (1973) The petrology of some mafic and peralkaline intrusions in the Vredefort Dome, South Africa. Trans Geol Soc S Afr 77:27–52Google Scholar
  6. Buchanan DL (1976) The sulphide and oxide assemblages in the Bushveld Complex Rocks of the Bethal Area. Trans Geol Soc S Afr 79:76–80Google Scholar
  7. Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. Inst Petrol 54:310–357Google Scholar
  8. Camaron EN, Desborough GA (1969) Occurrence and characteristics of chromite deposits — Eastern Bushveld Complex. In: Wilson HDB (ed) Magmatic ore deposits, a symposium. Econ Geol Monogr 4:23–40Google Scholar
  9. Coetzee CG (ed) (1976) Mineral resources of the Republic of South Africa. Geol Surv Dep Mines S Afr, Pretoria, 462 ppGoogle Scholar
  10. Gruenewaldt G von (1970) On the phase-change orthopyroxene-pigeonite and the resulting textures in the main and upper Zones of the Bushveld Complex in the Eastern Transvaal. In: Visser DJL, Gruenewald G v (eds) Geol Soc S Afr, Spec Publ 1:67–73Google Scholar
  11. Gruenewaldt G, von (1973) The main and upper zones of the Bushveld Complex in the Roossenekal Area, Eastern Transvaal. Trans Geol Soc S Afr 76:207–227Google Scholar
  12. Gruenewaldt G, von (1976) Sulfides in the upper zone of the Eastern Bushveld Complex. Econ Geol 71:1324–1336Google Scholar
  13. Gruenewaldt G, von (1977) The mineral resources of the Bushveld Complex. Minerals Sci Eng 9:83–95Google Scholar
  14. Haughton SH (1969) Geological history of southern Africa. Geol Soc S Afr 535 ppGoogle Scholar
  15. Haughton DR, Roeder PL, Skinner BJ (1974) Solubility of sulfur in mafic magmas. Econ Geol 69: 451–467CrossRefGoogle Scholar
  16. Hill R, Roeder P (1974) The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. J Geol 82:709–729CrossRefGoogle Scholar
  17. Irvine TN (1977) Origin of chromitite layers in the Muskox intrusion and other stratiform intrusions: A new interpretation. Geology 5:273–277CrossRefGoogle Scholar
  18. Klemm DD, Dehm RM, Henckel J, Schmidt-Thome R (1979) A detailed geological profile of the upper zone of the Bushveld Complex, South Africa (Resume). 10e Colloq Geol Afr, MontpellierGoogle Scholar
  19. Klopfer H (1974) Wassertransport durch Diffusion in Feststoffen. Bauverlag, Wiesbaden Berlin, 235 SGoogle Scholar
  20. MacLean WH (1969) Liquidus phase relations in the FeS-FeO-Fe3O4-SiO2 system, and their application in geology. Econ Geol 64:865 – 884CrossRefGoogle Scholar
  21. Molyneux TG (1970) The geology of the area in the vicinity of Magnet Heights, Eastern Transvaal, with special reference to the magnetic iron ore. Geol Soc S Afr, Spec Publ 1:228–241Google Scholar
  22. Muan A, Osborn EF (1956) Phase equilibria at liquidus temperatures in the system MgO-FeO-Fe2O3-SiO2. J Am Ceram Soc 39:121–140CrossRefGoogle Scholar
  23. Roeder PL, Osborn EF (1966) Experimental data for the system MgO-FeO-Fe2O3-CaAl2SiO2O8-SiO2 and their petrologic implications. Am J Sci 264:428–480CrossRefGoogle Scholar
  24. Schwellnus JSI, Hiemstra SA, Gasparrini E (1976) The Merensky Reef at the Atok Platinum Mine and its environs. Econ Geol 71:249–260CrossRefGoogle Scholar
  25. Snethlage R, Gruenewaldt G, von (1978) Oxygen fugacity and its bearing on the origin of chromitite layers in the Bushveld Complex. In: Klemm DD, Schneider HJ (eds) Time and stratabound ore deposits. Springer, Berlin Heidelberg New York, pp 352–370Google Scholar
  26. Snethlage R, Klemm DD (1978a) Intrinsic oxygen fugacity measurements on chromites from the Bushveld Complex and their petrogenetic significance. Contrib Mineral Petrol 67:127–138CrossRefGoogle Scholar
  27. Snethlage R, Klemm DD (1978b) Über die Theorie zur Messung der “intrinsic oxygen fugacity” und ihre Anwendung auf natürliche Chromite. Neues Jahrb Mineral Monatsh 1978:273–288Google Scholar
  28. Truswell JF (1977) The geological evolution of South Africa. Purnell, Cap Town Johannesburg London, 218 ppGoogle Scholar
  29. Ulmer GC (1969) Experimental investigations of chromite spinels. In: Wilson HDB (ed) Magmatic ore deposits, a symposium. Econ Geol Monogr 4:114–131Google Scholar
  30. Vail JR (1977) Further data on the alignment of basic igneous intrusive complexes in southern and eastern Africa. Trans Geol Soc S Afr 80:87–92Google Scholar
  31. Vermaak CF (1976) The nickel pipes of Vlakfontein and vicinity, Western Transvaal. Econ Geol 71:261–286CrossRefGoogle Scholar
  32. Waal SA De (1967) Carbon dioxide and water from metamorphic reactions as agents for sulphide and spinel precipitation in mafic magmas. Trans Geol Soc S Afr 80:193–196Google Scholar
  33. Waal SA De (1978) Carbon dioxide and water from metamorphic reactions as agents for sulphide and spinel precipitation in mafic magmas (discussion). Trans Geol Soc S Afr 81:227–228Google Scholar
  34. Willemse J (1969a) The geology of the Bushveld Igneous Complex, the largest repository of magmatic ore deposits in the world. In: Wilson HDB (ed) Magmatic ore deposits, a symposium. Econ Geol Monogr 4:1–22Google Scholar
  35. Willemse JA (1969b) The vanadiferous magnetic iron ore of the Bushveld Complex. In: Wilson HDB (ed) Magmatic ore deposits, a symposium. Econ Geol Monogr 4:187–208Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1982

Authors and Affiliations

  • D. D. Klemm
  • R. Snethlage
  • R. M. Dehm
  • J. Henckel
  • R. Schmidt-Thomé
    • 1
  1. 1.Institut für Angewandte GeologieUniversität MünchenMünchen 2Germany

Personalised recommendations