Catecholamines in Patients with Heart Failure

  • W. Mäurer
  • R. Tschada
  • J. Manthey
  • A. Ablasser
  • W. Kübler
Conference paper

Summary

  1. 1.

    In a group of 57 patients with heart disease, 24-h urinary excretion of norepinephrine, epinephrine and their O-methylated metabolites, normetanephrine and metanephrine, was found significantly increased in class III an IV (NYHA). The urinary excretion of dopamine did not show any significant change.

     
  2. 2.

    In 52 patients with heart failure, plasma levels of norepinephrine and epinephrine at rest were increased mainly in those patients, in whom cardiac index was depressed below the critical value of 2 liters/min/m2. There was no strong relationship between left ventricular ejection fraction and plasma catecholamines.

    In 11 patients with congestive cardiomyopathy and severe heart failure, increase in cardiac index due to therapeutic intervention with dihydralazine or/and dopamine revealed significant decrease in plasma catecholamines.

    During exercise, in 12 patients with impaired left ventricular function an exaggerated increase in plasma catecholamines could be observed, probably as consequence of peripheral underperfusion due to low cardiac output. There was no strong relationship between plasma catecholamines and plasma levels of lactate.

     
  3. 3.

    In 17 patients suffering from severe chronic aortic regurgitation, cardiac tissue stores of norepinephrine, normetanephrine and epinephrine were significantly decreased. Myocardial dopamine level did not change.

    The transformation of dopamine to norepinephrine seems to be the rate limiting step of myocardial norepinephrine synthesis. A defect of norepinephrine uptake represents an important mechanism of cardiac catecholamine depletion.

     

Keywords

Dopamine Lactate Argon Norepinephrine Cardiomyopathy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anton AH, Sayre DF (1964) The distribution of dopamine and dopa in various animals and method for their determination in diverse biological material. J Pharmacol Exp Ther 145: 326PubMedGoogle Scholar
  2. 2.
    Axelrod J (1962) Purification and properties of phenylethanolamin-N-methyltransferase. J Biol Chem 237: 1657PubMedGoogle Scholar
  3. 3.
    Bertler A, Carlsson A, Rosengren E (1959) Fluorometric method for differential estimation of 3-O-methylated derivatives of adrenaline and noradrenaline ( Metanephrine and Normetanephrine ). Clin Chim Acta 4: 456Google Scholar
  4. 4.
    Blaschko H (1973) Catecholamine biosynthesis. Br Med Cull 29: 105Google Scholar
  5. 5.
    Braunwald E (1974) The autonomic nervous system in heart failure. In: Braunwald E (ed) The myocardium: failure and infarction. HP Publishing, New York, pp 59–69Google Scholar
  6. 6.
    Braunwald E, Chidsey CA (1965) The adrenergic nervous system in the control of the normal and failing heart. Proc R Soc Med 58: 1062Google Scholar
  7. 7.
    Bretschneider HJ, Cott L, Hilgert G, Probst R, Rau G (1966) Gaschromatographische Trennung und Analyse von Argon als Basis einer neuen Fremdgasmethode zur Durchflußmessung von Organen. Verh Dtsch Ges Kreislaufforsch 32: 267PubMedGoogle Scholar
  8. 8.
    Chidsey CA, Harrison DC, Braunwald E (1962) Augmentation of plasma norepinephrine response to exercise in patients with congestive heart failure. N Engl J Med 267: 650PubMedCrossRefGoogle Scholar
  9. 9.
    Chidsey CA, Braunwald E, Morrow AG (1969) Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med 39: 442CrossRefGoogle Scholar
  10. 10.
    Da Prada M, Zürcher G (1976) Simultaneous radioenzymatic determination of plasma and tissue adrenaline, noradrenaline and dopamine within the femtomole range. Life Sci 19: 1161PubMedCrossRefGoogle Scholar
  11. 11.
    v. Euler US, Lishajko F (1961) Improved technique for the fluorometric estimation of catecholamines. Acta Physiol Scand 51: 348CrossRefGoogle Scholar
  12. 12.
    Franciosa JA, Pierpont G, Cohn JN (1977) Hemodynamic improvement after oral hydralazine in left ventricular failure. A comparison with nitroprusside infusion in 16 patients. Ann Intern Med 86: 388PubMedGoogle Scholar
  13. 13.
    Goldberg LI (1974) Dopamine — clinical use of an endogenous catecholamine. N Engl J Med 291: 707PubMedCrossRefGoogle Scholar
  14. 14.
    Mäurer W, Yoshida Y, Kübler W (1976) Die Urinausscheidung der Katecholamine Adrenalin, Noradrenalin und Dopamin sowie der Abbauprodukte Metanephrin und Normetanephrin bei Herzkranken. Z Kardiol 65: 1124Google Scholar
  15. 15.
    Mäurer W, Hausen M, Schwarz F, Mehmel HC, Kübler W (1980) Veränderungen der Katecholaminkonzentration im Plasma in Abhängigkeit von der linksventrikulären Funktion in Ruhe und bei Belastung. Z Kardiol 69: 242Google Scholar
  16. 16.
    Mäurer W, Ablasser A, Saggaau W, Storch H, Hausen M, Heimus G, Kübler W (1981) Veränderungen des myokardialen Katecholamin-Stoffwechsels und Verhalten der Plasma-Katecholamine bei Patienten mit chronischer Aorteninsuffizienz. Z Kardiol 70: 540PubMedGoogle Scholar
  17. 17.
    Nomenclature and criteria for diagnosis of diseases of the heart and blood vessels (1963) New York Heart Association, New YorkGoogle Scholar
  18. 17.
    a Criteria Commitee of the New York Heart Association, Inc.: “Diseases of the Heart and Blood Vessels” (Nomenclature and Criteria for Diagnosis), 6th ed., Little Brown and Company, Boston, 1964Google Scholar
  19. 18.
    Pool PE, Covell JM, Levitt M, Gibb J, Braunwald E (1967) Reduction of cardic Tyrosin-hydroxylase activity in experimental congestive heart failure. Circ Res 20: 349PubMedGoogle Scholar
  20. 19.
    Sandhu RS, Freed RM (1968) An improved method for the determination of urinary catecholamines. Clin Chem 14: 824Google Scholar
  21. 20.
    Spann JF, Chidsey CA, Pool PE, Braunwald E (1965) Mechanism of norepinephrine depletion in experimental heart failure produced by aortic constriction in the guinea pig. Circ Res 17: 312PubMedGoogle Scholar
  22. 21.
    Sole JM (1980) Dopamine in the failing hamster heart: transvesicular transport limits the rate of norepinephrine synthesis. Circulation 62 [Suppl III]: 178Google Scholar
  23. 22.
    Starling EH (1897) Some points in the pathology of heart disease. Lancet I: 569Google Scholar
  24. 23.
    Udenfriend S (1964) In: Fluorescence assay in biology and medicine. Academic Press, New York Vol I, 1962; Vol II, 1969Google Scholar
  25. 24.
    Vogel JHK, Jacobowitz D, Chidsey CA (1969) Distribution of norepinephrine in the failing bovine heart correlation of chemical analysis and fluorescence microscopy. Circ Res 24: 71PubMedGoogle Scholar
  26. 25.
    Zelis R, Flaim SF, Nellis S, Longhurst J, Moskowitz R (1978) Autonomic adjustments to congestive heart failure and their consequences. In: Fishman AP (ed) Heart failure. Hemisphere Washington London p237Google Scholar

Copyright information

© Springer-Verlag, Berlin, Heidelberg 1981

Authors and Affiliations

  • W. Mäurer
  • R. Tschada
  • J. Manthey
  • A. Ablasser
  • W. Kübler

There are no affiliations available

Personalised recommendations