Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 97))

Abstract

Adenoviruses were discovered in 1953 and constitute a family of viruses originally isolated from the respiratory tract of man and other animals. The adenovirus family has been subdivided into two genera, mastadenovirus and aviadenovirus, referring to the virus isolated from mammalian and avian hosts, respectively. The human adenoviruses comprise 33 different serotypes. The low numbered types cause mild respiratory infections in humans, but they have not been considered to be of major clinical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiello L, Guilfoyle R, Huebner K, Weinmann R (1979) Adenovirus 5 DNA sequences present and RNA sequences transcribed in transformed human embryo kidney cells (HEK-Ad5 or 293). Virology 94: 460–469

    Article  PubMed  CAS  Google Scholar 

  • Akusjärvi G, Pettersson U (1979a) Sequence analysis of adenovirus DNA: complete nuleoctide sequence of the spliced 5’ noncoding region of adenovirus 2 hexon messenger RNA. Cell 16: 841–850

    Article  PubMed  Google Scholar 

  • Akusjärvi G, Pettersson U (1979b) The genomic sequences encoding the common tripartite leader of late adenovirus messenger RNA. J Mol Biol 134: 143–158

    Article  PubMed  Google Scholar 

  • Akusjärvi G, Persson H (1981a) Controls of RNA splicing and termination in the major late adeno virus transcription unit. Nature 292: 420–426

    Article  PubMed  Google Scholar 

  • Akusjärvi G, Persson H (1981b) The gene and messenger RNA for precursor polypeptide VI from adenovirus type 2. J Virol 38: 469–482

    PubMed  Google Scholar 

  • Akusjärvi G, Mathews MB, Anderson P, Vennström B, Pettersson U (1980) Structure of genes for virus-associated RNAI and RNAII of adenovirus type 2. Proc Natl Acad Sci USA 77: 2424–2428

    Article  PubMed  Google Scholar 

  • Akusjärvi G, Zabielski J, Perricaudet M, Pettersson U (1981) The sequence of the 3’ non-coding region of the hexon mRNA disloses a novel adenovirus gene. Nucleic Acids Res 9: 1–17

    Article  PubMed  Google Scholar 

  • Aleström P, Akusjärvi G, Perricaudet M, Mathews MB, Klessig DF, Pettersson U (1980) The gene of polypeptide IX of adenovirus type 2 and its unspliced messenger RNA. Cell 19: 671–681

    Article  PubMed  Google Scholar 

  • Anderson CW, Baum PR, Gesteland RF (1973) Processing of adenovirus 2-induced proteins. J Virol 12: 241–255

    PubMed  CAS  Google Scholar 

  • Anderson CW, Lewis JB, Baum PR, Gesteland RF (1976) Simian virus 40-specific polypeptide in ad2+ ND1- and ad2+ ND4-infected cells. J Virol 18: 686–692

    Google Scholar 

  • Anderson CW, Lewis JB (1980) Amino-terminal sequence of the adenovirus type 2 proteins: hexon, fiber, component IX, and early protein 1B-15K. Virology 104: 27–41

    Article  PubMed  CAS  Google Scholar 

  • Axelrod N (1978) Phosphoproteins of adenovirus 2. Virology 87: 366–383

    Article  PubMed  CAS  Google Scholar 

  • Avvedimento EV, Vogeli G, Yamada Y, Maizel Jr JV, Pastan L, Crombrugghe B (1980) Correlation between splicing sites within an intron and their sequence complementary with U1 RNA. Cell 21: 689–696

    Article  PubMed  CAS  Google Scholar 

  • Baker CC, Hérissé J, Courtois G, Galibert F, Ziff E (1979) Messenger RNA for the Ad2 DNA binding protein: DNA sequences encoding the first leader and heterogeneity at the mRNA 5’ end. Cell 18: 569–580

    Article  PubMed  CAS  Google Scholar 

  • Bastos RN, Volloch Z, Aviv A (1977) Messenger RNA population analysis during erythroid differentiation: a kinetical approach. J Mol Biol 110: 191–203

    Article  PubMed  CAS  Google Scholar 

  • Beltz GA, Flint SJ (1979) Inhibition of HeLa cell protein synthesis during adenovirus infection. Restriction of cellular messenger RNA sequences to the nucleus. J Mol Biol 131: 353–373

    Article  PubMed  CAS  Google Scholar 

  • Berget AM, Sharp PA (1979) Structure of late adenovirus 2 heterogenous nuclear RNA. J Mol Biol 129: 547–565

    Article  PubMed  CAS  Google Scholar 

  • Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5’ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA 74: 3171–3175

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1977a) Ultraviolet mapping of the adenovirus 2 early promoters. Cell 12: 45–55

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1977b) Structure of the adenovirus 2 early mRNAs. Cell 14: 695–711

    Article  Google Scholar 

  • Berk AJ, Lee F, Harrison T, Williams J, Sharp PA (1979) Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17: 1935–944

    Article  Google Scholar 

  • Bhatti AR, Weber J (1979) Protease of adenovirus type 2. J Biol Chem 254: 12265–12268

    PubMed  CAS  Google Scholar 

  • Blanchard JM, Weber J, Jelinek W, Darnell JE (1978). In vitro RNA-RNA splicing in adenovirus 2 mRNA formation. Proc Natl Acad Sci USA 75: 5344–5348

    Article  PubMed  CAS  Google Scholar 

  • Blanton RA, Carter TH (1979) Autoregulation of adenovirus type 5 early gene expression, in. Transcription studies in isolated nuclei. J Virol 29: 458–465

    PubMed  CAS  Google Scholar 

  • Bogenhagen DF, Sakonju S, Brown DD (1980) A control region in the center of the 5S RNA gene directs specific initiation of transcription. II. The 3’ border of the region. Cell 19: 27–35

    Article  PubMed  CAS  Google Scholar 

  • Brackman KH, Green M, Wold WSM, Cartas M, Matsuo T, Hashimoto S (1980) Identification and peptide mapping of human adenovirus type 2-induced early polypeptides isolated by two- dimensional gel electrophoresis. J Biol Chem 255: 6772–6779

    Google Scholar 

  • Breathnach R, Benoist C, O’Hare K, Gannon F, Chambon P (1978) The ovalbumin gene: evidence for a leader sequence in mRNA and DNA sequences at the exon-intron boundaries. Proc Natl Acad Sci USA 75: 4853–4857

    Article  PubMed  CAS  Google Scholar 

  • Broker TR, Chow LT (1979) Alternative RNA splicing pattern and the clustered transcription and splicing signals of human adenovirus 2. ICN-UCLA Symp Mol Cell Biol 14: 611–637

    CAS  Google Scholar 

  • Büttner W, Veres-Molnar Z, Green M (1976) Preparative isolation and mapping of adenovirus 2 early messenger RNA species. J Mol Biol 107: 93–114

    Article  PubMed  Google Scholar 

  • Calos MP, Miller JH (1980) Transposable elements. Cell 20: 579–595

    Article  PubMed  CAS  Google Scholar 

  • Carter TH, Blanton RA (1978a) Possible role of the 72 000-dalton DNA-binding protein in regulation of adenovirus type 5 early gene expression. J Virol 25: 664–674

    PubMed  CAS  Google Scholar 

  • Carter TH, Blanton RA (1978b) Autoregulation of adenovirus type 5 early gene expression. II. Effect of temperature-sensitive early mutations on virus RNA accumulation. J Virol 28: 450–456

    PubMed  CAS  Google Scholar 

  • Celma ML, Pan J, Weissman SM (1977a) Studies of low molecular weight RNA from cells infected with adenovirus 2.1. The sequence at the 3’ end of VA-RNAI. J Biol Chem 252: 9032–9043

    PubMed  CAS  Google Scholar 

  • Celma ML, Pan J, Weissman SM (1979b) Studies of low molecular weight RNA from cells infected with adenovirus 2. n. Heterogeneity at the 5’ end of VA-RNAI. J Biol Chem 252: 9043–9046

    Google Scholar 

  • Challberg MD, Kelly TJ Jr (1979) Adenovirus DNA replication in vitro. Proc Natl Acad Sci USA 76: 655–659

    Article  PubMed  CAS  Google Scholar 

  • Chambon P (1975) Eucaryotic nuclear RNA polymerases. Annu Rev Biochem 44: 613–638

    Article  PubMed  CAS  Google Scholar 

  • Chambon P (1977) The molecular biology of the eukaryotic genome is coming of age. Cold Spring Harbor Symp Quant Biol 42: 1209–1234

    Google Scholar 

  • Cherney CS, Wilhelm JM (1979) Differential translation in normal and adenovirus type 5-infected human cells and cell-free systems. J Virol 30: 533–542

    PubMed  CAS  Google Scholar 

  • Chow LT, Broker TR (1979) The spliced structures of adenovirus 2 fiber message and the other late mRNAs. Cell 15: 497–510

    Article  Google Scholar 

  • Chow LT, Roberts JM, Lewis JB, Broker TR (1977a) A map of cytoplasmic RNA transcripts from lytic adenovirus type 2, determined by electron microscopy of RNA: DNA hybrids. Cell 11: 819–836

    Article  PubMed  CAS  Google Scholar 

  • Chow LT, Gelinas RE, Broker TR, Roberts RJ (1977b) An amazing sequence arrangement at the 5’ ends of adenovirus 2 messenger RNA. Cell 12: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Chow LT, Broker TR, Lewis JB (1979) Complex splicing patterns of RNAs from the early regions of adenovirus 2. J Mol Biol 134: 265–303

    Article  PubMed  CAS  Google Scholar 

  • Corden J, Wasylyk B, Buchwalder A, Sassone-Corsi P, Kedinger C, Chambon P (1980) Promoter sequences of eukaryotic protein-coding genes. Science 209: 1406–1414

    Article  PubMed  CAS  Google Scholar 

  • Craig EA, Raskas HJ (1974) Effect of cyclohexidime on RNA metabolism early in productive infection with adenovirus 2. J Virol 14: 26–32

    PubMed  CAS  Google Scholar 

  • Craig EA, Raskas HJ (1976) Nuclear transcripts larger than the cytoplasmic mRNAs are specified by segments of the adneovirus genome coding for early functions. Cell 8: 205–213

    Article  PubMed  CAS  Google Scholar 

  • David AE (1976) Control of vesicular stomatitis virus protein synthesis. Virology 71: 217–229

    Article  PubMed  CAS  Google Scholar 

  • Davidson EH (1976) Gene activity in early development, 2nd edn. New York Academic Press

    Google Scholar 

  • MacDonald JR, Crerar MM, Swain W, Pictet RL, Thomas G, Rutter WJ (1980) Structure of a family of rat amylase genes. Nature 287: 117–122

    Article  PubMed  CAS  Google Scholar 

  • Dunn AR, Hassell JA (1977) A novel method to map transcripts: evidence for homology between an adenovirus mRNA and discrete multiple regions of the viral genome. Cell 12: 23–36

    Article  PubMed  CAS  Google Scholar 

  • Dunn AR, Mathews MB, Chow LT, Sambrook J, Keller W (1978) A supplementary adenoviral leader sequence and its role in messenger translation. Cell 15: 511–526

    Article  CAS  Google Scholar 

  • Eb AJ van der, Mulder C, Graham FL, Houweling A (1977) Transformation with specific fragments of adenovirus DNAs I. Isolation of specific fragments with transforming activity of adenovirus 2 and 5 DNA. Gene 2: 115–132

    Article  PubMed  Google Scholar 

  • Eb AJ van der, van Ormondt H, Schrier PI, Lupker JH, Jochemsen JH, van den Elsen PJ, DeLeys RJ, Maat J, van Beveren CP, Dijkema R, de Waard A (1979) Structure and function of the transforming genes of human adenoviruses and SV40. Cold Spring Harbor Symp Quant Biol 44: 383–399

    Google Scholar 

  • Edvardsson B, Everitt E, Jörnvall H, Präge L, Philipson L (1976) Intermediates in adenovirus assembly. J Virol 19: 533–547

    PubMed  CAS  Google Scholar 

  • Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O’Connell C, Spritz RA, DeRiel JK, Forget BG, Weissman M, Sligtom JL, Blechl AE, Smithies O, Baralle FE, Shoulders CC, Proudfoot NJ (1980) The structure and evolution of the human β-globin gene family. Cell 21: 653–668

    Article  PubMed  CAS  Google Scholar 

  • Eggerding F, Raskas HJ (1978) Effect of protein synthesis inhibitors on viral mRNAs synthesized early in adenovirus type 2 infection. J Virol 25: 453–458

    PubMed  CAS  Google Scholar 

  • Engelke DR, Ng SY, Shastry BS, Roeder RG (1980) Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19: 717–728

    Article  PubMed  CAS  Google Scholar 

  • Esche H, Mathews MB, Lewis JB (1980) Proteins and messenger RNAs of the transforming region of wild-type and mutant adenoviruses. J Mol Biol 142: 399–417

    Article  PubMed  CAS  Google Scholar 

  • Evans RM, Fraser N, Ziff E, Weber J, Wilson M, Darnell JE (1977) The initiator sites for RNA transcription in ad2 DNA. Cell 12: 733–739

    Article  PubMed  CAS  Google Scholar 

  • Flint SJ, Sharp PA (1976) Adenovirus transcription. V. Quantitation of viral RNA sequences in adenovirus 2-infected and transformed cells. J Mol Biol 106: 749–771

    Article  PubMed  CAS  Google Scholar 

  • Flint SJ, Sambrook J, Williams JF, Sharp PA (1976) Viral nucleic acid sequence in transformed cells. IV. A study of the sequences of adenovirus 5 DNA and RNA in four lines of adenovirus 5-transformed rodent cells using specific fragments of the viral genome. Virology 72: 456–470

    Article  PubMed  CAS  Google Scholar 

  • Flytzanis C, Alonso A, Louis C, Krieg L, Sekeres CE (1978) Association of small nuclear RNA with HnRNA isolated from nuclear RNP complexes carrying HnRNA. FEBS Lett 96: 201–206

    Article  PubMed  CAS  Google Scholar 

  • Fowlkes DM, Shenk T (1980) Transcriptional control regions of the adenovirus VAI RNA gene. Cell 22: 405–413

    Article  PubMed  CAS  Google Scholar 

  • Fowlkes DM, Lord ST, Linné T, Pettersson U, Philipson L (1979) Interaction between the adenovirus DNA-binding protein and double-stranded DNA. J Mol Biol 132: 163–180

    Article  PubMed  CAS  Google Scholar 

  • Fraser N, Ziff E (1978) RNA structures near poly(A) ofadenovirus-2 late messenger RNAs. J Mol Biol 124: 27–51

    Article  PubMed  CAS  Google Scholar 

  • Fraser NW, Sehgal PB, Darnell JE (1978) DRB-induced premature termination of late adenovirus transcription. Nature 272: 590–593

    Article  PubMed  CAS  Google Scholar 

  • Fraser NW, Nevins JR, ZiffE, Darnell JE (1979a) The major late adenovirus type-2 transcription unit: termination is downstream from the last poly(A) site. J Mol Biol 129: 643–656

    Article  PubMed  CAS  Google Scholar 

  • Fraser N, Sehgal P, Darnell JE (1979b) Multiple discrete sites for premature RNA chain termination late in Ad2 infection: enhancement by 5,6 dichloro-1-β-D-ribofuranosylbenzimidazole. Proc Natl Acad Sci 76: 2571–2575

    Article  PubMed  CAS  Google Scholar 

  • Frenkel GD (1978) Adenovirus DNA synthesis in vitro in an isolated complex. J Virol 25: 457–463

    Google Scholar 

  • Gabrielli F, Baglioni C (1977) Regulation of maternal mRNA translation in developing embryos of the surf clam, Spisula Solidissima. Nature 269: 529–531

    Article  PubMed  CAS  Google Scholar 

  • Galibert F, Hérissé J, Courtois G (1979) Nucleotide sequence of the EcoRI-F fragment of adenovirus 2 genome. Gene 6: 1–22

    Article  PubMed  CAS  Google Scholar 

  • Gallimore PH, Sharp PA, Sambrook J (1974) Viral DNA in transformed cells. II. A study of the sequences of adenovirus 2 DNA in nine lines of transformed rat cells using specific fragments of the viral genome. J Mol Biol 89: 49–72

    Article  PubMed  CAS  Google Scholar 

  • Galos RS, Williams J, Binger MH, Flint SJ (1979) Location of additional early gene sequences in the adenovirus chromosome Cell 17: 945–956

    Article  PubMed  CAS  Google Scholar 

  • Galos RS, Williams J, Shenk T, Jones N (1980) Physical location of host-range mutations of adenovirus type 5: deletion and marker-rescue mapping. Virology 104: 510–513

    Article  PubMed  CAS  Google Scholar 

  • Garon CF, Berry KW, Rose JA (1972) A unique form of terminal redundancy in adenovirus DNA molecules. Proc Natl Acad Sci USA 69: 2391–2395

    Article  PubMed  CAS  Google Scholar 

  • Gelinas RE, Roberts RJ (1977) One predominant 5’ -undecanucleotide in adenovirus 2 late messenger RNAs. Cell 11: 533–544

    Article  PubMed  CAS  Google Scholar 

  • Gilead Z, Jeng Y, Wold WSM, Sugawara H, Rho M, Harter ML, Green M (1976) Immunological identification of two adenovirus 2-included early proteins possibly involved in cell transformation. Nature 264: 263–266

    Article  PubMed  CAS  Google Scholar 

  • Gilmore-Hebert M, Wall R (1978) Immunoglobulin light chain mRNA is processed from large nuclear RNA. Proc Natl Acad Sci USA 75: 342–345

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg HS (1979) Adenovirus structural proteins. Comprehensive Virology 13: 409–457

    CAS  Google Scholar 

  • Ginsberg HS, Bello LJ, Levine A J (1967) Control of biosynthesis of host macromolecules in cells infected with adenoviruses. In: Colter JS, Paranchych W (eds) The molecular biology of viruses. Academic Press, New York, pp 547–572

    Google Scholar 

  • Gluzman Y, Sambrook J, Frisque R (1980) Expression of early genes of origin-defective mutants of simian virus 40. Proc Natl Acad Sci USA 77: 3898–3902

    Article  PubMed  CAS  Google Scholar 

  • Goldenberg CJ, Raskas HJ (1981) In vitro splicing of purified precursor RNAs specified by early region 2 of the adenovirus 2 genome. Proc Natl Acad Sci USA 78: 5430–5434

    Article  PubMed  CAS  Google Scholar 

  • Graham FL, van der Eb AJ (1973) A new technique of the assay of infectivity of human adenovirus DNA. Virology 52: 456–467

    Article  PubMed  CAS  Google Scholar 

  • Graham FL, Harrison T, Williams J (1978) Defective transforming capacity of adenovirus type-5 host-range mutants. Virology 86: 10–21

    Article  PubMed  CAS  Google Scholar 

  • Green M (1970) Oncogenic viruses. Annu Rev Biochem 39: 701–756

    Article  PubMed  CAS  Google Scholar 

  • Green M, Pina M, Kimes RC, Wensink PC, MacHattie LA, Thomas CA Jr (1967) Adenovirus DNA, I. Molecular weight and conformation. Proc Natl Acad Sci USA 57: 1302–1309

    Article  PubMed  CAS  Google Scholar 

  • Green M, Mackey JK, Wold WSM, Rigden P (1979a) Thirty one human adenovirus serotypes (Ad1- Ad31) from five groups ( A-E) based upon DNA genome homologies. Virology 93: 481–492

    Article  PubMed  CAS  Google Scholar 

  • Green M, Wold WSM, Brackmann KH, Cartas MA (1979b) The 55K protein on the 5’ termini of adenovirus type 2 DNA is unrelated to virus-coded candidate transformation proteins (E1-33K, E1-40K-50-K) and DNA-binding proteins (E2-42K/47K/73K). J Virol 31: 836–840

    PubMed  CAS  Google Scholar 

  • McGrogan M, Raskas HJ (1978) Two regions of the adenovirus 2 genome specify families of late polysomal RNAs containing common sequences. Proc Natl Acad Sci USA 75: 625–629

    Article  PubMed  CAS  Google Scholar 

  • Grosschedl R, Birnstiel M (1980) Identification of regulatory sequences in the prelude sequences of an H2A histone gene by the study of specific deletion mutants in vivo. Proc Natl Acad Sci USA 77: 1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Grummt I (1981) Specific transcription of mouse ribosomal genes in a cell free system that mimics control in vivo. Proc Natl Acad Sci USA 78: 727–731

    Article  PubMed  CAS  Google Scholar 

  • Hagenbuche O, Sanier M, Steitz JA, Mans RJ (1978) Conservation of the primary structure at the 3’ end of 18S rRNA from eucaiyotic cells. Cell 13: 551–563

    Article  Google Scholar 

  • Haibert DN, Spector DJ, Raskas HJ (1979) In vitro translation products specified by the transforming region of adenovirus type 2. J Virol 31: 621–629

    Google Scholar 

  • D’Halluin JC, Allart C, Cousing C, Boulanger PA, Martin GR (1979) Adenovirus early function required for protection of viral and cellular DNA. J Virol 32: 61–71

    PubMed  Google Scholar 

  • Harrison T, Graham F, Williams J (1977) Host range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 77: 319–329

    Article  PubMed  CAS  Google Scholar 

  • Harter ML, Shanmugam G, Wold WSM, Green M (1976) Detection of adenovirus type 2-induced early polypeptides using cycloheximide pretreatment to enhance viral protein synthesis. J Virol 19: 232–242

    PubMed  CAS  Google Scholar 

  • Harter ML, Lewis JB (1978) Adenovirus type 2 early proteins synthesized in vitro and in vivo: identification in infected cells of the 38 000- to 50 000 molecular-weight protein encoded by the left end of the adenovirus type 2 genome. J Virol 26: 736–749

    PubMed  CAS  Google Scholar 

  • Harter ML, Lewis JB, Anderson CW (1979) Adenovirus type 2 terminal protein: purification and comparison of tryptic peptides with known adenovirus coded proteins. J Virol 31: 823–835

    PubMed  CAS  Google Scholar 

  • Hashimoto S, Green M (1979) Methylated 5’-terminal caps of adenovirus type 2 early mRNA: evidence for at least six 5’ -termini. Virology 94:254–272

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto S, Green M (1980) Adenovirus 2 early messenger RNA-genome mapping of 5’ –terminal RNase T1 oligonucleotides and heterogeneity of 5’ -termini. J Biol Chem 255: 6780–6788

    PubMed  CAS  Google Scholar 

  • Hassell JA, Weber J (1978) Genetic analysis of adenovirus type 2. VIII. Physical locations of temperature-sensitive mutations. J Viol 28: 671–678

    CAS  Google Scholar 

  • Hérissé J, Courtois G, Galibert F (1980) Nucleotide sequences of the EcoRI-D fragment of the adenovirus 2 genome. Nucleic Acids Res 8: 2173–2191

    Article  PubMed  Google Scholar 

  • Honda BM, Roeder RG (1980) Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell 22: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Horwitz MS (1978) Temperature-sensitive replication of H5tsl25 adenovirus DNA in vitro. Proc Natl Acad Sci USA 75: 4291–4295

    Article  PubMed  CAS  Google Scholar 

  • Jeng TH, Wold WSM, Sugawara K, Green M (1978) Evidence for an adenovirus type 2-coded early glycoprotein. J Virol 28: 314–323

    PubMed  CAS  Google Scholar 

  • Johansson K, Persson H, Lewis AM, Pettersson U, Tibbetts C, Philipson L (1978) Viral DNA sequences and gene products in hamster cell transformed by adenovirus type 2. J Virol 27: 628–639

    PubMed  CAS  Google Scholar 

  • Jones N, Shenk T (1979a) Isolation of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cell 17: 683–689

    Article  PubMed  CAS  Google Scholar 

  • Jones N, Shenk T (1979b) An adenovirus type 5 early gene functions regulates expression of other early viral genes. Proc Natl Acad Sci USA 76: 3665–3669

    Article  PubMed  CAS  Google Scholar 

  • Jörnvall H, Akusjärvi G, Aleström P, von Bahr-Lindström H, Pettersson U, Apella E, Fowler A, Philipson L (1981) The adenovirus hexon protein: the primary structure of the polypeptide and its correlation with the hexon gene. J Biol Chem 256: 6181–6204

    PubMed  Google Scholar 

  • Kano Y, Komatsu H, Nakanoin K, Fujiwara Y (1978) Distribution of small molecular weight nuclear RNA in transcriptionally active and inactive avian cells. Exp Cell Res 115: 444–447

    Article  PubMed  CAS  Google Scholar 

  • Kaplan LM, Hiroyoshi A, Hurwitz J, Horwitz M (1979) Complementation of the temperature- sensitive defect in H5tsl25 adenovirus DNA replication in vitro. Proc Natl Acad Sci USA 76: 5534–5538

    Article  PubMed  CAS  Google Scholar 

  • Kathman P, Schick J, Winnacker EL, Doerfler W (1976) Isolation and characterization of temperature-sensitive mutants of adenovirus type. 2. J Virol 19: 43–53

    Google Scholar 

  • Katze MG, Persson H, Philipson L (1981) Control of adenovirus early gene expression: A post-transcriptional control mediated by region E1A products. Mol Cell Biol 1: 807–813

    PubMed  CAS  Google Scholar 

  • Kauffman RS, Ginsberg HS (1976) Characterization of a temperature-sensitive, hexon transport mutant of type 5 adenovirus. J Virol 19: 643–658

    PubMed  CAS  Google Scholar 

  • Kitchingman GR, Westphal H (1980) The structure of adenovirus 2 early nuclear and cytoplasmic RNAs. J Mol Biol 137: 23–48

    Article  PubMed  CAS  Google Scholar 

  • Klessig DF (1977) Two adenovirus mRNAs have a common 5’ terminal leader sequence encoded at least 10 kb upstream from their main coding regions. Cell 12: 9–21

    Article  PubMed  CAS  Google Scholar 

  • Koski RA, Clarkson SG, Kuijan J, Hall BD, Smith M (1980) Mutations at the yeast SUP4 tRNA locus: transcription of the mutant genes in vitro. Cell 22: 415–425

    Article  PubMed  CAS  Google Scholar 

  • Kozak M (1970) How do eucaryotic ribosomes select initiation regions in messenger RNA? Cell 15:1109–1123

    Article  Google Scholar 

  • Kruijer W, van Schaik FMA, Sussenbach JS (1980) Nucleotide sequence analysis of a region of adenovirus 5 DNA encoding an hitherto unidentified gene. Nucleic Acids Res 8: 6033–6042

    Article  PubMed  CAS  Google Scholar 

  • Kvist S, Östberg L, Persson H, Philipson L, Peterson PA (1978) Molecular association between transplantation antigens and a cell surface antigen in an adenovirus-transformed cell line. Proc Natl Acad Sci USA 75: 5674–5678

    Article  PubMed  CAS  Google Scholar 

  • Lai CJ, Dhar R, Khoury G (1978) Mapping the spliced and unspliced late lytic SV40 RNAs. Cell 14: 971–982

    Article  PubMed  CAS  Google Scholar 

  • Lassam NJ, Bayley ST, Graham FL (1979a) Tumor antigens of human ad5 in transformed cells and in cells infected with transformation-defective host range mutants. Cell 18: 781–791

    Article  PubMed  CAS  Google Scholar 

  • Lassam NJ, Bayley ST, Graham FL, Branton PE (1979b) Immunopreciptation of protein kinase activity from adenovirus 5-infeeted cells using antiserum directed against tumor antigens. Nature 277: 241–243

    Article  PubMed  CAS  Google Scholar 

  • Lerner MR, Steitz JA (1979) Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 76:5495– 5499

    Google Scholar 

  • Lerner MR, Boyle JA, Mount SM, Wolin SL, Steitz JA (1979) Are snRNPs involved in splicing? Nature 283: 220–224

    Article  Google Scholar 

  • Levinson A, Levine AJ (1977) The isolation and identification of the adenovirus group C tumor antigens. Virology 76: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Lewis JB, Atkins JF, Baum PR, Solem R, Gesteland RB, Anderson CW (1976) Location and identification of the genes for adenovirus type 2 early polypeptides. Cell 17: 141–151

    Article  Google Scholar 

  • Lewis JB, Anderson CW, Atkins JF (1977) Further mapping of late adenovirus genes by cell-free translation of RNA selected by hybridization to specific DNA fragments Cell 12: 37–44

    CAS  Google Scholar 

  • Lewis JB, Mathews MB (1980) Control of adenovirus early gene expression: a class of immediate early products. Cell 21: 303–313

    Article  PubMed  CAS  Google Scholar 

  • Lindberg U, Sundquist B (1974) Isolation of messenger ribonucleoproteins from mammalian cells. J Mol Biol 86: 451–468

    Article  PubMed  CAS  Google Scholar 

  • Linné T, Philipson L (1980) Further characterization of the phosphate moiety of the adenovirus type 2 DNA-binding protein. Eur J Biochem 103: 259–270

    Article  PubMed  Google Scholar 

  • Linné T, Jörnvall H, Philipson L (1977) Purification and characterization of the phosphorylated DNA-binding protein from adenovirus type 2 infected cells. Eur J Biochem 76: 481–491

    Article  PubMed  Google Scholar 

  • Lockard RE, Berget SM, JarBhandary UL, Sharp PA (1979) Nucleotide sequence at the 5’ terminus of adenovirus 2 late messenger RNA. J Biol Chem 254: 587–590

    PubMed  CAS  Google Scholar 

  • Lonberg-Holm K, Philipson L (1969) Early events of virus infection in an adenovirus system. J Virol 4: 323–338

    PubMed  CAS  Google Scholar 

  • Maat J, van Ormondt H (1979) The nucleotide sequence of the transforming HindDI-G fragment of adenovirus type 5 DNA. The region between map position 4.5 (Hpal site) and 8.0 (Hindin site). Gene 6: 75–90

    Article  PubMed  CAS  Google Scholar 

  • McAuslan BR (1963) The induction and repression of thymidine kinase in the poxvirusinfected HeLa cell. Virology 21: 383–389

    Article  PubMed  CAS  Google Scholar 

  • Manley JL, Sharp PA, Gefter ML (1979) RNA synthesis in isolated nuclei: in vitro initiation of adenovirus 2 major late mRNA precursor. Proc Natl Acad Sci USA 76: 160–164

    Article  PubMed  CAS  Google Scholar 

  • Martin GR, Warocquier R, Cousin C, D’Halluin JC, Boulanger PA (1978) Isolation and phenotypic characterization of human adenovirus type 2 temperature sensitive mutants. J Gen Virol 41: 303–314

    Article  PubMed  CAS  Google Scholar 

  • Mathews MB (1980) Binding of adenovirus VA RNA to mRNA: a possible role in splicing? Nature 285: 575–577

    Article  PubMed  CAS  Google Scholar 

  • Mathews MB, Pettersson U (1978) The low molecular weight RNAs of adenovirus 2-infected cells. J Mol Biol 119: 293–328

    Article  PubMed  CAS  Google Scholar 

  • Mathis D, Oudet P, Chambon P (1980) Structure of transcribing chromatin. Prog Nucleic Acid Res Mol Biol 24: 1–55

    Article  PubMed  CAS  Google Scholar 

  • Mayer AJ, Ginsberg HS (1977) Persistence of type 5 adenovirus DNA in cells transformed by a temperature-sensitive mutant, H5tsl25. Proc Natl Acad Sci USA 74: 785–788

    Article  PubMed  CAS  Google Scholar 

  • Meister RK, Hulman SE, Johnson LF (1979) Rapid changes in poly(A)+ mRNA content in growth stimulated fibroblasts following perturbations in protein synthesis. J Cell Physiol 100: 531–538

    Article  PubMed  CAS  Google Scholar 

  • Miller JS, Ricciardi R, Roberts BE, Paterson B, Mathews MB (1980) Arrangement of messenger RNAs and protein coding sequences in the major late transcription unit of adenovirus 2. J Mol Biol 142: 455–488

    Article  PubMed  CAS  Google Scholar 

  • Nagata S, Mantei N, Weissmann C (1980) The structure of one of eight or more distinct chromosomal genes for human interferon. Nature 287: 401–408

    Article  PubMed  CAS  Google Scholar 

  • Nass K, Frenkel GD (1980) Adenovirus-specific DNA-binding protein inhibits the hydrolysis of DNA by DNase in vitro. J Virol 35: 314–319

    PubMed  CAS  Google Scholar 

  • Nevins JR, Darnell JE (1978a) Groups of adenovirus type 2 mRNAs derived from a large primary transcript: probably nuclear origin and possible common 3’ -ends. J Virol 25: 811–823

    PubMed  CAS  Google Scholar 

  • Nevins JR, Darnell JE (1978b) Steps in the processing of ad2 mRNA: poly(A)+ nuclear sequences are conserved and poly(A) addition precedes splicing. Cell 15: 1477–1493

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR, Winkler JJ (1980) Regulation of early adenovirus transcription: a protein product of early region 2 specifically represses region 4 transcription. Proc Natl Acad Sci USA 77: 1893–1897

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR, Ginsberg HS, Blanchard JM, Wilson MC, Darnell JE (1979) Regulation of the primary expression of early adenovirus transcription units. J Virol 32: 727–733

    PubMed  CAS  Google Scholar 

  • Oostergom-Dragon EA, Ginsberg HS (1980) Purification and preliminary immunological characterization of the type 5 adenovirus, nonstructural 100 000 Dalton protein. J Virol 33: 1203–1207

    Google Scholar 

  • van Ormondt H, Maat J, van Bevern CP (1980) The nucleotide sequence of the transforming early region El of adenovirus type 5 DNA. Gene 11: 299–309

    Article  PubMed  Google Scholar 

  • Oxender DL, Zurawski G, Yanofsky C (1979) Alternation in Escherichia coli tryptophan operon. Role of RNA secondary structure involving tryptophan coding region. Proc Natl Acad Sci USA 76: 5524–5528

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Celma ML, Weissman SM (1977) Studies of low molecular weight RNA from cells infected with adenovirus 2. III. The sequence of the promoter for VA-RNA 1. J Biol Chem 252: 9047–9054

    PubMed  CAS  Google Scholar 

  • Parsons JT, Green M (1971) Biochemical studies of adenovirus multiplication. XVIII. Resolution of early virus-specific RNA species in adenovirus 2 infected and transformed cells. Virology 45: 154–162

    Article  PubMed  CAS  Google Scholar 

  • Paterson BM, Rosenberg M (1979) Efficient translation of prokaryotic mRNAs in a eukaryotic cell-free system requires addition of a cap structure. Nature 279: 692–696

    Article  PubMed  CAS  Google Scholar 

  • Paterson BM, Roberts BE, Kuff EL (1977) Structural gene identification and mapping by DNA-mRNA hybrid-arrested cell free translation. Proc Natl Acad Sci USA 74: 4370–4374

    Article  PubMed  CAS  Google Scholar 

  • Perricaudet M, Akusjarvi G, Virtanen A, Pettersson U (1979) Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature 281: 694–696

    Article  PubMed  CAS  Google Scholar 

  • Perricaudet M, Le Moullec JP, Pettersson U (1980) The predicted structure of two adenovirus Tantigens. Proc Natl Acad Sci USA 77: 3778–3782

    Article  PubMed  CAS  Google Scholar 

  • Persson H, Pettersson U, Mathews MB (1978a) Synthesis of a structural adenovirus polypeptide in the absence of viral DNA replication. Virology 90: 67–79

    Article  PubMed  CAS  Google Scholar 

  • Persson H, Öberg B, Philipson L (1978b) Purification and characterization of an early protein (E14K) from adenovirus type 2-infected cells. J Virol 28: 119–139

    PubMed  CAS  Google Scholar 

  • Persson H, Signas C, Philipson L (1979a) Purification and characterization of an early glycoprotein from adenovirus type 2-infected cells. J Virol 29: 938–948

    PubMed  CAS  Google Scholar 

  • Persson H, Perricaudet M, Tolun A, Philipson L, Pettersson U (1979b) Purification of RNA/DNA hybrids by exclusion chromatography. J Biol Chem 254: 7999–8003

    PubMed  CAS  Google Scholar 

  • Persson H, Mathisen B, Philipson L, Pettersson U (1979c) A maturation protein in adenovirus morphogenesis. Virology 93: 198–208

    Article  PubMed  CAS  Google Scholar 

  • Persson H, Kvist S, Östberg L, Peterson PA, Philipson L (1979d) The early adenovirus glycoprotein E3-19K and its association with transplantation antigens. Cold Spring Harbor Symp Quant Biol 44: 509–517

    Google Scholar 

  • Persson H, Jansson M, Philipson L (1980a) Synthesis of and genomic site for an adenovirus type 2 early glycoprotein. J Mol Biol 136: 375–394

    Article  PubMed  CAS  Google Scholar 

  • Persson H, Jörnvall H, Zabielski J (1980b) Multiple mRNA species for the precursor to an adeno- virus-encoded glycoprotein: Identification and structure of the signal sequence. Proc Natl Acad Sci USA 77: 6349–6353

    Article  PubMed  CAS  Google Scholar 

  • Persson H, Monstein HJ, Akusjärvi G, Philipson L (1981a) Adenovirus early gene products may control viral mRNA accumulation and translation in vivo. Cell 23: 485–496

    Article  PubMed  CAS  Google Scholar 

  • Persson H, Katze MG, Philipson L (1981) Control of adenovirus early gene expression: Accumulation of viral mRNA after infection of transformed cells. J Virol 40

    Google Scholar 

  • Pettersson U, Tibbetts C, Philipson L (1976) Hybridization maps of early and late mRNA sequences of the adenovirus type 2 genome. J Mol Biol 101: 479–502

    Article  PubMed  CAS  Google Scholar 

  • Pettersson U, Mathews MB (1977) The gene and messenger RNA for adenovirus polypeptide IX. Cell 12: 741–750

    Article  PubMed  CAS  Google Scholar 

  • Philipson L (1979) Adenovirus proteins and their messenger RNAs. Adv Virus Res 25: 357–405

    Article  PubMed  CAS  Google Scholar 

  • Philipson L, Pettersson U, Lindberg U (1975) Molecular biology of adenoviruses. Virology Monogr 14: 1–115

    CAS  Google Scholar 

  • Raskas JH, Thomas DC, Green M (1970) Biochemical studies on adenovirus multiplication XVII. Ribosome synthesis in uninfected and infected KB cells. Virology 40: 893–902

    Google Scholar 

  • Raveteh JV, Kirsch TR, Leder R (1980) Evolutionary approach to the question of immunoglobulin heavy chain switching: Evidence from cloned human and mouse genes. Proc Natl Acad Sci USA 77: 6734–6738

    Article  Google Scholar 

  • Rekosh DMK, Russell WC, Bellett AJD, Robinson AJ (1977) Identification of a protein linked to the ends of adenovirus DNA. Cell 11: 283–295

    Article  PubMed  CAS  Google Scholar 

  • Ricciardi R, Miller JS, Roberts BE (1979) Purification and mapping of specific mRNAs by hybridization selection and cell-free translation. Proc Natl Acad Sci USA 76: 4927–4931

    Article  PubMed  CAS  Google Scholar 

  • Rio D, Robbins A, Myers R, Tjian R (1980) Regulation of simian viral 40 early transcription in vitro by a purfied tumor antigen. Proc Natl Acad Sci USA 77: 5706–5710

    Article  PubMed  CAS  Google Scholar 

  • Robinson AJ, Bellett AJD (1974) A circular DNA-protein complex from adenoviruses and its possible role in DNA replication. Cold Spring Harbor Symp Quant Biol 39: 523–531

    Google Scholar 

  • Roeder RG (1976) Eukaryotic nuclear RNA polymerases. In: Losick R, Chamberlain M (eds) RNA polymerase. Cold Spring Harbor Lab, pp 285–329

    Google Scholar 

  • Rogers J, Wall R (1980) A mechanism for RNA splicing. Proc Natl Acad Sci USA 77: 1877–1879

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13: 319–353

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg M, Paterson BM (1979) Efficient cap-dependent translation of polycistronic prokaryotic mRNAs is restricted to the first gene in the operon. Nature 279: 696–701

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal ET, Hunt T, Ruderman JV (1980) Selective translation of mRNA controls the pattern of protein synthesis during early development of the surf clam, Spisula Solidissima. Cell 20: 487–494

    Article  PubMed  CAS  Google Scholar 

  • Ross S, Levine AJ (1979) The genomic map position of the adenovirus type 2 glycoprotein. Virology 99: 427–430

    Article  PubMed  CAS  Google Scholar 

  • Ross SR, Flint SJ, Levine AJ (1980a) Identification of the adenovirus early proteins and their genomic map positions. Virology 100: 419–432

    Article  PubMed  CAS  Google Scholar 

  • Ross SR, Levine AJ, Galos RS, Williams J, Shenk T (1980b). Early viral proteins in HeLa cells infected with adenovirus type 5 host range mutants. Virology 103: 475–492

    Article  PubMed  CAS  Google Scholar 

  • Ruderman JV, Woodland HR, Strugess EA (1979) Modulation of histone messenger RNA during the early development of Xenopus laevis. Develop Biol 71: 71–82

    Article  PubMed  CAS  Google Scholar 

  • Saborio JL, Pong SS, Koch G (1974) Selective and reversible inhibition of initiation of protein synthesis in mammalian cells. J Mol Biol 85: 195–211

    Article  PubMed  CAS  Google Scholar 

  • Saborio JL, Öberg B (1976) In vivo and in vitro synthesis of adenovirus type 2 early proteins. J Virol 17: 865–875

    PubMed  CAS  Google Scholar 

  • Sakonju S, Bogenhagen DF, Brown DD (1980) A control region in the center of the 5S RNA gene directs specific initiation of transcription. I. The 5’ border of the region. Cell 19: 13–25

    Article  PubMed  CAS  Google Scholar 

  • Salser W, Bolle A, Epstein R (1970) Transcription during bacteriophage T4 development: A demonstration that distinct subclasses of the early RNA appear at different times and that some are turned off at late times. J Mol Biol 49: 271–295

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Botchan M, Gallimore P, Ozanne B, Pettersson U, Williams JF, Sharp PA (1974) Viral DNA sequences in cells transformed by simian virus 40, adenovirus type 2 and adenovirus type 5. Cold Spring Harbor Symp Quant Biol 39: 615–632

    Google Scholar 

  • Sauerbier W (1976) UV damage at the transcriptional level. Adv Radiat Biol 6: 49–106

    CAS  Google Scholar 

  • Schaffner W, Gross K, Telford J, Birnstiel M (1976) Molecular analysis of the histone gene cluster of psammeehinus miliaris II. The arrangement of the five histone-coding and spacer sequences. Cell 8: 471–478

    Article  PubMed  CAS  Google Scholar 

  • Schrier PI, van der Elsen PJ, Hertoghs JJL, van der Eb A J (1979) Characterization of tumor antigens in cells transformed by fragments of adenovirus type 5 DNA. Virology 99: 372–385

    Article  PubMed  CAS  Google Scholar 

  • Sehgal PB, Fräser NW, Darnell JE (1979) Early Ad-2 transcription units: only promoter-proximal RNA continues to be made in the presence of DRB. Virology 94: 185–191

    Article  PubMed  CAS  Google Scholar 

  • Selzer DR, McGrogan M, Nunberg JH, Schiimke RT (1980) Size heterogeneity in the 3’ end of dihydrofolate reductase messenger RNAs in mouse cells. Cell 22: 361–370

    Article  Google Scholar 

  • Sergeant A, Tigges MA, Raskas HJ (1979) Nucleosome like structural subunits of intranuclear parental adenovirus type 2 DNA. J Virol 29: 888–898

    PubMed  CAS  Google Scholar 

  • Sharp PA, Gallimore PH, Flint SJ (1974) Mapping of adenovirus 2 RNA sequences in lytically infected cells and transformed cell lines. Cold Spring Harbor Symp Quant Biol 39: 457–474

    Google Scholar 

  • Sharp PA, Moore C, Haverty JL (1976) The infectivity of adenovirus 5 DNA-protein complex. Virology 75: 442–456

    Article  PubMed  CAS  Google Scholar 

  • Sharp PA, Berk A J, Berget SM (1980) Transcription maps of adenovirus. Meth Enzymol 65: 750–768

    Article  PubMed  CAS  Google Scholar 

  • Shatkin AJ (1976) Capping of eucaryotic mRNAs. Cell 9: 645–653

    Article  PubMed  CAS  Google Scholar 

  • Shaw AR, Ziff EB (1980) Transcripts from the adenovirus-2 major late promoter yield a single family of coterminal mRNAs during early infection and five families at late times. Cell 22: 905–916

    Article  PubMed  CAS  Google Scholar 

  • Shenk T, Jones N, Colby W, Fowlkes D (1979) Functional analysis of adenovirus type 5 host range deletion mutants defective for transformation of rat embryo cells. Cold Spring Harbor Symp Quant Biol 44: 367–375

    Google Scholar 

  • Shusterman CL, Thiede EW, Kung C (1978) K+-resistant mutants and “adaptation” in Paramecium. Proc Natl Acad Sci USA 75: 5645–5649

    Article  PubMed  CAS  Google Scholar 

  • Söderlund H, Pettersson U, Vennström B, Philipson L, Mathews MB (1976) A new species of virus-coded low molecular weight RNA from cells infected with adenovirus type 2. Cell 7: 585–593

    Article  PubMed  Google Scholar 

  • Spector DJ, McGrogan M, Raskas HJ (1978) Regulation of the appearance of cytoplasmic RNAs from region 1 of the adenovirus genome. J Mol Biol 126: 395–414

    Article  PubMed  CAS  Google Scholar 

  • Spector DJ, Crossland LD, Haibert DN, Raskas HJ (1980) A 28K polypeptide is the translation product of 9S RNA encoded by region 1A of adenovirus. 2. Virology 102: 218–221

    Article  PubMed  CAS  Google Scholar 

  • Sprague KU, Larson D, Morton D (1980) 5’ flanking sequence signals are required for activity of silkworm alanine tRNA genes in homologous in vitro transcription systems. Cell 22: 171–178

    Article  PubMed  CAS  Google Scholar 

  • Stauffer GV, Zurawski G, Yanofsky C (1978) Single base-pair alterations in the Escherichia coli trp operon leader region that releive transcription termination at the trp attenuator. Proc Natl Acad Sci USA 75: 4833–4837

    Article  PubMed  CAS  Google Scholar 

  • Steenbergh PH, Matt J, van Ormondt H, Sussenbach JS (1977) The nucleotide sequence at the termini of adenovirus type 5 DNA. Nucleic Acids Res 4: 4371–4389

    Article  PubMed  CAS  Google Scholar 

  • Steinberg RA, Ivarie RD (1979) Post-transcriptional regulation of glucocorticoid-regulated functions. In: Bacter JD, Rousseau GG (eds) Glucocorticoid hormone action. Springer New York pp 291–304

    Google Scholar 

  • Steitz JA, Jakes K (1975) How ribosomes select initiator regions in mRNA: base pair formation between the 3’ terminus of 16S rRNA and the mRNA during initiation of protein synthesis in E. coli. Proc Natl Acad Sci USA 72: 4734–4748

    Article  CAS  Google Scholar 

  • Stillman BW, Lewis JB, Chow LT, Mathews MB, Smart JE (1981) Identification of the gene and mRNA for the adenovirus terminal protein precursor. Cell 23: 497–508

    Article  PubMed  CAS  Google Scholar 

  • Storch TG, Maizel Jr JV (1980) The early proteins of the nondefective ad2-SV40 hybrid viruses: the 19K glycoprotein is coded by ad2 early region 3. Virology 103: 54–67

    Article  PubMed  CAS  Google Scholar 

  • Sugawara K, Gilead Z, Green M (1977) Purification and molecular characterization of adenovirus type 2 DNA-binding protein. J Virol 21: 338–346

    PubMed  CAS  Google Scholar 

  • Tamm I, Sehgal PB (1978) Halobenzimidazole ribosides and RNA synthesis of cells and viruses. Adv Virus Res 22: 187–258

    Article  PubMed  CAS  Google Scholar 

  • Tan YW, Armstrong J, Ke YH, Ho M (1970) Regulation of cellular interferon production: enhancement by antimetabolites. Proc Natl Acad Sci USA 67: 464–471

    Article  PubMed  CAS  Google Scholar 

  • Tate V, Philipson L (1979) Parental adenovirus DNA accumulation in nucleosome-like structures in infected cells. Nucleic Acids Res 6: 2769–2785

    Article  PubMed  CAS  Google Scholar 

  • Thimmappaya B, Jones N, Shenk T (1979) A mutation which alters initiation of transcription by RNA polymerase III on the Ad5 chromosome. Cell 18: 947–954

    Article  PubMed  CAS  Google Scholar 

  • Thomas PG, Mathews MB (1980) DNA replication and the early to late transition in adenovirus infection. Cell 22: 523–533

    Article  PubMed  CAS  Google Scholar 

  • Tilghman SM, Curing PJ, Tiemeier DC, Leder P, Weissman C (1978) The intervening sequence of a mouse (β-globin gene is transcribed within the 15S β-globin mRNA precursor. Proc Natl Acad Sci USA 75: 1309–1313

    Article  PubMed  CAS  Google Scholar 

  • Tjian R, Robbins A (1979) Enzymatic activities associated with a purified simian virus 40 T antigen related protein. Proc Natl Acad Sci USA 76: 610–614

    Article  PubMed  CAS  Google Scholar 

  • Tomkins GM, Gelehrter TD, Granner D, Martin D Jr, Samuels HH, Thompson EB (1969) Control of specific gene expression in higher organisms. Science 166: 1474–1480

    Article  PubMed  CAS  Google Scholar 

  • Trachsel H, Sonenberg V, Shathin AJ, Rose JK, Leong K, Bergmann JE, Gordon J, Baltimore D (1980) Purification of a factor that restores translation of vesicular stomatitis virus mRNA in extracts from poliovirus-infected HeLa cells. Proc Natl Acad Sci USA 77: 770–774

    Article  PubMed  CAS  Google Scholar 

  • Wasylyk B, Kedinger C, Cordon J, Brison U, Chambon P (1980) Specific in vitro initiation of transcription on conalbumin and ovalubmin genes and comparison with adenovirus-2 early and late genes. Nature 285: 367–373

    Article  PubMed  CAS  Google Scholar 

  • Weber J (1976) Genetic analysis of adenovirus type 2. in. Temperature sensitivity of processing, of viral proteins. J Virol 17: 462–471

    PubMed  CAS  Google Scholar 

  • Weber J, Jelinek W, Darnell JE Jr (1977) The definition of a large viral transcription unit late in ad2 infection of HeLa cells: mapping of nascent RNA molecules labeled in isolated nuclei. Cell 10: 611–616

    Article  PubMed  CAS  Google Scholar 

  • Weil PA, Segal J, Harris B, Ng SY, Roeder RG (1979a) Faithful transcription of eucaryotic genes by RNA polymerase IE in systems reconstitued with purified DNA templates. J Biol Chem 254: 6163–3173

    PubMed  CAS  Google Scholar 

  • Weil PA, Luse DS, Segal J, Roeder RG (1979b) Selective and accurate initiation of transcription at the Ad2 major late promoter in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18: 469–484

    Article  PubMed  CAS  Google Scholar 

  • Weinberg RA, Penman S (1968) Small molecular weight monodisperse nuclear RNA. J Mol Biol 38: 289–304

    Article  PubMed  CAS  Google Scholar 

  • Weingärtner B, Keller W (1981) Transcription and processing of adenoviral RNA by extracts from HeLa cells. Proc Natl Acad Ski USA 78: 4092–4096

    Article  Google Scholar 

  • Weinmann R, Raskas HJ, Roeder RG (1974) Role of DNA-dependent RNA polymerases II and in in transcription of the adenovirus genome late in productive infection. Proc Natl Acad Sci USA 71: 3426–3430

    Article  PubMed  CAS  Google Scholar 

  • Weinmann R, Brendler TG, Raskas HJ, Roeder RG (1976) Low molecular weight viral RNAs transcribed by RNA polymerase HI during ad2-infection. Cell 7: 557–566

    Article  PubMed  CAS  Google Scholar 

  • Weinmann R, Aiello LO (1978) Mapping of adenovirus late promoters with nascent mercurated RNA. Proc Natl Acad Sci USA 75: 1662–1666

    Article  PubMed  CAS  Google Scholar 

  • Vennström B, Pettersson U, Philipson L (1978) Initiation of transcription in nuclei isolated from adenovirus infected cells. Nucleic Acids Res 5: 205–219

    Article  PubMed  Google Scholar 

  • Vennström B, Persson H, Pettersson U, Philipson L (1979) A DRB (5, 6 dichloro-β-ribofuranosyl-benzimidazole) resistant adenovirus mRNA. Nucleic Acids Res 7: 1405–1418

    Article  PubMed  Google Scholar 

  • Williams JF, Young H, Austin P (1974) Genetic analysis of human adenovirus type 5 in permissive and non-permissive cells. Cold Spring Harbor Symp Quant Biol 39: 427–437

    Google Scholar 

  • Wilson MC, Darnell JE Jr (1981) Control of mRNA concentration by differential cytoplasmic half-life: adenovirus mRNAs from transcription units 1A and IB. J Mol Biol 148: 231–251

    Article  PubMed  CAS  Google Scholar 

  • Wilson M, Fraser N, Darnell J (1979a) Mapping of RNA initiation sites by high doses of UV irradiation. Evidence for three independent promoters within the left 11% of the Ad-2-genome. Virology 94: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Wilson MC, Nevins JR, Blanchard JM, Ginsberg HS, Darnell JE Jr (1979b) The metabolism of mRNA from the transforming region of adenovirus type 2. Cold Spring Harbor Symp Quant Biol 44: 447–455

    Google Scholar 

  • Winnacker EL (1978) Adenovirus DNA: structure and function of a novel replicon. Cell 14: 761–773

    Article  PubMed  CAS  Google Scholar 

  • Van der Vliet PC, Levine A J (1973) DNA-binding proteins specific for cells infected by adenovirus. Nature 246: 170–174

    Google Scholar 

  • Van der Vliet PC, Sussenbach JS (1975) An adenovirus type 5 gene function required for initiation of viral DNA replication. Virology 64: 415–426

    Article  Google Scholar 

  • Van der Vliet PC, Levine AJ, Ensinger MS, Ginsberg HS (1975) Thermolabile DNA binding proteins from cells infected with a temperature-sensitive mutant of adenovirus defective in viral DNA synthesis. J Virol 15: 348–354

    Google Scholar 

  • Van der Vliet PC, Zandberg J, Jansz HS (1977) Evidence for a function of the adenovirus DNA- binding protein in initiation of DNA synthesis as well as in elongation of nascent DNA chains. Virology 80: 98–110

    Article  PubMed  Google Scholar 

  • Wold WSM, Green M (1979) Adenovirus type 2 early polypeptides immunoprecipitated by antisera to five lines of adenovirus-transformed rat cells. J Virol 30: 297–310

    PubMed  CAS  Google Scholar 

  • Wold WSM, Green M, Buttner W (1978) Adenoviruses. In: Nayak DP (ed) The molecular biology of animal viruses. Dekker Inc, New York, pp 673–768

    Google Scholar 

  • Wolfson J, Dressler D (1972) Adenovirus-2-DNA contains an inverted terminal repetition. Proc Natl Acad Sci USA 69: 3054–3057

    Article  PubMed  CAS  Google Scholar 

  • Wolgemuth DJ, Yu HY, Hsu MT (1980) Studies on the relationship between 5’ leader sequences and initiation of translation of adenovirus 2 and Simian Virus 40 late mRNAs. Virology 101: 363–375

    Article  PubMed  CAS  Google Scholar 

  • Wu GJ (1978) Adenovirus DNA-directed transcription of 5.5S RNA in vitro. Proc Natl Acad Sci USA 75: 2175–2179

    Article  PubMed  CAS  Google Scholar 

  • Yang VW, Lerner M, Steitz JA, Flint SJ (1981) A small, nuclear ribonucleoprotein is required for splicing of adenoviral early RNA sequences. Proc Natl Acad Sci USA 78: 1371–1375

    Article  PubMed  CAS  Google Scholar 

  • Zain S, Sambrook J, Roberts RJ, Keller W, Fried M, Dunn AR (1979) Nucleotide sequence analysis of the leader segments in a cloned copy of adenovirus 2 fiber mRNA. Cell 16: 851–861

    Article  PubMed  CAS  Google Scholar 

  • Ziff E, Fraser N (1978) Adenovirus type 2 late mRNA’s: structural evidence for 3’ –coterminal species. J Virol 25: 897–906

    PubMed  CAS  Google Scholar 

  • Ziff EB, Evans RM (1978) Coincidence of the promoter and capped 5’ terminus of RNA from the adenovirus 2 major late transcription unit. Cell 15: 1463–1475

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Persson, H., Philipson, L. (1982). Regulation of Adenovirus Gene Expression. In: Henle, W., et al. Current Topics in Microbiology and Immunology. Current Topics in Microbiology and Immunology, vol 97. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68318-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68318-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68320-6

  • Online ISBN: 978-3-642-68318-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics