Skip to main content

Transfer RNA and Aminoacyl-tRNA Synthetases in Plants

  • Chapter
Nucleic Acids and Proteins in Plants I

Part of the book series: Encyclopedia of Plant Physiology ((922,volume 14 / A))

Abstract

The first step in protein biosynthesis is the attachment of free amino acids to cognate transfer RNA’s. This process can be separated into two reactions, which are both catalyzed by the same cognate aminoacyl-transfer RNA synthetase (L -amino acid: tRNA ligase (AMP forming), EC 6.1.1.x, also called activation enzyme), which specifically recognizes the corresponding amino acid, ATP and the corresponding tRNA (or isoaccepting tRNA’s):

  1. 1.

    amino acid activation:

    amino acid1 + ATP + enzyme1 ⇄ (aminoacyl1-AMP) enzyme1 + PP1

  2. 2.

    tRNA aminoacylation:

    (aminoacyl1-AMP) enzyme1 + tRNA1 ⇄ aminoacyl1-tRNA1 + AMP + enzyme1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aliev KA, Philippovich II (1968) Differences of tRNA and aminoacyl-tRNA synthetases of chloroplasts and cytoplasm from pea seedlings (russ) Mol Biol (USSR) 2: 364–373

    CAS  Google Scholar 

  • Anderson JW, Fowden L (1969) A study of the aminoacyl-sRNA synthetases ofPhaseolus vulgaris in relation to germination. Plant Physiol 44: 60–68

    PubMed  CAS  Google Scholar 

  • Anderson JW, Fowden L (1970a) Properties and substrate specificities of the phenylalanyl-tRNA synthetases ofAesculus species. Biochem J 119:677–690

    CAS  Google Scholar 

  • Anderson JW, Fowden L (1970 b) Properties and substrate specificity of the leucyl-,the threonyl- and the valyl-tRNA synthetases fromAesculus species. Biochem J 119:691–697

    PubMed  CAS  Google Scholar 

  • Anderson JW, Fowden L (1970c) l-amino-2-phenylethane-l-phosphonic acid: a specific competitive inhibitor of phe-tRNA synthetase. Chem Biol Interact 2:53–55

    CAS  Google Scholar 

  • Anderson JW, Rowan KS (1966) Activity of aminoacyl-ribonucleic acid synthetases in tobacco-leaf tissue in relation to senescence and to the action of 6-furfurylaminopurine. Biochem J 101: 15–18

    PubMed  CAS  Google Scholar 

  • Anderson MB, Cherry JH (1969) Differences in leucyl-tRNAs and synthetases in soybean seedlings. Proc Natl Acad Sci USA 62: 202–209

    PubMed  CAS  Google Scholar 

  • Augustyniak H, Pawelkiewicz J (1978 a) Isolation and properties of the main isoleucine tRNAs fromLupinus luteus seeds. Acta Biochim Pol 25:81–89

    PubMed  CAS  Google Scholar 

  • Augustyniak H, Pawelkiewicz J (1978 b) Lysyl-tRNAs fromLupinus luteus seeds. Phytochemistry 17:15–18

    CAS  Google Scholar 

  • Augustyniak H, Pawelkiewicz J (1979) Preferential binding of isoaccepting species of tRNALys and tRNAIle from lupin cotyledons to polyribosomes. Biochim Biophys Acta 565: 148–153

    PubMed  CAS  Google Scholar 

  • Augustyniak H, Barciszewski H, Rafalski A, Zawielak J, Szyfter K (1974) Phenylalanine tRNA ofLupinus luteus seeds. Phytochemistry 13: 2679–2684

    CAS  Google Scholar 

  • Babcock DF, Morris RO (1973) Specific degradation of a plant leucyl-tRNA by a factor in the homologous synthetase preparation. Plant Physiol 52: 292–297

    PubMed  CAS  Google Scholar 

  • Barciszewski J, Joachimiak A, Rafalski A, Barciszewska A, Twardowski T, Wiewiorowski M (1979) Conservation of the structure of plant tRNAs and aminoacyl-tRNA synthetases. FEBS Lett 102: 194–197

    PubMed  CAS  Google Scholar 

  • Barnett WE, Pennington CJ, Fairfield SA (1969) Induction ofEuglena transfer RNAs by light. Proc Natl Acad Sci USA 63: 1261–1268

    PubMed  CAS  Google Scholar 

  • Barnett WE, Schwartzbach SD, Farelly JG, Schiff JA, Hecker LI (1976) Comments on the translational and transcriptional origin ofEuglena chloroplastic aminoacyl-tRNA synthetases. Arch Microbiol 109: 201–203

    PubMed  CAS  Google Scholar 

  • Barnett WE, Schwartzbach SD, Hecker LI (1978) The transfer RNAs of eukaryotic organelles. Progr Nucleic Acid Res Mol Biol 21: 143–179

    CAS  Google Scholar 

  • Barrell BG, Bankier AT, Drouin J (1979) A different genetic code in human mitochondria. Nature (London) 282: 189–194

    CAS  Google Scholar 

  • Bartkowiak S, Pawelkiewicz J (1972) The purification of aminoacyl-tRNA synthetases by affinity chromatography. Biochim Biophys Acta 272: 137–140

    PubMed  CAS  Google Scholar 

  • Bartkowiak S, Radiowski M (1977) A factor affecting stimulation of aminoacylation in plants. Biochim Biophys Acta 474: 619–628

    PubMed  CAS  Google Scholar 

  • Bazin M, Chabin A, Durand R (1975) Comparison between four isoaccepting transfer ribonucleic acids and corresponding synthetases in male and female flowers of the dioecious speciesMercurialis annua. Dev Biol 44: 288–297

    PubMed  CAS  Google Scholar 

  • Beauchemin N, Larne B, Cedergren RJ (1973) The characterization of the tRNAs and aminoacyl-tRNA synthetases of the blue-green alga,Anacystis nidulans. Arch Biochem Biophys 156: 17–25

    PubMed  CAS  Google Scholar 

  • Bick MD, Strehler B (1971) Leucyl-transfer RNA synthetase changes during soybean cotyledon senescence. Proc Natl Acad Sci USA 68: 224–228

    PubMed  CAS  Google Scholar 

  • Bick MD, Liebke H, Cherry JH, Strehler B (1970) Changes in leucyl- and tyrosyl-tRNA of soybean cotyledons during plant growth. Biochim Biophys Acta 204: 175–182

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Driesel AJ, Crouse EJ, Gordon K, Herrmann RG, Steinmetz A, Mubumbila M, Keller M, Burkard G, Weil JH (1979) Presence of a tRNA gene in the spacer sequence between the 16S and 23S rRNA genes of spinach chloroplast DNA. FEBS Lett 103: 52–56

    PubMed  CAS  Google Scholar 

  • Bonen L, Gray MW (1980) Organization and expression of the mitochondrial genome of plants. I. The genes for wheat mitochondrial ribosomal and transfer RNAs: evidence for an unusual arrangement. Nucleic Acids Res 8: 319–335

    PubMed  CAS  Google Scholar 

  • Bonen L, Huh TY, Gray MW (1980) Can partial methylation explain the complex fragment patterns observed when plant mitochondrial DNA is cleaved with restriction endonucleases? FEBS Lett 111: 340–346

    PubMed  CAS  Google Scholar 

  • Brantner JH, Dure LS (1975) The developmental biochemistry of cotton seed embryogenesis and germination VI. Levels of cytosol and chloroplast aminoacyl-tRNA synthetases during cotyledon development. Biochim Biophys Acta 414: 99–114

    Google Scholar 

  • Burkard G, Eclancher B, Weil JH (1969) Presence of N-formyl-methionyl-transfer RNA in bean chloroplasts. FEBS Lett 4: 285–287

    PubMed  CAS  Google Scholar 

  • Burkard G, Guillemaut P, Weil JH (1970) Comparative studies of the tRNAs and the aminoacyl-tRNA synthetases from the cytoplasm and chloroplasts ofPhaseolus vulgaris. Biochim Biophys Acta 224: 184–198

    PubMed  CAS  Google Scholar 

  • Burkard G, Steinmetz A, Keller M, Mubumbila M, Crouse E, Weil JH (1980) Resolution of chloroplast tRNAs by two-dimensional gel electrophoresis. In: Edelman M, Hallick RB, Chua NH (eds) Methods in chloroplast molecular biology. Elsevier/North-Holland, (Amsterdam New York, in press

    Google Scholar 

  • Burnell JN, Shrift A (1977) Cystein-tRNA synthetase fromPhaseolus aureus. Purification and properties. Plant Physiol 60: 670–674

    Google Scholar 

  • Burnell JN, Shrift A (1979) Cysteinyl-tRNA synthetase fromAstragalus species. Plant Physiol 63: 1095–1097

    PubMed  CAS  Google Scholar 

  • Calagan JL, Pirtle RM, Pirtle IL, Kashdan MA, Vreman HJ, Dudock BS (1980) Homology between a chloroplast and a prokaryotic initiator tRNAs: Nucleotide sequence of spinach chloroplast methionine initiator tRNA. J Biol Chem 255: 9981–9984

    Google Scholar 

  • Canaday J, Guillemaut P, Weil JH (1980 a) The nucleotide sequences of initiator transfer RNAs from bean cytoplasm and chloroplasts. Nucleic Acids Res 8:999–1008

    PubMed  CAS  Google Scholar 

  • Canaday J, Guillemaut P, Gloeckler R, Weil JH (1980 b) Comparison of the nucleotide sequences of chloroplast tRNAsPhe and tRNAsLeu from spinach and bean. Plant Sci Lett 20:57–62

    CAS  Google Scholar 

  • Carias JR, Julien R (1976) Phenylalanyl-tRNA synthetase des embryons de ble. Purification, masse moleculaire, structure, proprietes. Biochimie 58: 253–259

    Google Scholar 

  • Carias JR, Mouricout M, Quintard B, Thomes JC Julien R (1978) Leucyl-tRNA and arginyl-tRNA synthetases of wheat germ. Inactivation and ribosome effects. Eur J Biochem 87: 583–590

    Google Scholar 

  • Chang SH, Hecker LI, Silberklang M, Brum CK, RajBhandary UL, Barnett WE (1976) Nucleotide sequence of phenylalanine transfer RNA from the chloroplasts ofEuglena gracilis. Cell 9:717–724 Chang SH, Brum CK, Schnabel J J, Heckman JI, RajBhandary UL, Barnett WE (1978) Similarities in nucleotide sequence betweenEuglena gracilis and mammalian cytoplasmic phenylalanine tRNAs. Fed Proc 37: 1768

    Google Scholar 

  • Chang SH, Lin FK, Hecker LI, Heckman JE, RajBhandary UL, Barnett WE, (1979) Nucleotide sequence of blue-green algae phenylalanine tRNA. In: Schimmel P, Soil D, Abelson J (eds) Transfer RNA: Biological aspects, Cold Spring Harbor meeting on tRNA, abstracts p 45

    Google Scholar 

  • Chazal P, Thomes JC, Julien R (1975) Methionine-tRNA-ligase from wheat germ: Purification and properties. FEBS Lett 56: 268–272

    Google Scholar 

  • Chazal P, Thomes JC, Julien R (1977) Methionyl-tRNA synthetase des embryons de ble: dissociation en sous-unites. Eur J Biochem 73: 607–615

    PubMed  CAS  Google Scholar 

  • Cherry JH, Osborne DJ (1970) Specificity of leucyl-tRNA and synthetase in plants. Biochem Biophys Res Commun 40: 763–769

    PubMed  CAS  Google Scholar 

  • Chiu N, Chiu A, Suyama Y (1975) Native and imported tRNA in mitochondria. J Mol Biol 99: 37–50

    PubMed  CAS  Google Scholar 

  • Clarkson SG, Birnstiel ML, Serra V (1973) Reitereated transfer RNA genes ofXenopus laevis. J Mol Biol 79: 391–110

    PubMed  CAS  Google Scholar 

  • Commerford SL (1971) Iodination of nucleic acids in vitro. Biochemistry 10: 1993–1999

    PubMed  CAS  Google Scholar 

  • Cornelis P, Claessen E, Claessen J (1975) Reversed phase chromatography of isoaccepting tRNAs from healthy and crown-gall tissues fromNicotiana tabacum. Nucleic Acids Res 2: 1153–1161

    PubMed  CAS  Google Scholar 

  • Cowles JR, Key JL (1972) Demonstration of two tyrosyl-tRNA synthetases of pea roots. Biochim Biophys Acta 281: 33–44

    PubMed  CAS  Google Scholar 

  • Cowles JR, Key JL (1973) Changes in certain aminoacyl transfer ribonucleic acid synthetase activities in developing pea roots. Plant Physiol 51: 22–25

    PubMed  CAS  Google Scholar 

  • Crick FHC (1966) Codon-Anticodon pairing: The wobble hypothesis. J Mol Biol 19: 548–555

    PubMed  CAS  Google Scholar 

  • Dang CV, Yang DCH (1979) Disassembly and gross structure of particulate aminoacyl-tRNA synthetases from rat liver. J Biol Chem 254: 5350–5356

    PubMed  Google Scholar 

  • Driesel AJ, Crouse EJ, Gordon K, Bohnert HJ, Herrmann RG, Steinmetz A, Mubumbila M, Keller M, Burkard G, Weil JH (1979) Fractionation and identification of spinach chloroplast tRNAs and mapping of their genes on the restriction map of chloroplast DNA. Gene 6: 285–306

    PubMed  CAS  Google Scholar 

  • Dudock BS, Katz G, Taylor EK, Holley RW (1969) Primary structure of wheat germ phenylalanine transfer RNA. Proc Natl Acad Sci USA 62: 941–945

    PubMed  CAS  Google Scholar 

  • Dziegielewski T, Kedzierski W, Pawelkiewiez J (1979) Levels of aminoacyl-tRNA synthetases, tRNA nucleotidyltransferase and ATP in germinating lupin seeds. Biochim Biophys Acta 564: 37–42

    PubMed  CAS  Google Scholar 

  • Ehresmann B, Imbault P, Weil JH (1974) Determination of the degree of in vivo tRNA aminoacylation in yeast cells. Anal Biochem 61: 548–556

    PubMed  CAS  Google Scholar 

  • England TE, Uhlenbeck OC (1978) 3’-terminal labelling of RNA with T4 RNA ligase. Nature (London) 275:560-561

    Google Scholar 

  • Everett GA, Madison JT (1976) Nucleotide sequence of phenylalanine transfer ribonucleic acid from pea(Pisum sativum, Alaska ). Biochemistry 15: 1016–1021

    Google Scholar 

  • Fowden L, Frankton JB (1968) The specificity of aminoacyl-sRNA synthetases with special reference to arginine activation. Phytochemistry 7: 1077–1086

    CAS  Google Scholar 

  • Garel JP (1974) Functional adaptation of tRNA population. J Theor Biol 43: 211–228

    PubMed  CAS  Google Scholar 

  • Gauss DH, Sprinzl M (1981) Compilation of tRNA sequences. Nucl Acids Res 9: r1–r23

    PubMed  CAS  Google Scholar 

  • Ghosh K, Ghosh HP, Simsek M, RajBhandary UL (1974) Initiator methionine transfer ribonucleic acid from wheat embryo. Purification, properties and partial nucleotide sequence. J Biol Chem 249: 4720–2729

    Google Scholar 

  • Ghosh RP, Ghosh K, Simsek M, RajBhandary UL (1978) Primary sequence of wheat germ initiator tRNAmet1. Cold Spring Harbor meeting on tRNA, abstracts p 6

    Google Scholar 

  • Gillespie D, Spiegelman S (1965) A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol 12: 829–842

    PubMed  CAS  Google Scholar 

  • Goins DJ, Reynolds RJ, Schiff J A, Barnett WE (1973) A cytoplasmic regulatory mutant ofEuglena. Constitutivity for the light inducible chloroplast transfer RNAs. Proc Natl Acad Sci USA 70: 1749–1752

    Google Scholar 

  • Gore NR, Wray JL (1978) Leucine-tRNA ligase from cultured cells ofNicotiana tabacum var. Xanthi. Plant Physiol 61: 20–24

    Google Scholar 

  • Graf L, Kossel H, Stutz E (1980) Sequencing of 16S-23S spacer in a ribosomal RNA operon ofEuglena gracilis chloroplast reveals two tRNA genes. Nature (London) 286: 908–910

    CAS  Google Scholar 

  • Gruol DJ, Haselkorn R (1976) Counting the genes for stable RNA in the nucleus and chloroplasts ofEuglena. Biochim Biophys Acta 447: 82–95

    PubMed  CAS  Google Scholar 

  • Guderian RH, Pulliam RL, Gordon MP (1972) Characterization and fractionation of tobacco leaf transfer RNA. Biochim Biophys Acta 262: 50–65

    PubMed  CAS  Google Scholar 

  • Guillemaut P, Keith G (1977) Primary structure of bean chloroplast tRNAphe: comparison withEuglena chloroplast tRNAPhe. FEBS Lett 84: 351–356

    PubMed  CAS  Google Scholar 

  • Guillemaut P, Weil JH (1975) Aminoacylationof Phaseolus vulgaris cytoplasmic, chloroplastic and mitochondrial tRNAsMet and E. coli tRNAsMet by homologous and heterologous enzymes. Biochim Biophys Acta 407: 240–248

    CAS  Google Scholar 

  • Guillemaut P, Burkard G, Weil JH (1972) Characterization of N-formyl-methionyl-tRNA in bean mitochondria and etioplasts. Phytochemistry 11: 2217–2219

    CAS  Google Scholar 

  • Guillemaut P, Burkard G, Steinmetz A, Weil JH (1973) Comparative studies on the tRNAsMet from the cytoplasm, chloroplasts and mitochondria ofPhaseolus vulgaris. Plant Sci Lett 1:141–149 Guillemaut P, Steinmetz A, Burkard G, Weil JH (1975) Aminoacylation of tRNALeu species fromE. coli and from the cytoplasm, chloroplasts and mitochondria ofPhaseolus vulgaris by homologous and heterologous enzymes. Biochim Biophys Acta 378: 64–72

    Google Scholar 

  • Guillemaut P, Martin R, Weil JH (1976) Purification and base composition of a chloroplastic tRNAPhe fromPhaseolus vulgaris. FEBS Lett 63: 273–277

    PubMed  CAS  Google Scholar 

  • Gulewicz K, Twardowski T (1980) Purification of tRNAj161 from yellow lupin seeds and characterization by high pressure liquid chromatography. Bull Acad Pol Sci (in press)

    Google Scholar 

  • Gusseck DJ (1977) On dealing with anomalies in the transfer RNA aminoacylation reaction in partially purified systems. Arch Biochem Biophys 182: 533–539

    PubMed  CAS  Google Scholar 

  • Haff HA, Bogorad L (1976) Hybridization of maize chloroplast DNA with transfer ribonucleic acids. Biochemistry 15: 4105–4109

    PubMed  CAS  Google Scholar 

  • Hague DR, Kofold EC (1971) The coding properties of lysine accepting transfer ribonucleic acids from black-eyed peas. Plant Physiol 48: 305–311

    PubMed  CAS  Google Scholar 

  • Hall TC, Tao KL (1970) Rates of aminoacyl-transfer ribonucleic acid synthesis in vivo and in vitro by bean leaves. Biochem J 177: 853–859

    Google Scholar 

  • Hallick RB, Gray PW, Chelm BK, Rushlow KE, Orozco EM (1978)Euglena gracilis chloroplast DNA structure, gene mapping and RNA transcription, In: Akoyunoglou G, Argyroudi-Akoyunoglou JH (eds) Chloroplast development. Elsevier/North-Holland, Amsterdam New York pp 619–622

    Google Scholar 

  • Hecker LI, Egan J, Reynolds RJ, Nix CE, Schiff JA, Barnett WE (1974) The sites of transcription and translation forEuglena chloroplastic aminoacyl-tRNA synthetases. Proc Natl Acad Sci USA 71: 1910–1914

    PubMed  CAS  Google Scholar 

  • Hecker M, Muller H (1974) Untersuchungen uber das Verhalten eines wahrend der Keimung vonAgrostemma-Samen gebildeten Inhibitors der Aminoacyl-tRNS-Synthetase. Biochem Physiol Pflanz 165: 419–428

    CAS  Google Scholar 

  • Henshall JD, Goodwin TW (1964) Amino acid-activating enzymes in germinating pea seedlings. Phytochemistry 3: 677–691

    CAS  Google Scholar 

  • Hiatt VS, Snyder LA (1973) Phenylalanine transfer RNA species in early development of barley. Biochim Biophys Acta 324: 57–68

    PubMed  CAS  Google Scholar 

  • Holley R, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH, Penswick J, Zamir A (1965) Structure of a ribonucleic acid. Science 147: 1462–1465

    PubMed  CAS  Google Scholar 

  • Holmes WM, Hurd RE, Reid BR, Rimerman RA, Hatfield GW (1975) Separation of transfer ribonucleic acid by Sepharose chromatography using reverse salt gradient. Proc Natl Acad Sci USA 72: 1068–1071

    PubMed  CAS  Google Scholar 

  • Imbault P, Sarantoglou V, Weil JH (1979) Purification of the chloroplastic valyl-tRNA synthetase fromEuglena gracilis. Biochem Biophys Res Commun 88: 75–84

    PubMed  CAS  Google Scholar 

  • Imbault P, Colas B, Sarantoglou V, Boulanger Y, Weil JH (1981) Chloroplast leucyl-tRNA synthetase fromEuglena gracilis. Purification, kinetic analysis and structural characterization. Biochemistry 20: 5855–5859

    Google Scholar 

  • Jacobson KB (1971) Reaction of aminoacyl-tRNA synthetases with heterologous tRNA’s. Prog Nucleic Acid Res Mol Biol 11: 461–488

    PubMed  CAS  Google Scholar 

  • Jakubowski H (1978 a) Yellow lupin(Lupinus luteus) aminoacyl-tRNA synthetases. Isolation and some properties of enzyme-bound valyl adenylate and seryl adenylate. Biochim Biophys Acta 521:584–596

    Google Scholar 

  • Jakubowski H (1978 b) Valyl-tRNA synthetase from yellow lupin seeds. Instability of enzyme-bound noncognate adenylases versus cognate adenylate. FEBS Lett 95:235–238

    PubMed  CAS  Google Scholar 

  • Jakubowski H (1979) A role for protein-protein interactions in the maintenance of active forms of aminoacyl-tRNA synthetases. FEBS Lett 103: 71–76

    PubMed  CAS  Google Scholar 

  • Jakubowski H (1980) Polyamines and yellow lupin aminoacyl-tRNA synthetases. FEBS Lett 109: 63–66

    PubMed  CAS  Google Scholar 

  • Jakubowski H, Pawelkiewicz J (1973) Chromatography of plant aminoacyl-tRNA synthetases on co-aminoalkyl Sepharose columns. FEBS Lett 34: 150–154

    PubMed  CAS  Google Scholar 

  • Jakubowski H, Pawelkiewicz J (1974) Valyl-tRNA synthetase of yellow lupin seeds. Purification and some properties. Acta Biochim Pol 21: 271–282

    Google Scholar 

  • Jakubowski H, Pawelkiewicz J (1975) The plant aminoacyl-tRNA synthetases. Purification and characterization of valyl-tRNA, tryptophanyl-tRNA and seryl-tRNA synthetases from yellow lupin seeds. Eur J Biochem 52: 301–310

    Google Scholar 

  • Janowicz Z, Wower JM, Augustyniak J (1979) Primary structure of barley embryo tRNAPhe and its identity with wheat germ tRNAPhe. Plant Sci Lett 14: 177–183

    CAS  Google Scholar 

  • Jay FT, Jones DS (1977) Transfer ribonucleic acid fromScenedesmus obliquus: Purification of the major formylatable methionine-accepting species. Phytochemistry 16: 1329–1332

    Google Scholar 

  • Jeannin G, Burkard G, Weil JH (1976) Aminoacylation ofPhaseolus vulgaris cytoplasmic, chloroplastic and mitochondrial tRNAsPro and tRNAsLys by homologous and heterologous enzymes. Biochim Biophys Acta 442: 24–31

    PubMed  CAS  Google Scholar 

  • Jeannin G, Burkard G, Weil JH (1978) Characterization ofPhaseolus vulgaris cytoplasmic, chloroplastic and mitochondrial tRNAsPhe. Aminoacylation by homologous and heterologous enzymes. Plant Sci Lett 13: 75–81

    Google Scholar 

  • Joachimiak A, Barciszewski J, Twardowski T, Barciszewska M, Wiewiorowski M (1978) Purification and properties of methionyl-tRNA synthetase from yellow lupin seeds. FEBS Lett 93: 51–54

    CAS  Google Scholar 

  • Kanabus J, Cherry JH (1971) Isolation of an organ-specific leucyl-tRNA synthetase from soybean seedlings. Proc Natl Acad Sci USA 68: 873–876

    PubMed  CAS  Google Scholar 

  • Karwowska U, Gozdzicka-Josefiak A, Augustyniak J (1979) Chloroplast-specific leucine tRNAs from wheat. Acta Biochim Pol 26: 319–326

    CAS  Google Scholar 

  • Kashdan MA, Pirtle RM, Pirtle IL, Calagan JL, Vreman HJ, Dudock BS (1980) Nucleotide sequence of a spinach chloroplast threonine tRNA. J Biol Chem 255: 8831–8835

    PubMed  CAS  Google Scholar 

  • Kedzierski W, Pawelkiewicz J (1970) Stabilization of isoleucyl-tRNA synthetase from yellow lupin seeds by transfer RNA. Acta Biochim Pol 17: 41–51

    PubMed  CAS  Google Scholar 

  • Kedzierski W, Sulewski T, Pawelkiewicz J (1979) Levels of aminoacylation of methionine tRNAs in germinating lupin cotyledons. Plant Sci Lett 14: 373–380

    CAS  Google Scholar 

  • Kedzierski W, Augustyniak H, Pawelkiewicz J (1980) Aminoacylation of four tRNA species in lupin cotyledons. Planta 147: 439–443

    CAS  Google Scholar 

  • Keller M, Burkard G, Bohnert HJ, Mubumbila M, Gordon K, Steinmetz A, Heiser D, Crouse E, Weil JH (1980) Transfer RNA genes associated with the 16S and 23S rRNA genes ofEuglena chloroplast DNA. Biochem Biophys Res Commun 95: 47–54

    PubMed  CAS  Google Scholar 

  • Kellermann O, Brevet A, Tonetti H, Waller J-P (1979) Macromolecular complexes of aminoacyl-tRNA synthetases from eukaryotes. Eur J Biochem 99: 541–550

    PubMed  CAS  Google Scholar 

  • Kelmers AD, Heatherly DE (1971) Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids. Anal Biochem 44: 486–495

    PubMed  CAS  Google Scholar 

  • Kislev N, Selsky MI, Norton C, Eisenstadt JM (1972) tRNA and aminoacyl-tRNA synthetases of chloroplasts, mitochondria and cytoplasm fromEuglena gracilis Biochim Biophys Acta 287:256–269

    PubMed  CAS  Google Scholar 

  • Kisselev LL, Favorova OO (1974) Aminoacyl-tRNA synthetases, some recent results and achievements. Adv Enzymol 40: 141–225

    PubMed  CAS  Google Scholar 

  • Klyachko NL, Parthier B (1980) Cytokinin control of aminoacyl-tRNA synthetases and ribulose bisphosphate carboxylase in developing and greening excisedCucurbita cotyledons. Biochem Physiol Pflanz 175: 333–345

    CAS  Google Scholar 

  • Koch W, Edwards K, Kossel H (1981) Sequencing of the 16S-23S spacer in a ribosomal RNA operon ofZea mays chloroplast DNA reveals two split tRNA genes. Cell 25: 203–213

    PubMed  CAS  Google Scholar 

  • Kothari RM, Taylor MW (1972) RNA fractionation on modified celluloses. III. BD-cellulose. J Chromatogr 73: 479

    Google Scholar 

  • Kothari RM, Taylor MW (1973) RNA fractionation on reversed phase columns. J Chromatogr 86: 289–324

    PubMed  CAS  Google Scholar 

  • Krauspe R, Parthier B (1973) Chloroplast- and cytoplasmic-specific aminoacyl-transfer ribonucleic acid synthetases ofEuglena gracilis: Separation, characterization and site of synthesis. Biochem Soc Symp 38: 111–135

    Google Scholar 

  • Krauspe R, Parthier B (1974) Chloroplast and cytoplasmic aminoacyl-tRNA synthetases ofEuglena gracilis. Biochem Physiol Pflanz 165: 18–36

    CAS  Google Scholar 

  • Krauspe R, Parthier B (1975) Influence of purine nuclectides on the heat-stability of aminoacyl-tRNA synthetases. Biochem Physiol Pflanz 168: 257–266

    CAS  Google Scholar 

  • Krauspe R, Kovaleva GK, Gulyaev NN, Baranova LA, Agalova MB, Severin ES, Sokolova NI, Shabarova ZA, Kisselev LL (1978) Inhibition of leucyl-tRNA synthetases by modifying ATP analogs. Biokhimiya 43: 656–661

    CAS  Google Scholar 

  • Labuda D, Janowicz Z, Haertle T, Augustyniak J (1974) Isolation and chromatographic behaviour of phenylalanine tRNA from barley embryos. Nucleic Acids Res 1: 1703–1712

    PubMed  CAS  Google Scholar 

  • Lagerkvist U (1978) “Two out of three”: An alternative method for codon reading. Proc Natl Acad Sci USA 75:1759–1762

    Google Scholar 

  • Lanzani GA, Manzocchi A, Galante E, Menegus F (1969) Some properties of the phenylala- nyl tRNA synthetase activity from wheat seedling chloroplasts. Enzymologia 37: 97–110

    PubMed  CAS  Google Scholar 

  • Lawrence F, Shire D, Waller J-P (1974) The effect of adenosine analogues on the ATP-pyrophosphate exchange reaction catalysed by methionyl-tRNA synthetase. Eur J Biochem 41: 73–81

    PubMed  CAS  Google Scholar 

  • Lea PJ, Fowden L (1972) Stereospecificity of glutamyl-tRNA synthetase isolated from higher plants. Phytochemistry 11: 2129–2139

    CAS  Google Scholar 

  • Lea PJ, Fowden L (1973) Amino acid substrate specificity of asparaginyl-, aspartyl- and glutamyl-tRNA synthetase isolated from higher plants. Phytochemistry 12: 1903–1916

    CAS  Google Scholar 

  • Lea PJ, Norris RD (1976) The use of amino acid analogues in study on plant metabolism. Phytochemistry 15: 585–595

    CAS  Google Scholar 

  • Lea PJ, Norris RD (1977) tRNA and aminoacyl-tRNA synthetases from higher plants. Prog Phytochem 4:121–167

    CAS  Google Scholar 

  • Legocki AB, Pawelkiewicz J (1967) Amino acid-activating enzymes in yellow lupin seeds, and purification of leucyl-sRNA synthetase. Acta Biochim Pol 14: 313–322

    PubMed  CAS  Google Scholar 

  • Legocki AB, Szymkowiak A, Hierowski M, Pawelkiewicz J (1968) Heterogeneity of transfer

    Google Scholar 

  • ribonucleic acids from yellow lupin seeds. Acta Biochim Pol 15:197–203

    Google Scholar 

  • Leis JP, Keller EB (1970) Protein chain-initiating methionine tRNAs in chloroplasts and cytoplasm of wheat leaves. Proc Natl Acad Sci USA 67: 1593–1599

    PubMed  CAS  Google Scholar 

  • Lesiewicz JL, Herson DS (1975) A reinvestigation of the sites of transcription and translation ofEuglena chloroplastic phenylalanyl-tRNA synthetase. Arch Microbiol 105: 117–121

    PubMed  CAS  Google Scholar 

  • Lester BR, Cherry JH (1979) Purification of leucine tRNA isoaccepting species from soybean cotyledons. I. Benzoylated diethylaminocellulose fractionation, N-hydroxysuccinimide modification and characterization of product. Plant Physiol 63: 79–86

    Google Scholar 

  • Lester BR, Morris RO, Cherry JH (1979) Purification of leucine tRNA isoaccepting species from soybean cotyledons. II. RPC-II purification, ribosome binding and cytokinin content. Plant Physiol 63: 87–92

    Google Scholar 

  • Littauer UZ, Inouye H (1973) Regulation of tRNA. Annu Rev Biochem 42: 439–470

    PubMed  CAS  Google Scholar 

  • Locy RO, Cherry JH (1978) Purification and characterization of two tyrosyl-tRNA synthetase activities from soybean cotyledons. Phytochemistry 17: 19–27

    CAS  Google Scholar 

  • Macino G, Coruzzi G, Nobrega FG, Li M, Tzagoloff A (1979) Use of the UGA terminator as a tryptophan codon in yeast mitochondria. Proc Natl Acad Sci USA 76: 3784–3785

    PubMed  CAS  Google Scholar 

  • Malnoë P, Rochaix JD (1978) Localization of 4S RNA genes on the chloroplast genome ofChlamydomonas reinhardii. Mol Gen Genet 166: 269–275

    PubMed  Google Scholar 

  • Marcu KB, Mignery RE, Dudock BS (1977) Complete nucleotide sequence and properties

    Google Scholar 

  • of the major species of glycine tRNA from wheat germ. Biochemistry 16:797–806

    Google Scholar 

  • Martin RP, Schneller JM, Stahl AJC, Dirheimer G (1977) Studies of yeast mitochondrial tRNAs by two-dimensional polyacrylamide gel electrophoresis: characterization of isoaccepting species and search for imported cytoplasmic tRNAs. Nucleic Acids Res 4: 349–3510

    Google Scholar 

  • McCoy JG, Jones DS (1980) The nucleotide sequence ofScenedesmus obliquus chloroplast

    Google Scholar 

  • tRNAMetNucl Acids Res 8:5089–5093

    Google Scholar 

  • McCrea JM, Hershberger CL (1976) Chloroplast DNA codes for transfer RNA. Nucleic Acids Res 3: 2005–2018

    PubMed  CAS  Google Scholar 

  • McCrea JM, Hershberger CL (1978) Chloroplast DNA codes for tRNA from cytoplasmic polyribosomes. Nature (London) 274: 717–719

    CAS  Google Scholar 

  • McCune SA, Yu PL, Nance WE (1977) A semiautomated assay procedure for the determination of aminoacyl-tRNA synthetase activity. Anal Biochem 79: 618–622

    PubMed  CAS  Google Scholar 

  • Mehler AH (1970) Induced activation of amino acid activating enzymes by amino acids and tRNA. Prog Nucleic Acids Res Mol Biol 10: 1–23

    CAS  Google Scholar 

  • Merrick WC, Dure LS (1972) The developmental biochemistry of cotton seed embryogenesis and germination. IV. Levels of cytoplasmic and chloroplastic transfer ribonucleic acid species. J Biol Chem 247: 7988–7999

    Google Scholar 

  • Mettler I J, Romani RJ (1976) Quantitative changes in tRNA during ethylene-induced ripening (ageing) of tomato fruits. Phytochemistry 15: 25–28

    CAS  Google Scholar 

  • Mubumbila M, Burkard G, Keller M, Steinmetz A, Crouse E, Weil JH (1980) Hybridization of bean, spinach, maize andEuglena chloroplast tRNAs with homologous and various species. Biochim Biophys Acta 609: 31–39

    PubMed  CAS  Google Scholar 

  • Muller-Uri F, Krauspe R, Parthier B (1981) Mitochondrial leucyl-tRNA-synthetase ofEuglena gracilis. Biochem Physiol Pflanz 176: 841–851

    Google Scholar 

  • Nathan I, Richmond A (1974) Leueyl transfer RNA synthetase in senescing tobacco leaves. Biochem J 140: 169–173

    PubMed  CAS  Google Scholar 

  • Neumann D, Parthier B (1973) Effects of nalidixic acid, chloramphenicol, cycloheximide, and anisomycin on structure and development of plastids and mitochondria in greeningEuglena cells. Exp Cell Res 81: 255–268

    PubMed  CAS  Google Scholar 

  • Norris RD, Fowden L (1972) Substrate discrimination by prolyl-tRNA synthetase from various higher plants. Phytochemistry 11: 2921–2935

    CAS  Google Scholar 

  • Norris RD, Fowden L (1973) Substrate protection during selective heat inactivation of aminoacyl tRNA synthetases and its use in enzyme studies. Biochim Biophys Acta 312: 695–707

    PubMed  CAS  Google Scholar 

  • Norris RD, Fowden L (1974) Cold-lability of prelyl-tRNA synthetase from higher plants. Phytochemistry 13: 1677–1687

    CAS  Google Scholar 

  • Norris RD, Lea PJ, Fowden L (1973) Aminoacyl-tRNA synthetases inTriticum aestivum L. during seed development and germination. J Exp Bot 24: 615–625

    CAS  Google Scholar 

  • Norris RD, Lea PJ, Fowden L (1975 a) tRNA species in the developing grain ofTriticum aestivum Phytochemistry 14:1683–686

    CAS  Google Scholar 

  • Norris RD, Watson R, Fowden L (1975 b) The activation of amino acid analogues by phenylalanyl- and tyrosyl-tRNA synthetases from plants. Phytochemistry 14:393–396

    CAS  Google Scholar 

  • Nover L (1976) Density labeling of chloroplast-specific leucyl-tRNA synthetase in greening cells ofEuglena gracilis. Plant Sci Lett 7: 403–407

    CAS  Google Scholar 

  • Olins PO, Jones DS (1980) Nucleotide sequence ofScenedesmus obliquus cytoplasmic initiator tRNA. Nucleic Acid Res 8: 715–730

    PubMed  CAS  Google Scholar 

  • Orozco EM, Rushlow KE, Dodd JR, Hallick RB (1980)Euglena gracilis chloroplast riboso- mal RNA transcription units. II. Nucleotide sequence homology between the 16S-23S ribosomal RNA spacer and the 16S ribosomal leader regions. J Biol Chem 255:10997–11001

    PubMed  CAS  Google Scholar 

  • Osorio-Almeida ML, Guillemaut P, Keith G, Canaday J, Weil JH (1980) Primary structure of three leucine transfer RNAs from bean chloroplast. Biochem Biophys Res Commun 92: 102–108

    PubMed  CAS  Google Scholar 

  • Parfait R (1973) Arginyl-tRNA synthetase fromBacillus stearothermophilus. Heat inactivation and substrate induced protection. FEBS Lett 29: 323–325

    PubMed  CAS  Google Scholar 

  • Parthier B (1968) Spezifischer Inhibitor der Aminoacyl-Transfer-RNS-Synthese aus Erbsen- keimlingen. Naturwissenschaften 55:653 Parthier B (1971) Species-specific reactions of cell-free polypeptide synthesis. Biochem Physiol Pflanz 162: 45–59

    Google Scholar 

  • Parthier B (1972) Sites of synthesis of chloroplast proteins. Symp Biol Hung 13: 235–248

    CAS  Google Scholar 

  • Parthier B (1973) Cytoplasmic site of synthesis of chloroplast aminoacyl-tRNA synthetase inEuglena gracilis. FEBS Lett 38: 70–74

    PubMed  CAS  Google Scholar 

  • Parthier B (1977) Light-induced chloroplast differentiation inEuglena gracilis In: Nover L, Mothes K (eds) Cell differentiation in microorganisms, higher plants and animals. Fischer, Jena and Elsevier, Amsterdam, pp 602–624

    Google Scholar 

  • Parthier B (1981) Chloroplast development inEuglena: Regulatory aspects. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa, vol IV. Academic Press, London New York, pp 261–300

    Google Scholar 

  • Parthier B, Krauspe R (1973) Assignment to chloroplast and cytoplasm of threeEuglena gracilis aminoacyl-tRNA synthetases with ambiguous specificity for transfer RNA. Plant Sci Lett 1: 221–227

    CAS  Google Scholar 

  • Parthier B, Krauspe R (1974) Chloroplast and cytoplasmic transfer RNA ofEuglena gracilis. Transfer RNALeu of blue-green algae as a substitute for chloroplast tRNALeu. Biochem Physiol Pflanz 165: 1–17

    CAS  Google Scholar 

  • Parthier B, Krauspe R (1975) Specificity and synthesis of plastid-specific aminoacyl-tRNA synthetase inEuglena gracilis. Colloq Int CNRS 240: 233–239

    CAS  Google Scholar 

  • Parthier B, Neumann D, (1977) Structural and functional analysis of some plastid mutants ofEuglena gracilis. Biochem Physiol Pflanz 171: 547–560

    Google Scholar 

  • Parthier B, Krauspe R, Samtleben S (1972) Light-stimulated synthesis of aminoacyl-tRNA synthetases in greeningEuglena gracilis. Biochim Biophys Acta 277: 335–341

    PubMed  CAS  Google Scholar 

  • Parthier B, Mueller-Uri F, Krauspe R (1978) The aminoacyl-tRNA synthetases ofEuglena chloroplasts. In: Akoyunoglou G, Argyroudi-Akoyunoglou JH (eds) Chloroplast development. Elsevier North-Holland Biomed Press, Amsterdam New York, pp 687–693

    Google Scholar 

  • Parthier B, Lerbs S, Klyachko NL (1981) Plastogenesis and cytokinin action. In: Peaud- Lenoel C, Guern J (eds) Metabolism and molecular activities of cytokinins. Springer, Berlin Heidelberg New York, 275–286

    Google Scholar 

  • Patel, HV, Pillay DTN (1976) Leucine specific transfer ribonucleic acids and synthetases in the cotyledons of mature and germinating pea seeds. Phytochemistry 15: 401–105

    CAS  Google Scholar 

  • Pearson RL, Weiss JF, Kelmers AD (1971) Improved separation of transfer RNAs on polychlorotrifluorethylene-supported reversed phase chromatography column. Biochim Biophys Acta 228: 770–774

    PubMed  CAS  Google Scholar 

  • Peterson PJ, Fowden L (1965) Purification, properties and comparative specificities of the enzyme prolyl-transfer ribonucleic acid synthetase fromPhaseolus aureus andPolygonatum multiflorum. Biochem J 97: 112–124

    PubMed  CAS  Google Scholar 

  • Pillay DTN, Cherry JH (1974) Changes in leucyl-, seryl-, and tyrosyl-tRNAs in ageing soybean cotyledons. Can J Bot 52: 2499–2504

    CAS  Google Scholar 

  • Pillay DTN, Gowda S (1980) Gerontology (in press)

    Google Scholar 

  • Preddie DL, Preddie EC, Guerrini AM, Cremona T (1973) Two isoaccepting species of tryptophan-tRNA fromChlamydomonas reinhardi. Can J Bot 51: 951

    CAS  Google Scholar 

  • Quetier F, Vedel F (1977) Heterogeneous population of mitochondrial DNA molecules in higher plants. Nature (London) 268: 365–368

    CAS  Google Scholar 

  • Quintard B, Monricout M, Carias JF, Julien R (1978) Occurrence of aminoacyl-tRNA synthetase complexes in quiescent wheat germ. Biochem Biophys Res Commun 85: 999–1006

    PubMed  CAS  Google Scholar 

  • Racz I, Juhasz A, Kiraly I, Lasztity D (1979) The effect of hight on the nucleotide composition of tRNAPhe of wheat germ. Plant Sci Lett 15: 57–61

    CAS  Google Scholar 

  • Rafalski A, Barciszewski J, Gulewicz K, Twardowski T, Keith G (1977) Nucleotide sequence of tRNAphe from the seeds of lupin. Comparison of the major species with wheat germ tRNAPhe. Acta Biochim Pol 24: 301–318

    PubMed  CAS  Google Scholar 

  • Reger BJ, Fairfield SA, Epler JL, Barnett WE (1970) Identification and origin of some chloroplast aminoacyl-tRNA synthetases and tRNAs. Proc Natl Acad Sci USA 67: 1207–1213

    PubMed  CAS  Google Scholar 

  • Romani RJ, Sprole BV, Mettler IJ, Tuskes ES (1975) Extraction and purification of tRNA from fruit tissues. Phytochemistry 14: 2563–2567

    CAS  Google Scholar 

  • Rosa MP, Sigler PB (1977) Isolation and characterization of two methionine: tRNA ligases from wheat germ. Eur J Biochem 78: 141–151

    PubMed  CAS  Google Scholar 

  • Rosenthal GA, Dahlmann DL, Janzen DH (1976) A novel means dealing with L-canavanine, a toxic metabolite. Science 192: 256–257

    PubMed  CAS  Google Scholar 

  • Sarantoglou V, Imbault P, Weil JH (1980) The use of affinity elution from blue dextran sepharose by yeast tRNA2Val in the complete purification of the cytoplasmic valyl-tRNA synthetase fromEuglena gracilis. Biochem Biophys Res Commun 93: 134–140

    PubMed  CAS  Google Scholar 

  • Sarantoglou V, Imbault P, Weil JH (1981) Purification ofEuglena gracilis cytoplasmic leucyl-tRNA synthetase. Plant Sci Lett 22: 291–297

    CAS  Google Scholar 

  • Schimmel PR (1979) Understanding the recognition of transfer RNAs by aminoacyl transfer RNA synthetases. Adv Enzymol 49: 187–221

    PubMed  CAS  Google Scholar 

  • Schimmel PR, Soil D (1979) Aminoacyl-tRNA synthetases: General features and recognition of tRNAs. Annu Rev Biochem 48: 601–648

    Google Scholar 

  • Schwartzbach SD, Hecker LI, Barnett WE (1976) Transcriptional origin ofEuglena chloroplast tRNA. Proc Natl Acad Sci USA 73: 1984–1988

    PubMed  CAS  Google Scholar 

  • Schwartzbach SD, Barnett WE, Hecker LI (1979) Evidence thatEuglena chloroplasts do not export tRNAs. Nature (London) 280: 86–87

    CAS  Google Scholar 

  • Schwarz Z, Steinmetz A, Bogorad L (1980) Personal communication

    Google Scholar 

  • Schwarz Z, Kossel H (1980) The primary structure of 16S rDNA fromZea mays chloroplast

    Google Scholar 

  • is homologous toE. coli 16S rRNA. Nature (London) 283:739–742

    Google Scholar 

  • Sekiya T, Nishimura S (1979) Sequence of the gene for isoleucine tRNAi and the surrounding region in a ribosomal RNA operon ofE. coli. Nucleic Acids Res 6: 575–592

    PubMed  CAS  Google Scholar 

  • Selsky MI (1978) Reverse-phase chromatographic analysis ofNostoc andEuglena isoleucyl- tRNAs aminoacylatedin vitro in homologous and heterologous systems. Biochim Biophys Acta 520: 555–567

    PubMed  CAS  Google Scholar 

  • Shridhar V, Pillay DTN (1976) Changes in leucyl-tRNAs and aminoacyl-tRNA synthetases in developing and ageing soybean cotyledons. Phytochemistry 15: 1809–1812

    CAS  Google Scholar 

  • Shrift A, Bechard D, Harcup C, Fowden L (1976) Utilization of selenocysteine by a cysteinyl-tRNA synthetase fromPhaseolus aureus. Plant Physiol 58: 248–252

    PubMed  CAS  Google Scholar 

  • Silberklang M, Gillum AM, RajBhandary UL (1979) Use ofin vitro 32P-labeling in the sequence analysis of non-radioactive tRNAs. In: Moldave K, Grossman L (eds) Methods in enzymology, vol LIX. Academic Press, London New York, pp 53–109

    Google Scholar 

  • Sinclair DG, Pillay DTN (1980) Localization of tRNAs and aminoacyl-tRNA synthetases in cytoplasm, chloroplasts and mitochondria ofglycine max L. Z Pflanzenphysiol (in press)

    Google Scholar 

  • Smith IK, Fowden L (1968) Studies on the specificities of the phenylalanyl- and tyrosyl- sRNA synthetases from plants. Phytochemistry 7: 1065–1075

    CAS  Google Scholar 

  • Smith RA, Santi DV (1979) Simultaneous measurement of charging levels of multiple aminoacyl-tRNAs. Anal Biochem 99: 372–378

    PubMed  CAS  Google Scholar 

  • Spare W, Lesiewicz JL, Herson DS (1978) The effect of cycloheximide onEuglena gracilis phenylalanyl-tRNA synthetases. Arch Microbiol 118: 289–292

    PubMed  CAS  Google Scholar 

  • Stanley J, Vassilenko S (1978) A different approach to RNA sequencing. Nature (London) 274: 87–89

    CAS  Google Scholar 

  • Swamy GS, Pillay DTN (1979) Purification of phenylalanine transfer ribonucleic acid synthetase from soybean(Glycine max) cotyledon by affinity chromatography. Z Pflanzenphysiol 93: 403–110

    CAS  Google Scholar 

  • Swamy GS, Pillay DTH (1980) Purification and some properties of phenylalanyl-tRNA synthetase from soybean(Glycine max L.). Plant Sci Lett 20: 99–107

    CAS  Google Scholar 

  • Tao HL, Hall TC (1971) Factors controlling aminoacyl-transfer ribonucleic acid synthesis in vitro by a plant system. Biochem J 121: 495–501

    PubMed  CAS  Google Scholar 

  • Tao KL, Khan AA (1974) Increase in activities of aminoacyl-tRNA synthetases during cold-treatment of dormant pear embryos. Biochem Biophys Res Commun 59: 764–770

    PubMed  CAS  Google Scholar 

  • Tewari KK, Kolodner R, Chu NM, Meeker RM (1977) Structure of chloroplast DNA. In: Bogorad L, Weil JH (eds) Nucleic acids and protein synthesis in plants. Plenum Press, New York London, pp 15–36

    Google Scholar 

  • Valenzuela P, Venegas A, Weinberg F, Bishop R, Rutter WJ (1978) Structure of yeast phenylalanine tRNA genes: an intervening DNA segment within the region coding for the tRNA. Proc Natl Sci USA 75: 190–194

    CAS  Google Scholar 

  • Vanderhoef LN, Key JL (1970) The fractionation of transfer ribonucleic acid from roots of pea seedlings. Plant Physiol 46: 294–298

    PubMed  CAS  Google Scholar 

  • Vanderhoef LN, Travis RL, Murray MG, Key JL (1972) Interspecies aminoacylation of transfer ribonucleic acid from several higher plants,Neurospora, yeast andE. coli. Biochim Biophys Acta 269: 413–418

    PubMed  CAS  Google Scholar 

  • Venkataraman R, Deleo P (1972) Changes in leucyl-tRNA species during ageing of detached soybean cotyledons. Phytochemistry 11: 923–927

    CAS  Google Scholar 

  • Vennegoor C, Bloemendal H (1972) Occurrence and particle character of aminoacyl-tRNA synthetases in the post-microsomal fraction from rat liver. Eur J Biochem 26: 462–473

    PubMed  CAS  Google Scholar 

  • Viotti A, Balducci C, Weil JH (1978) Adaptation of the tRNA population of maize endosperm for zein synthesis. Biochem Biophys Acta 517: 125–132

    PubMed  CAS  Google Scholar 

  • Void BS, Sypherd PS (1968) Modification in transfer RNA during the differentiation of wheat seedlings. Proc Natl Acad Sci USA 59: 453–458

    Google Scholar 

  • Weil JH (1979) Cytoplasmic and organellar tRNAs in plants. In: Hall TC, Davies JW (eds) Nucleic acids in plants. CRC Press, Boca Raton, pp 143–192

    Google Scholar 

  • Wesolowski M, Fukuhara H (1979) The genetic map of tRNA genes of yeast mitochondria: Correction and extension. Mol Gen Genet 170: 261–275

    Google Scholar 

  • Williams CR, Williams A, George SH (1973) Hybridization of leucyl transfer ribonucleic acid isoacceptors from green leaves with nuclear and chloroplastic deoxyribonucleic acid. Proc Natl Acad Sci USA 70: 3498–3501

    PubMed  CAS  Google Scholar 

  • Wollgiehn R, Parthier B (1980) RNA and protein synthesis in plastid differentiation. In: Reinert J (ed) Results and problems in cell differentiation, vol X. Springer, Berlin Heidelberg New York, pp 97–145

    Google Scholar 

  • Wower JM, Janowicz ZA, Augustyniak J (1979) Determination of the nucleotide sequence of phenylalanine tRNA from barley embryo. Acta Biochim Pol 26: 369–381

    CAS  Google Scholar 

  • Wray JL, Brice EB, Fowden L (1974) Development of aminoacyl-tRNA synthetases in culturedNicotiana tabacum cells. Phytochemistry 13: 697–701

    CAS  Google Scholar 

  • Wright RD, Pillay DTN, Cherry JH (1972) Changes in leucyl-tRNA species of pea leaves during senescence and after zeatin treatment. Mech Ageing Dev 1: 403–412

    Google Scholar 

  • Wright RD, Kanabus J, Cherry JH (1974) Multiple leucyl-tRNA synthetases in pea seedlings. Plant Sci Lett 2: 347–355

    CAS  Google Scholar 

  • Yang JS, Brown GN (1974) Isoaccepting transfer ribonucleic acids during chilling stress in soybean seedling hypocotyls. Plant Physiol 53: 694–698

    PubMed  CAS  Google Scholar 

  • Yarus M (1979) The accuracy of translation. Prog Nucleic Acid Res Mol Biol 23: 195–225

    PubMed  CAS  Google Scholar 

  • Young RA, Macklis R, Steitz J A (1979) Sequence of the 16S-23S spacer region in two ribosomal RNA operons ofE. coli. J Biol Chem 254: 3264–3271

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weil, J.H., Parthier, B. (1982). Transfer RNA and Aminoacyl-tRNA Synthetases in Plants. In: Boulter, D., Parthier, B. (eds) Nucleic Acids and Proteins in Plants I. Encyclopedia of Plant Physiology, vol 14 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68237-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68237-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68239-1

  • Online ISBN: 978-3-642-68237-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics