Skip to main content

The Role of Lipid-Linked Saccharides in the Biosynthesis of Complex Carbohydrates

  • Chapter

Part of the book series: Encyclopedia of Plant Physiology ((921,volume 13 / B))

Abstract

Lipid intermediates, or lipid-linked saccharides, were first discovered in bacteria where they were shown to be involved in the biosynthesis of cell wall polymers such as peptidoglycan, lipopolysaccharide, teichoic acid and capsular polysaccharides (Osborn 1969, Hemming 1974). Those studies set the stage for later experiments in eukaryotic systems which also showed the synthesis and utilization of similar types of lipid intermediates in the biosynthesis of complex carbohydrates (Waechter and Lennarz 1976). In this chapter, the lipid intermediates that have been identified in higher plants will be discussed and their role in biosynthetic reactions will be considered. The plant systems will be compared to those studies that have been done in animal and yeast systems. Figure 1 outlines a series of reactions that have been proposed to account for the formation of the lipid-linked oligosaccharide that serves as the final donor in the glycosylation of protein. These reactions are considered in detail in the ensuing pages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen CM, Kalin JR, Sack J, Veruzzo D (1978) CTP-dependent dolichol phosphorylation by mammalian cell homogenates. Biochemistry 17: 5020–5026

    Article  PubMed  CAS  Google Scholar 

  • Basha SM, Beevers L (1976) Glycoprotein metabolism in the cotyledons of Pisum sativum during development and germination. Plant Physiol 57: 93–97

    Article  PubMed  CAS  Google Scholar 

  • Baynes JW, Hsu AF, Heath EC (1973) The role of mannosyl-phosphoryl-dihydropolyisoprenol in the synthesis of mammalian glycoproteins. J Biol Chem 248: 5693–5704

    PubMed  CAS  Google Scholar 

  • Behrens NH, Leloir LF (1970) Dolichol monophosphate glucose: an intermediate in glucose transfer in liver. Proc Natl Acad Sci USA 66: 153–159

    Article  PubMed  CAS  Google Scholar 

  • Behrens NF, Parodi AI, Leloir LF (1971) Glucose transfer from dolichol monophosphate glucose. Proc Natl Acad Sci USA 68: 2857–2860

    Article  PubMed  CAS  Google Scholar 

  • Behrens NF, Carminatti H, Staneloni RJ, Leloir LF, Cantarella AI (1973) Formation of lipid-bond oligosaccharides containing mannose. Their role in glycoprotein synthesis. Proc Natl Acad Sci USA 70: 3390–3394

    Article  PubMed  CAS  Google Scholar 

  • Brett CT, Leloir LF (1977) Dolichol monophosphate and its sugar derivatives in plants. Biochem J 161: 93–101

    PubMed  CAS  Google Scholar 

  • Caccam JF, Jackson JJ, Eyler EH (1969) The biosynthesis of mannose containing glycoproteins. Biochem Biophys Res Commun 35: 505–511

    Article  PubMed  CAS  Google Scholar 

  • Carlo PL, Villamez CL (1979) Solubilization and properties of polyprenyl phosphate: GDP-mannose mannosyl transferase. Arch Biochem Biophys 198: 117–123

    Article  PubMed  CAS  Google Scholar 

  • Carson DD, Lennarz WJ (1979) Inhibition of polyisoprenoid and glycoprotein biosynthesis causes abnormal embryonic development. Proc Natl Acad Sci USA 76: 5709–5713

    Article  PubMed  CAS  Google Scholar 

  • Chambers J, Forsee WT, Elbein AD (1977) Transfer of mannose from mannosyl-phospho-ryl-polyisoprenol to lipid-linked oligosaccharides by extracts of pig aorta. J Biol Chem 252: 2498–2506

    PubMed  CAS  Google Scholar 

  • Chapman A, Li E, Kornfeld S (1979) The biosynthesis of the major lipid-linked oligosaccharide of Chinese hamster ovary cells occurs by the ordered addition of mannose residues. J Biol Chem 254: 10243–10249

    PubMed  CAS  Google Scholar 

  • Chapman A, Fujimoto K, Kornfeld S (1980) The primary glycosylation defect in class E thy-l-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J Biol Chem 255: 4441–4446

    PubMed  CAS  Google Scholar 

  • Chen WW, Lennarz WJ (1976) Participation of a trisaccharide-lipid in glycosylation of oviduct membrane glycoproteins. J Biol Chem 251: 7802–7809

    PubMed  CAS  Google Scholar 

  • Daleo CR, Pont-Lezica R (1977) Synthesis of dolichol phosphate by a cell free extract from peas. FEBS Lett 74: 247–250

    Article  PubMed  CAS  Google Scholar 

  • Daleo GR, Hopp HE, Romero PA, Pont-Lezica R (1977) Biosynthesis of dolichol phosphate by subcellular fractions from liver. FEBS Lett 81: 411–414

    Article  PubMed  CAS  Google Scholar 

  • Dallner G, Behrens NH, Parodi A, Leloir LF (1972) Subcellular distribution of dolichol phosphate. FEBS Lett 24: 315–317

    Article  PubMed  CAS  Google Scholar 

  • Delmer DP, Kulow C, Ericson MC (1978) Glycoprotein synthesis in plants. II. Structure of mannolipid intermediates. Plant Physiol 61: 25–29

    Article  PubMed  CAS  Google Scholar 

  • Duskin D, Bornstein P (1977) The role of glycosylation in the enzymatic conversion of procollagen to collagen. Studies using Tunicamycin and conconavalin A. Arch Biochem Biophys 185: 326–332

    Google Scholar 

  • Eagon PC, Heath EC (1977) Glycoprotein biosynthesis in myeloma cells. Characterization of the nonglycosylated immunoglobulin light chain secreted in the presence of 2-deoxy-glucose. J Biol Chem 252: 2372–2383

    PubMed  CAS  Google Scholar 

  • Eckhardt K, Thrum H, Bradler G, Tonew E, Tonew M (1975) Streptovirudin : new antibiotics with antibacterial and antiviral activity. J Antibiot Ser A 28: 274–279

    Google Scholar 

  • Elbein AD (1979) The role of lipid-linked saccharides in the biosynthesis of complex carbohydrates. Annu Rev Plant Physiol 30: 239–272

    Article  CAS  Google Scholar 

  • Elbein AD, Gafford J, Kang MS (1979) Inhibition of lipid-linked saccharides. Comparison of tunicamycin, streptovirudin, and antibiotic 24010. Arch Biochem Biophys 196: 311–318

    Article  PubMed  CAS  Google Scholar 

  • Endo A, Kuroda M, Tanzawa K (1976) Competitive inhibition of 3-hydroxymethylglutaryl CoA reductase by ML-236B and ML-236A. Fungal metabolites having hypercholes-terolenic activity. FEBS Lett 72: 323–326

    Article  PubMed  CAS  Google Scholar 

  • Ericson MC, Chrispeels MJ (1973) Isolation and characterization of glucosamine-containing glycoproteins from cotyledons of Phaseolus aureus. Plant Physiol 52: 98–104

    Article  PubMed  CAS  Google Scholar 

  • Ericson MC, Delmer DP (1977) Glycoprotein synthesis in plants. I. Role of lipid intermediates. Plant Physiol 59: 341–347

    Article  PubMed  CAS  Google Scholar 

  • Ericson MC, Gafford J, Elbein AD (1977) Tunicamycin inhibits GlcNAc-lipid formation in plants. J Biol Chem 252: 7431–7433

    PubMed  CAS  Google Scholar 

  • Ericson MC, Gafford J, Elbein AD (1978 a) Evidence that the lipid carrier for GlcNAc is different from that for mannose in mung beans and cotton fibers. Plant Physiol 61: 274–277

    Article  PubMed  CAS  Google Scholar 

  • Ericson MC, Gafford J, Elbein AD (1978 b) Bacitracin inhibits the synthesis of lipid-linked saccharides and glycoproteins in plants. Plant Physiol 62: 373–376

    Article  PubMed  CAS  Google Scholar 

  • Ericson MC, Gafford J, Elbein AD (1978 c) In vivo and in vitro inhibition of lipid-linked saccharides and glycoprotein synthesis in plants by amphomycin. Arch Biochem Biophys 191: 698–704

    Article  PubMed  CAS  Google Scholar 

  • Evans PJ, Hemming FW (1973) The unambiguous characterization of dolichol phosphate mannose as a product of mannosyl transferase in pig liver endoplasmic reticulum. FEBS Lett 31: 335–338

    Article  PubMed  CAS  Google Scholar 

  • Forsee WT, Elbein AD (1973) Biosynthesis of glucosyl and mannosyl-phosphoryl-polyprenols. J Biol Chem 248: 2858–2867

    PubMed  CAS  Google Scholar 

  • Forsee WT, Elbein AD (1975) Glycoprotein biosynthesis in plants. Demonstration of lipid-linked oligosaccharides. J Biol Chem 250: 9283–9293

    PubMed  CAS  Google Scholar 

  • Forsee WT, Valkovich G, Elbein AD (1976) Glycoprotein biosynthesis in plants. Formation of lipid-linked oligosaccharides of mannose and GlcNAc by mung bean seedlings. Arch Biochem Biophys 174: 469–479

    Article  PubMed  CAS  Google Scholar 

  • Garoff H, Schwarz RT (1978) Glycosylation is not necessary for membrane insertion and cleavage of semliki forest virus membrane proteins. Nature 274: 487–489

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1977) The low density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 46: 897–930

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Hegelson JAS, Brown MS (1979) Inhibition of cholesterol synthesis on the low density lipoprotein receptor. J Biol Chem 254: 2403–2409

    Google Scholar 

  • Grange DK, Adair WL Jr (1977) Studies on the biosynthesis of dolichyl-phosphate. Evidence for in vitro formation of 2,3-dehydrodolichyl-phosphate. Biochem Biophys Res Commun 79: 734–740

    Article  PubMed  CAS  Google Scholar 

  • Hasilik A, Tanner W (1978) Carbohydrate moiety of carboxypeptidase Y and its perturbation of its biosynthesis. Eur J Biochem 91: 567–575

    Article  PubMed  CAS  Google Scholar 

  • Heifetz A, Elbein AD (1977 a) Solubilization and properties of mannose and GlcNAc transferases involved in the formation of polyprenyl-sugar intermediates. J Biol Chem 252: 3057–3063

    PubMed  CAS  Google Scholar 

  • Heifetz A, Elbein AD (1977b) Biosynthesis of a man-beta-GlcNAc-GlcNAc-pyrophosphoryl-polyprenol by a solubilized enzyme from aorta. Biochem Biophys Res Commun 75: 20–28

    Article  PubMed  CAS  Google Scholar 

  • Hemming FW (1974) Lipids in glycan biosynthesis. In: Goodwin TW (ed) Biochemistry of lipids. 4, Butterworth, London, pp 39–58

    Google Scholar 

  • Hickman S, Kulczycki A Jr, Lynch RG, Kornfeld S (1977) Studies on the mechanism of tunicamycin inhibition of IgA and IgE secretion by plasma cells. J Biol Chem 252: 4402–4408

    PubMed  CAS  Google Scholar 

  • Hopp HE, Romero PA, Pont-Lezica R (1978 a) On the inhibition of cellulose by coumarin. FEBS Lett 86: 259–262

    Article  PubMed  CAS  Google Scholar 

  • Hopp HE, Romero PA, Pont-Lezica R (1978 b) Synthesis of cellulose precursors. Eur J Biochem 84: 259–262

    Article  Google Scholar 

  • Hsu A-F, Baynes JW, Heath EC (1974) The role of a dolichol oligosaccharide as an intermediate in glycoprotein biosynthesis. Proc Natl Acad Sci USA 71: 2391–2395

    Article  PubMed  CAS  Google Scholar 

  • Hubbard SC, Robbins PW (1979) Synthesis and processing of protein-linked oligosaccharides in vivo. J Biol Chem 254: 4568–4576

    PubMed  CAS  Google Scholar 

  • Hurkman WJ, Pedersen K, Smith LD, Larkins BA (1979) Synthesis and processing of maize storage proteins in Xenopus oocytes infected with maize mRNA. Plant Physiol 63: 524A

    Article  Google Scholar 

  • Irving RA, Toneguzzo F, Rhee SH, Hofmann T, Ghosh AP (1979) Biosynthesis and assembly of membrane glycoproteins. Presence of leader peptide in nonglycosylated precursor of membrane glycoproteins of vesicular stomatitis virus. Proc Natl Acad Sci USA 76: 570–574

    Article  PubMed  CAS  Google Scholar 

  • Ito T, Takatsuki A, Kawamura K, Sato K, Tamura G (1980) Isolation and structures of components of tunicamycin. Agric Biol Chem 44(3): 695–698

    Article  CAS  Google Scholar 

  • James DW Jr, Elbein AD (1980) Effects of several tunicamycin like antibiotics on glycoprotein biosynthesis in mung beans and suspension-cultured soybean cells. Plant Physiol 65: 460–464

    Article  PubMed  CAS  Google Scholar 

  • James MJ, Kandutsch AA (1979) Interrelationships between dolichol and sterol synthesis in mammalian cell cultures. J Biol Chem 254: 8442–8446

    PubMed  CAS  Google Scholar 

  • Jung P, Tanner W (1973) Identification of the lipid intermediate in yeast mannan biosynthesis. Eur J Biochem 37: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Kang MS, Spencer JP, Elbein AD (1978) Amphomycin inhibition of mannose and GlcNAc incorporation into lipid-linked saccharides. J Biol Chem 254: 8860–8866

    Google Scholar 

  • Katz FN, Rothman JE, Lingappa VR, Blobel G, Lodish HF (1977) Membrane assembly, in vitro synthesis, glycosylation, and assymetric insertion of a transmembrane protein. Proc Natl Acad Sci USA 74: 3278–3282

    Article  PubMed  CAS  Google Scholar 

  • Kauss H (1969) A plant mannosyl-lipid acting in reversible transfer of mannose. FEBS Lett 5: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Keller RL, Adair WL Jr, Ness G (1979) Studies on the regulation of glycoprotein synthesis. J Biol Chem 254: 9966–9969

    PubMed  CAS  Google Scholar 

  • Kiely ML, McKnight GS, Schimke RT (1976) Studies on the attachment of carbohydrate to ovalbumin nascent chains in hen oviduct. J Biol Chem 251: 5490–5495

    PubMed  CAS  Google Scholar 

  • Kjobakken J, Colvin JR (1973) Biosynthesis of cellulose by a particulate enzyme system from Acetobacter xylinum. In: Loewus F (ed) Biogenesis of plant cell wall polysaccharides, Academic Press, New York, pp 361–371

    Google Scholar 

  • Kornfeld R, Kornfeld S (1976) Comparative aspects of glycoprotein structure. Annu Rev Biochem 45: 217–237

    Article  PubMed  CAS  Google Scholar 

  • Kuo S-C, Lampen JO (1972) Inhibition by 2-deoxyglucose of synthesis of a glycoprotein enzyme by protoplasts of saccharomyces. J Bacteriol 111: 419–429

    PubMed  CAS  Google Scholar 

  • Laine R, Elbein AD (1971) Steryl glucosides in Phaseolus aureus. Biochemistry 10: 2547–2553

    Article  PubMed  CAS  Google Scholar 

  • Lehle L, Tanner W (1976) The specific site of tunicamycin inhibition in the formation of dolichol bound N-acetylglucosamine derivatives. FEBS Lett 71: 167–170

    Article  CAS  Google Scholar 

  • Lehle L, Fartaczek F, Tanner W, Kauss H (1976) Formation of polyprenyl-linked mono-and oligosaccharides in Phaseolus aureus. Arch Biochem Biophys 175: 419–426

    Article  PubMed  CAS  Google Scholar 

  • Lehle L, Bowles DJ, Tanner W (1978) Subcellular site of mannosyl transfer to dolichyl phosphate in Phaseolus aureus. Plant Sci Lett 11: 27–34

    Article  CAS  Google Scholar 

  • Levy JA, Carminatti H, Cantarella AI, Behrens NH, Leloir LF, Tabora E (1974) Mannose transfer to lipid-linked Di-N-Acetylchitobiose. Biochem Biophys Res Commun 60: 118–125

    Article  PubMed  CAS  Google Scholar 

  • Li E, Kornfeld S (1978) Structure of the altered oligosaccharide present in glycoprotein from a clone of Chinese hamster ovary cells deficient in N-acetylglucosaminyltransferase activity. J Biol Chem 253: 6426–6431

    PubMed  CAS  Google Scholar 

  • Li E, Kornfeld S (1979) Structural studies on the major high mannose oligosaccharide units from Chinese hamster ovary cell glycoproteins. J Biol Chem 254: 1600–1606

    PubMed  CAS  Google Scholar 

  • Lingappa VR, Lingappa JR, Prasad R, Ebner KE, Blobel G (1978) Coupled cell free synthesis, segregation and core glycosylation of a secretory protein. Proc Natl Acad Sci USA 75: 2338–2342

    Article  PubMed  CAS  Google Scholar 

  • Lis H, Sharon N (1978) Soybean agglutinin, a plant glycoprotein. J Biol Chem 253: 3468–3476

    PubMed  CAS  Google Scholar 

  • Lucas JJ, Waechter CW, Lennarz WJ (1975) The participation of lipid-linked oligosaccharides in the synthesis of membrane glycoproteins. J Biol Chem 250: 1992–2002

    PubMed  CAS  Google Scholar 

  • Mahoney WC, Duskin D (1979) Biological activities of the two major components of tunicamycin. J Biol Chem 254: 6572–6576

    PubMed  CAS  Google Scholar 

  • Marriott KM, Tanner W (1979) Dolichyl-phosphate dependent glycosyl transfer reactions in the endoplasmic reticulum of castor bean endosperm. Plant Physiol 64: 445–449

    Article  PubMed  CAS  Google Scholar 

  • Martin HG, Thorne KJ (1974) The involvement of endogenous dolichol in the formation of lipid-linked precursors of glycoproteins in rat liver. Biochem J 138: 281–289

    PubMed  CAS  Google Scholar 

  • Melchers F (1973) Biosynthesis, intracellular transport and secretion of immunoglobulins. Biochemistry 12: 1471–1475

    Article  PubMed  CAS  Google Scholar 

  • Mellor RB, Roberts LM, Lord JM (1978) Glycosylation of endogenous proteins by endoplasmic reticulum membranes from castor beans. Biochem J 182: 629–631

    Google Scholar 

  • Mills JJ, Adamany AM (1978) Impairment of dolichyl saccharide synthesis and dolichol mediated glycoprotein assembly in aorta smooth muscle cells in culture by inhibitors of cholesterol biosynthesis. J Biol Chem 253: 5270–5273

    PubMed  CAS  Google Scholar 

  • Mizuno M, Shimojima Y, Sugawara T, Takeda J (1971) On antibiotic 24010. J Antibiotics 24: 896–899

    CAS  Google Scholar 

  • Molner J, Chao H, Ikehara Y (1971) Phosphoryl-N-acetylglucosamine transfer to a lipid acceptor of liver microsomal fractions. Biochim Biophys Acta 239:401–411

    Google Scholar 

  • Nakamura S, Arai M, Karasawa K, Yonehara H (1957) On the antibiotic, mycospocidin. J Antibiotics Ser A 10: 248–253

    CAS  Google Scholar 

  • Oliver GJA, Hemming FW (1975) The transfer of mannose to dolichol diphosphate oligosaccharides in pig liver endoplasmic reticulum. Biochem J 152: 191–199

    PubMed  CAS  Google Scholar 

  • Osborn MJ (1969) Structure and biosynthesis of the bacterial cell wall. Annu Rev Biochem 38: 501–538

    Article  PubMed  CAS  Google Scholar 

  • Pan YT, Schmitt JW, Sanford BA, Elbein AD (1979) Adherence of bacteria to mammalian cells: inhibition by tunicamycin and streptovirudin. J Bacteriol 139: 507–514

    PubMed  CAS  Google Scholar 

  • Pless DD, Lennarz WJ (1977) Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci USA 74:134–138

    Article  PubMed  CAS  Google Scholar 

  • Pont-Lezica R, Romero PA, Dankert MA (1976) Membrane-bound UDP-glucose: lipid glucosyl transferases from peas. Plant Physiol 58: 675–680

    Article  CAS  Google Scholar 

  • Pont-Lezica R, Romero PA, Hopp HE (1978) Glucosylation of membrane-bound proteins by lipid-linked glucose. Planta 140: 177–183

    Article  CAS  Google Scholar 

  • Richards JB, Hemming FW (1972) The transfer of mannose from GDP-mannose to dolichyl-phosphate and protein by pig liver endoplasmic reticulum. Biochem J 130: 77–93

    PubMed  CAS  Google Scholar 

  • Robbins PW, Krag SS, Liu T (1977) Effect of UDP-glucose addition on the synthesis of mannosyl-lipid-linked oligosaccharides by cell-free fibroblast preparations. J Biol Chem 252: 1780–1785

    PubMed  CAS  Google Scholar 

  • Roberts RM (1975) The incorporation of glucosamine into glycolipids and glycoproteins of membrane preparations from Phaseolus aureus. Plant Physiol 55: 431–436

    Article  PubMed  CAS  Google Scholar 

  • Robinson GB (1969) The role of polyribosomes in the biosynthesis of glycoproteins. Biochem J 115: 1077–1078

    PubMed  CAS  Google Scholar 

  • Rothman JE, Fene RE (1980) Coated vesicles transport newly synthesized membrane glycoproteins from endoplasmic reticulum to plasma membranes in two successive stages. Proc Natl Acad Sci USA 77: 780–784

    Article  PubMed  CAS  Google Scholar 

  • Rothman JE, Lodish HF (1977) Synchronized transmembrane insertion and glycosylation of a nascent membrane protein. Nature 269: 775–780

    Article  PubMed  CAS  Google Scholar 

  • Schneider EG, Nguyen HT, Lennarz WJ (1978) The effect of tunicamycin, an inhibitor of protein glycosylation on embryonic development in the sea urchin. J Biol Chem 253: 2348–2355

    PubMed  CAS  Google Scholar 

  • Schwaiger H, Tanner W (1979) Effects of gibberellic acid and of tunicamycin on glycosyl transferase activities and on amylase secretion in barley. Eur J Biochem 102:375–381

    Article  PubMed  CAS  Google Scholar 

  • Schutzbach JS, Springfield JD, Jensen JW (1980) The biosynthesis of oligosaccharide-lipids. Formation of an α-l,2-mannosyl-mannose linkage. J Biol Chem 255:4170–4175

    PubMed  CAS  Google Scholar 

  • Schwarz RJ, Datema R (1980) Inhibitors of protein glycosylation. Trends Biochem Sci 5: 65–68

    Article  CAS  Google Scholar 

  • Schwarz RT, Rohrschneider JM, Schmidt MFG (1976) Suppression of glycoprotein formation of semiliki forest, influenza and avian sarcoma virus by tunicamycin. J Virol 19: 782–791

    PubMed  CAS  Google Scholar 

  • Schwarz RT, Schmidt MFG, Lehle L (1978) Glycosylation in vitro of Semliki forest virus and influenza virus glycoproteins and its suppression by nucleotide-2-deoxyhexose. Eur J Biochem 85: 163–172

    Article  PubMed  CAS  Google Scholar 

  • Sharon N, Lis H (1978) Comparative biochemistry of plant glycoproteins. Biochem Soc Trans 7: 783–805

    Google Scholar 

  • Spencer JP, Elbein AD (1980) Transfer of mannose from GDP-mannose to lipid-linked oligosaccharides by soluble mannosyl transferase. Proc Natl Acad Sci USA 77: 2524–2527

    Article  PubMed  CAS  Google Scholar 

  • Spencer JP, Kang MS, Elbein AD (1978) Inhibition of lipid-linked saccharide synthesis by bacitracin. Arch Biochem Biophys 190: 829–837

    Article  PubMed  CAS  Google Scholar 

  • Spiro MJ, Spiro RJ, Bhoyroo VD (1976) Lipid-saccharide intermediates in glycoprotein biosynthesis. J Biol Chem 251: 6420–6425

    PubMed  CAS  Google Scholar 

  • Spiro MJ, Spiro RJ, Bhoyroo VD (1978) Utilization of oligosaccharide-lipids in glycoprotein biosynthesis by thyroid enzyme. Fed Proc Fed Am Soc Exp Biol 37: 2285

    Google Scholar 

  • Spiro MJ, Spiro RJ, Bhoyroo VD (1979) Glycosylation of proteins by oligosaccharide-lipids. J Biol Chem 254: 7668–7674

    PubMed  CAS  Google Scholar 

  • Stone KJ, Strominger JL (1971) Mechanism of action of bacitracin complexation with metal ions and C55-isoprenyl pyrophosphate. Proc Natl Acad Sci USA 68: 3223–3227

    Article  PubMed  CAS  Google Scholar 

  • Struck DK, Lennarz WJ (1976) Utilization of exogenous GDP-mannose for the synthesis of mannose-containing lipids and glycoproteins by oviduct cells. J Biol Chem 251: 2511–2519

    PubMed  CAS  Google Scholar 

  • Struck DK, Lennarz WJ (1977) Evidence for the participation of saccharide-lipids in the synthesis of the oligosaccharide chain of ovalbumin. J Biol Chem 252: 1007–1013

    PubMed  CAS  Google Scholar 

  • Struck DK, Suita PB, Lane MD, Lennarz WJ (1979) Effect of tunicamycin on the secretion of serum proteins by primary cultures of rat and chick hepatocytes. J Biol Chem 254: 5334–5337

    Google Scholar 

  • Sun SM, Ma Y, Buchbinder BO, Hall TC (1979) Comparison of Gl polypeptide synthesized in vitro and in vivo in the presence and absence of glycosylation inhibitors. Plant Physiol 63: 529A

    Google Scholar 

  • Tabas I, Kornfeld S (1978) The synthesis of complex type oligosaccharides. J Biol Chem 253: 7779–7786

    PubMed  CAS  Google Scholar 

  • Takatsuki A, Arima K, Tamura G (1971) Tunicamycin, a new antibiotic. J Antiobiotics 24: 215–223

    CAS  Google Scholar 

  • Takatsuki A, Kohno K, Tamura G (1975) Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin. Agric Biol Chem 39: 2089–2091

    Article  CAS  Google Scholar 

  • Takatsuki A, Kawamura K, Okina M, Kodama Y, Ito T, Tamura G (1977) The structure of tunicamycin. Agric Biol Chem 41(11): 2307–2309

    Article  CAS  Google Scholar 

  • Tanner W (1969) A lipid intermediate in mannan biosynthesis in yeast. Biochem Biophys Res Commun 35: 144–150

    Article  PubMed  CAS  Google Scholar 

  • Tkacz JS, Lampen JO (1975) Tunicamycin inhibition of polyisoprenyl-N-acetylglucosamine-pyrophosphate formation in calf liver microsomes. Biochem Biophys Res Commun 65: 248–257

    Article  PubMed  CAS  Google Scholar 

  • Toneguzzo F, Ghosh HP (1977) Synthesis and glycosylation in vitro of glycoprotein of vesicular stomatitis virus. Proc Natl Acad Sci USA 75: 1516–1520

    Article  Google Scholar 

  • Tucker P, Peska S (1977) De novo synthesis and glycosylation of MOPC-46B mouse immunoglobulin light chains in cell free extracts. J Biol Chem 252: 4474–4486

    PubMed  CAS  Google Scholar 

  • Turco SJ, Heath EC (1977) Glucuronosyl-N-acetylglucosaminyl-pyrophosphoryl-dolichol. J Biol Chem 252: 2918–2928

    PubMed  CAS  Google Scholar 

  • Turco SJ, Robbins PW (1979) The initial stages of processing of protein bound oligosaccharide in vitro J. Biol Chem 254: 4560–4567

    CAS  Google Scholar 

  • Turco SJ, Stetson B, Robbins PW (1977) Comparative rates of transfer of lipid-linked oligosaccharides to endogenous glycoprotein acceptors in vitro. Proc Natl Acad Sci USA 74: 4411–4414

    Article  PubMed  CAS  Google Scholar 

  • Villamez CL, Clark CF (1969) A particle bound intermediate in the biosynthesis of plant cell wall polysaccharides. Biochem Biophys Res Commun 36: 57–63

    Article  Google Scholar 

  • Waechter CJ, Lennarz WJ (1976) The role of polyprenol-linked sugars in glycoprotein biosynthesis. Annu Rev Biochem 45: 95–112

    Article  PubMed  CAS  Google Scholar 

  • Waechter CJ, Lucas JJ, Lennarz WJ (1974) Evidence for xylosyl-lipids as intermediates in xylosyl transfer in hen oviduct membranes. Biochem Biophys Res Commun 56: 343–350

    Article  PubMed  CAS  Google Scholar 

  • Warren CD, Jeanloz RW (1973) Chemical synthesis of P1-dolichyl-P2-α-mannopyranosyl-pyrophosphate. Biochemistry 14: 412–419

    Article  Google Scholar 

  • Wedgewood JF, Strominger JL (1980) Enzymatic activities in cultured human lymphocytes that dephosphorylate dolichyl-pyrophosphate and dolichyl-phosphate. J Biol Chem 255: 1120–1123

    Google Scholar 

  • Zatz M, Barondes SH (1969) Incorporation of mannose into mouse brain lipid. Biochem Biophys Res Commun 36: 511–517

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Elbein, A.D. (1981). The Role of Lipid-Linked Saccharides in the Biosynthesis of Complex Carbohydrates. In: Tanner, W., Loewus, F.A. (eds) Plant Carbohydrates II. Encyclopedia of Plant Physiology, vol 13 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68234-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68234-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68236-0

  • Online ISBN: 978-3-642-68234-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics