Skip to main content

The Role of Lectins in Symbiotic Plant-Microbe Interactions

  • Chapter
Plant Carbohydrates II

Part of the book series: Encyclopedia of Plant Physiology ((921,volume 13 / B))

Abstract

Symbiosis is usually understood to be a constant and intimate association between two organisms which results in mutual benefit to both. Inherent to the concept of symbiosis is the view that the association is a specific one, involving only certain partners matched by evolution. Symbiosis between higher plants and microorganisms occurs in a wide range of expressions, reflecting both the diversity of plants and protists, and the opportunity for partner selection provided by continuous and close contact between plants and the multitude of microorganisms sharing their niche. Those interactions that have achieved symbiosis include mycorrhizae, lichens, various eukaryotes in association with blue- green bacteria (blue-green algae), and the legume and nonlegume nitrogen-fixing associations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldwin IB, Fred EB, Hastings EG (1927) Grouping of legumes according to biological reactions of their seed proteins. Possible explanation of the phenomenon of cross inoculation. Bot Gaz 83:217–243

    Article  CAS  Google Scholar 

  • Barkai-Golan R, Mirelamn D, Sharon N (1978) Studies on growth inhibition by lectins of Penicillia and Aspergilli. Arch Microbiol 116: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Barondes SH (1978) Developmentally regulated slime mold lectins and specific cell cohesion. In: Lerner RA, Bergsma D (eds) Molecular basis of cell-cell interaction. Alan R Liss Inc, New York, pp 491–496

    Google Scholar 

  • Bhuvaneswari TV, Bauer WD (1978) Role of lectins in plant-microorganism interactions. III. Influence of rhizosphere/rhizoplane culture conditions on the soybean lectin-binding properties of rhizobia. Plant Physiol 62: 71–74

    Article  PubMed  CAS  Google Scholar 

  • Bhuvaneswari TV, Pueppke SG, Bauer WD (1977) Role of lectins in plant-microorganism interactions. I. Binding of soybean lectin to rhizobia. Plant Physiol 60: 486–491

    Article  PubMed  CAS  Google Scholar 

  • Bohlool BB, Schmidt EL (1970) Immunofluorescent detection of Rhizobium japonicum in soils. Soil Sci 110: 229–236

    Article  Google Scholar 

  • Bohlool BB, Schmidt EL (1974) Lectins: a possible basis for specificity in the Rhizobium-legume root nodule symbiosis. Science 185: 269–271

    Article  PubMed  CAS  Google Scholar 

  • Bohlool BB, Schmidt EL (1976) Immunofluorescent polar tips of Rhizobium japonicum: possible site of attachment or lectin binding. J Bacteriol 125: 1188–1194

    PubMed  CAS  Google Scholar 

  • Bowles DJ, Kauss H (1975) Carbohydrate-binding proteins from cellular membranes of plant tissue. Plant Sci Lett 4: 411–418

    Article  CAS  Google Scholar 

  • Bowles DJ, Lis H, Sharon N (1979) Distribution of lectins in membranes of soybean and peanut plants. I. General distribution in root, shoot and leaf tissue at different stages of growth. Planta 145: 193–198

    Article  CAS  Google Scholar 

  • Braun V, Hantke K (1977) Bacterial receptors for phages and colicins as constituents of specific transport systems. In: Reissig JL (ed) Microbial interactions: receptors and recognition. Ser B, Vol 3. Chapman and Hall, London, pp 101–137

    Google Scholar 

  • Broughton WJ (1978) Control of specificity in legume-Rhizobium associations. J Appl Bacteriol 45: 165–194

    Article  Google Scholar 

  • Calvert HE, Lalonde M, Bhuvaneswari TV, Bauer WD (1978) Role of lectins in plant-microorganism interactions. IV. Ultrastructural localization of soybean lectin binding sites on Rhizobium japonicum. Can J Microbiol 24: 785–793

    Article  PubMed  CAS  Google Scholar 

  • Cass-Smith WP, Holland AA (1958) The effect soil fungicides and fumigants on the growth of subterranean clover on new light land. J Dep Agric West Aust 7: 225–231

    Google Scholar 

  • Chen APT, Phillips DA (1976) Attachment of Rhizobium to legume roots as the basis for specific interactions. Physiol Plant 38: 83–88

    Article  Google Scholar 

  • Chet I, Mitchell R (1976) Ecological aspects of microbial chemotactic behaviour. Ann Rev Microbiol 30: 221–239

    Article  CAS  Google Scholar 

  • Cumsky M, Zusman DR (1979) Myxobacterial hemagglutinin: a development-specific lectin of Myxococcus xanthus. Proc Natl Acad Sci USA 76: 5505–5509

    Article  PubMed  CAS  Google Scholar 

  • Currier WW, Strobel GA (1976) Chemotaxis of Rhizobium spp. to plant root exudates. Plant Physiol 57: 820–823

    Article  PubMed  CAS  Google Scholar 

  • Currier WW, Strobel GA (1977) The chemotactic behaviour of trefoil Rhizobium. FEMS Microbiol Lett 1: 243–246

    Article  CAS  Google Scholar 

  • Dart PJ (1974) Development of root-nodule symbioses. I. The infection process. In : Quispel A (ed) The biology of nitrogen fixation. North Holland Publishing, Amsterdam, pp 381–429

    Google Scholar 

  • Davey MR, Cocking EC (1972) Uptake of bacteria by isolated higher plant protoplasts. Nature 239: 455–456

    Article  Google Scholar 

  • Dazzo FB, Brill WJ (1977) Receptor site on clover and alfalfa roots for Rhizobium. Appl Environ Microbiol 33: 132–136

    PubMed  CAS  Google Scholar 

  • Dazzo FB, Brill WJ (1978) Regulation by fixed nitrogen of host-symbiont recognition in the Rhizobium-clover symbiosis. Plant Physiol 62: 18–21

    Article  PubMed  CAS  Google Scholar 

  • Dazzo FB, Brill WJ (1979) Bacteroid polysaccharide which binds Rhizobium trifolii to clover root hairs. J Bacteriol 137: 1362–1373

    PubMed  CAS  Google Scholar 

  • Dazzo FB, Hubbell DH (1975) Cross-reactive antigens and lectins as determinants of symbiotic specificity in the Rhizobium-clover association. Appl Microbiol 30: 1017–1033

    PubMed  CAS  Google Scholar 

  • Dazzo FB, Napoli CA, Hubbell DH (1976) Adsorption of bacteria to roots as related to host specificity in the Rhizobium-clover symbiosis. Appl Environ Microbiol 32: 166–171

    PubMed  CAS  Google Scholar 

  • Dazzo FB, Yanke WE, Brill WJ (1978) Trifoliin: a Rhizobium recognition protein from white clover. Biochim Biophy Acta 539: 276–286

    Article  CAS  Google Scholar 

  • Dazzo FB, Urbano MR, Brill WJ (1979) Transient appearance of lectin receptors on Rhizobium trifolii. Current Microbiol 2: 15–20

    Article  CAS  Google Scholar 

  • DeVay JE, Adler HE (1976) Antigens common to hosts and parasites. Annu Rev Microbiol 30: 147–168

    Article  PubMed  CAS  Google Scholar 

  • Diatloff A (1969) The introduction of Rhizobium japonicum to soil by seed inoculation of non-host legumes and cereals. Aust J Exp Agric Anim Husb 9: 357–360

    Article  Google Scholar 

  • Dixon ROD (1969) Rhizobia (with particular reference to host plants). Annu Rev Microbiol 23: 137–158

    Article  PubMed  CAS  Google Scholar 

  • Dommergues YD (1978) The plant-microorganism system. In: Dommergues YR, Krupa SV (eds) Interactions between non-pathogenic soil microorganisms and plants. Elsevier, Amsterdam, pp 1–37

    Google Scholar 

  • Dudman WF (1977) Serological methods and their application to dinitrogen-fixing organisms. In: Hardy RWF, Gibson AH (eds). A treatise on dinitrogen fixation, Vol 4. Wiley, New York, pp 487–508

    Google Scholar 

  • Dudman WF, Brockwell J (1968) Ecological studies of root nodule bacteria introduced into field environments. I. A survey of field performance of clover inoculants by gel immune diffusion serology. Aust J Agric Res 19: 739–747

    Article  Google Scholar 

  • Edelson P, Cohn Z (1974) Effects of concavalin A on mouse peritoneal macrophages. I. Stimulation of endocytic activity and inhibition of phago-lysosome formation. J Exp Med 140: 1364–1386

    Article  PubMed  CAS  Google Scholar 

  • Egerraat AWSM van (1972) Pea root exudates and their effect upon root nodule bacteria. Meded. Landbouwhogesch. Wageningen 72–27, H Veenman en Zonen N.V., Wageningen, 90 pp

    Google Scholar 

  • Fred EB, Stevens JW (1923) Grouping legume nodule bacteria. Wis Agric Exp Stn Spec Bull 352: 76–77

    Google Scholar 

  • Gietl C, Ziegler H (1979) Lectins in the excretion of intact roots. Naturwissenschaften 66: 161–162

    Article  CAS  Google Scholar 

  • Graham PH (1963) Antigenic affinities of the root nodule bacteria of legumes. Antonie van Leeuwenhoek; J Microbiol Serol 30: 68–72

    Article  Google Scholar 

  • Hala CN, Mathers DG (1977) Toxicity of white clover seed diffusate and its effect on survival of Rhizobium trifolii. N Z J Agric Res 20: 69–73

    Google Scholar 

  • Ham GE, Frederick LR, Anderson LC (1971) Serogroups of Rhizobium japonicum in soybean nodules samples in Iowa. Agron J 63: 69–72

    Article  Google Scholar 

  • Hamblin J, Kent SP (1973) Possible role of phytohaemagglutinin in Phaseolus vulgaris L. Nature (London) New Biol 245: 28–30

    Article  CAS  Google Scholar 

  • Holland AA (1970) Competition between soil- and seed-borne Rhizobium trifolii in nodulation of introduced Trifolium subterraneum. Plant Soil 32: 293–302

    Article  Google Scholar 

  • Howard J, Shannon L, Oki L, Murashige T (1977) Soybean agglutinin. A mitogen for soybean callus cells. Exp Cell Res 107: 448–450

    Article  PubMed  CAS  Google Scholar 

  • Jack MA, Schmidt EL, Wold F (1979) Studies of the in vivo function of soybean lectin (Abstract) Fed Proc 38: 411

    Google Scholar 

  • Kamberger W (1979) An Ouchterlony double diffusion study on the interaction between legume lectins and rhizobial cell surface antigens. Arch Microbiol 121: 83–90

    Article  CAS  Google Scholar 

  • Kapusta G, Rouwenhorst DL (1973) Interaction of selected pesticides on Rhizobium japonicum in pure culture and under field conditions. Agron J 65: 112–115

    Article  CAS  Google Scholar 

  • Kato G, Maruyama Y, Nakumara M (1979) Role of lectins and lipopolysaccharides in the recognition process of specific legume-Rhizobium symbiosis. Agric Biol Chem 43: 1085–1092

    Article  CAS  Google Scholar 

  • Kauss H, Bowles DJ (1976) Some properties of carbohydrate-binding proteins (lectins) solubilized from cell walls of Phaseolus aureus. Planta 130: 169–174

    Article  CAS  Google Scholar 

  • Kawasaki T, Ashwell G (1976) Chemical and physical properties of an hepatic membrane protein that specifically binds asialoglycoproteins. J Biol Chem 251: 296–1302

    Google Scholar 

  • Krupe M, Ensgraber A (1958) Untersuchungen über die Natur des “Phytagglutinins” in chemischer, immunochemischer und pflanzenphysiologischer Sicht. I. Anatomische Studien über den Ort ihres Vorkommens in höheren Samenpflanzen. Planta 50: 371–378

    Article  CAS  Google Scholar 

  • Kumarasinghe RMK, Nutman PS (1977) Rhizobium stimulated callose formation in clover root hairs and its relation to infection. J Exp Bot 28: 961–976

    Article  Google Scholar 

  • Law IJ, Strijdom BW (1977) Some observations on plant lectins and Rhizobium specificity. Soil Biol Biochem 9: 79–84

    Article  Google Scholar 

  • Leonard LT (1923) Nodule-production kinship between the soy bean and the cowpea. Soil Sci 5: 277–283

    Article  Google Scholar 

  • Liener IE (1976) Phytohemagglutinins (phytolectins) Annu Rev Plant Physiol 27: 291–319

    Article  CAS  Google Scholar 

  • Lis H, Sharon N (1973) The biochemistry of plant lectins (phytohemagglutinins). Annu Rev Biochem 42: 541–574

    Article  PubMed  CAS  Google Scholar 

  • Lockhart CM, Rowell P, Stewart WDP (1978) Phytohaemagglutinins from the nitrogen-fixing lichens Peltigera canina and P. polydactyla. FEMS Microbiol Lett 3: 127–130

    Article  CAS  Google Scholar 

  • Marshall KC (1964) Survival of root nodule bacteria in dry soils exposed to high temperatures. Aust J Agric Res 15: 273–281

    Article  CAS  Google Scholar 

  • Marshall KC, Cruickshank RH, Bushby HVA (197) The orientation of certain root-nodule bacteria at interfaces, including legume root-hair surface. J Gen Microbiol 91: 198–200

    Google Scholar 

  • Nutman PS (1965) The relation between nodule bacterial and the legume host in the rhizosphere and the process of infection. In: Baker KF, Snyder WC (eds) Ecology of soil-borne plant pathogens. Univ California Press, Berkeley, pp 231–247

    Google Scholar 

  • Planqué K, Kijne JW (1977) Binding of pea lectins to a glycan type polysaccharide in the cell walls of Rhizobium leguminosarum. FEBS Lett 73: 64–66

    Article  PubMed  Google Scholar 

  • Pueppke SG, Bauer WD, Keegstra K, Ferguson AL (1978) The role of lectins in plant-microorganism interactions. II. Distribution of soybean lectin in tissues of Glycine max (L) Merr. Plant Physiol 61: 779–784

    Article  PubMed  CAS  Google Scholar 

  • Reyes VG, Schmidt EL (1979) Population densities of Rhizobium japonicum strain 123 estimated directly in soil and rhizospheres. Appl Environ Microbiol 37: 854–858

    PubMed  CAS  Google Scholar 

  • Robinson AC (1967) The influence of host on soil and rhizosphere populations of clover and lucerne nodule bacteria in the field. J Aust Inst Agric Sci 33: 207–209

    Google Scholar 

  • Rouge MP (1974) Étude de la phytohemagglutine de Lentille au cours de la germination et des premiers stades du developpement de la plante. Évolution dans les racines, les tiges, et les feuilles. CR Acad Sci 278: 3083–3086

    CAS  Google Scholar 

  • Rovira AD (1961) Rhizobium numbers in the rhizosphere of red clover and paspalum in relation to soil treatment and the numbers of bacteria and fungi. Aust J Agric Res 12: 77–83

    Article  Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35: 35–57

    Article  CAS  Google Scholar 

  • Sahlman K, Fahraeus G (1963) An electron microscope study of root hair infection by Rhizobium. J Gen Microbiol 33: 425–427

    PubMed  CAS  Google Scholar 

  • Sanders RE, Carlson RW, Albersheim P (1978) A Rhizobium mutant incapable of nodulation and normal polysaccharide secretion. Nature 271: 240–242

    Article  CAS  Google Scholar 

  • Schmidt EL (1973) Fluorescent antibody techniques for the study of microbial ecology. Bull Ecol Res Comm (Stockholm) 17: 67–76

    Google Scholar 

  • Schmidt EL (1974) Quantitative autecological study of microorganisms in soil by immunofluorescence. Soil Sci 118: 141–149

    Article  Google Scholar 

  • Schmidt EL (1979) Initiation of plant root-microbe interactions. Annu Rev Microbiol 33: 355–376

    Article  PubMed  CAS  Google Scholar 

  • Sequeira L (1978) Lectins and their role in host-pathogen specificity. Annu Rev Phytopathol 16: 453–481

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1977) Microbial surface in relation to pathogenicity. Bact Rev 41: 475–500

    PubMed  CAS  Google Scholar 

  • Talbot CF, Etzler ME (1978) Development and distribution of Dolichos biflorus lectin as measured by radioimmunoassay. Plant Physiol 61: 847–859

    Article  PubMed  CAS  Google Scholar 

  • Trinick MJ (1973) Symbiosis between Rhizobium and the non-legume Trema aspera. Nature 244: 459–460

    Article  Google Scholar 

  • Tsien HC, Schmidt EL (1977) Polarity in the exponential-phase Rhizobium japonicum cell. Can J Microbiol 123: 1274–2384

    Article  Google Scholar 

  • Tsien HC, Schmidt EL (1980) Accumulation of soybean lectin binding polysaccharide during the growth of Rhizobium japonicum as determined by hemagglutionation inhibition assay. Appl Environ Microbiol 39: 1100–1104

    PubMed  CAS  Google Scholar 

  • Tuzimura K, Watanabe I (1962 a) The growth of Rhizobium in the rhizosphere of the host plant. Ecological studies of root nodule bacteria. Soil Sci Plant Nutr 8: 19–24

    Google Scholar 

  • Tuzimura K, Watanabe I (1926 b) The effect of rhizosphere of various plants on the growth of Rhizobium. Ecological studies of root nodule bacteria (Part III) Soil Sci Plant Nutr 8: 13–17

    Google Scholar 

  • Vest G, Weber DF, Sloger C (1973) Nodulation and nitrogen fixation. In: Caldwell BE (ed) Soybeans: improvement, production and uses. Am Soc Agron Madison, Wisconsin, pp 353–390

    Google Scholar 

  • Vincent JM (1965) Environmental factors in the fixation of nitrogen by the legume. In: Bartholomew WV, Clark FE (eds) Soil nitrogen. Am Soc Agron Madison, Wisconsin, pp 384–435

    Google Scholar 

  • Weaver RW, Frederick LR (1974) Effect inoculation rate on competitive nodulation of Glycin max L. Merrill. II. Field studies. Agron J 66: 233–236

    Article  Google Scholar 

  • Wheeler H (1976) Role of phytotoxin in specificity, In: Wood RKS, Graniti A (eds) Specificity in plant diseases. Plenum Press, New York, pp 217–236

    Google Scholar 

  • Wolpert JS, Albersheim (1976) Host-symbiont interactions. I. The lectins of legumes interact with the O-antigen-containing lipopolysaccharides of their symbiont Rhizobia. Biochem Biophys Res Commun 70: 729–737

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Schmidt, E.L., Bohlool, B.B. (1981). The Role of Lectins in Symbiotic Plant-Microbe Interactions. In: Tanner, W., Loewus, F.A. (eds) Plant Carbohydrates II. Encyclopedia of Plant Physiology, vol 13 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68234-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68234-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68236-0

  • Online ISBN: 978-3-642-68234-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics