Secretory Activity of the Root Cap

  • M. Rougier
Part of the Encyclopedia of Plant Physiology book series (PLANT, volume 13 / B)

Abstract

The root tips of all plants are covered by a specialized group of cells termed the root cap. During the last two decades, numerous studies attempted to elucidate the development, structure, and functioning of the root cap cells (see reviews of Juniper 1972, Barlow 1975). According to Haberlandt (1914), this tissue performs three functions: protection of the root meristem, facilitation of root penetration through the soil by secretion of a lubricating slime or “mucigel”, and perception of gravitational stimuli. This chapter is concerned with the second function. In particular, the function of the root cap in slime production will be discussed in relation to available evidence from morphological, physiological, and biochemical studies.

Keywords

Sugar Clay Carbohydrate Lipase Fractionation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balandreau J (1975) Activité nitrogénasique dans la rhizosphère de quelques graminées. Thèse Doct Etat, Univ Nancy IGoogle Scholar
  2. Balandreau J, Knowles R (1978) The rhizosphere. In: Dommergues YR, Krupa SV (eds) Interactions between non-pathogenic soil microorganisms and plants. Elsevier Scientific Publishing Company, Amsterdam Oxford New York, pp 243–268Google Scholar
  3. Barlow PW (1974) Regeneration of the cap of primary roots of Zea mays. New Phytol 73: 937–954CrossRefGoogle Scholar
  4. Barlow PW (1975) The root cap. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, London New York, pp 21–54Google Scholar
  5. Barlow PW (1976) The integrity and organization of nuclear DNA in cells of the root cap of Zea mays probed by terminal deoxynucleotidyl transferase and microdensitometry. Z Pflanzenphysiol 80: 271–278Google Scholar
  6. Barlow PW (1978) Cell displacement through the columella of the root cap of Zea mays L. Ann Bot 42: 783–790Google Scholar
  7. Bell JK, MacCully ME (1970) A histological study of lateral root initiation and development in Zea mays. Protoplasma 70: 179–205CrossRefGoogle Scholar
  8. Berjak P (1968) A lysosome-like organelle in the root cap of Zea mays. J Ultrastruct Res 23: 233–242CrossRefGoogle Scholar
  9. Bowen GD, Rovira AD (1976) Microbial colonization of plant roots. Annu Rev Plant Pathol 14: 121–144Google Scholar
  10. Bowles DJ, Northcote DH (1972) The sites of synthesis and transport of extracellular polysaccharides in the root tissues of maize. Biochem J 130: 1133–1145PubMedGoogle Scholar
  11. Bowles DJ, Northcote DH (1974) The amounts and rates of export of polysaccharides found within the membrane system of maize root cells. Biochem J 142: 139–144PubMedGoogle Scholar
  12. Bowles DJ, Northcote DH (1976) The size and distribution of polysaccharides during their synthesis within the membrane system of maize root cells. Planta 128: 101–106CrossRefGoogle Scholar
  13. Brams E (1969) The mucilaginous layer of Citrus roots. Its delineation in the rhizosphere and removal from roots. Plant Soil 30: 105–108CrossRefGoogle Scholar
  14. Branton D, Moor H (1964) Fine structure in freeze-etched Allium cepa L. root tips. J Ultrastruct Res 11: 401–411CrossRefGoogle Scholar
  15. Breisch H (1974) Contribution à l’étude du rôle des exsudats racinaires dans les processus d’agrégation des sols. Doct Spécialité Agronomie, Univ Nancy I, pp 1–74Google Scholar
  16. Breisch H, Guckert A, Reisinger O (1975) Etude au microscope électronique de la zone apicale des racines de maïs. Soc Bot Coll Rhizosphere 122: 55–60Google Scholar
  17. Brisson JD, Peterson RL, Robb J, Rauser WE, Ellis BE (1977) Correlated phenolic histochemistry using light, transmission, and scanning electron microscopy, with examples taken from phytopathological problems. Scanning Electron Microsc 2: 667–676Google Scholar
  18. Campbell R, Rovira AD (1973) The study of the rhizosphere by scanning electron microscopy. Soil Biol Biochem 5: 747–752CrossRefGoogle Scholar
  19. Clarkson DT, Sanderson J (1969) The uptake of a polyvalent cation and its distribution in the root apices of Allium cepa: Tracer and autoradiographic studies. Planta 89: 136–154CrossRefGoogle Scholar
  20. Clowes FAL (1971) The proportion of cells that divide in root meristem of Zea mays. Ann Bot 35: 249–251Google Scholar
  21. Clowes FAL (1976) Cell production by root caps. New Phythol 77: 399–107CrossRefGoogle Scholar
  22. Clowes FAL, Juniper BE (1964) The fine structure of the quiescent centre and neighbouring tissues in root meristems. J Exp Bot 15: 622–630CrossRefGoogle Scholar
  23. Clowes FAL, Woolston RE (1978) Sloughing of root cap cells. Ann Bot 42: 83–89Google Scholar
  24. Coulomb P, Coulon J (1971) Fonctions de l’appareil de Golgi dans les méristèmes radiculaires de la courge (Cucurbita pepo L. Cucurbitacée). J Microsc 10: 203–214Google Scholar
  25. Dart PJ (1971) Scanning electron microscopy of plant roots. J Exp Bot 22: 163–168CrossRefGoogle Scholar
  26. Dart PJ, Mercer FV (1964) The legume rhizosphere. Arch Mikrobiol 47: 344–378CrossRefGoogle Scholar
  27. Dauwalder M, Whaley WG (1973) Staining of cells of Zea mays root apices with the osmium-zinc iodide and osmium impregnation techniques. J Ultrastruct Res 45: 279–296PubMedCrossRefGoogle Scholar
  28. Dauwalder M, Whaley WG (1974) Patterns of incorporation of (3H) galactose by cells of Zea mays root tips. J Cell Sci 14: 11–27PubMedGoogle Scholar
  29. Dauwalder M, Whaley WG, Kephart JE (1969) Phosphatases and differentiation of the Golgi apparatus. J Cell Sci 4: 455–497PubMedGoogle Scholar
  30. Dumas C, Perrin A, Rougier M, Zandonella P (1974) Some ultrastructural aspects of different vegetal glandular tissues. Port Acta Biol 14: 501–520Google Scholar
  31. Felipe Anton MR, Lopez-Fando C (1977) Gel formation on seminal root surface as seen at electron microscope. Agrochimica 21: 305–310Google Scholar
  32. Floyd RA, Ohlrogge AJ (1970) Gel formation on nodal root surfaces of Zea mays. I. Investigation of the gel’s composition. Plant Soil 33: 331–343CrossRefGoogle Scholar
  33. Floyd RA, Ohlrogge AJ (1971) Gel formation on nodal root surface of Zea mays. Some observations relevant to understanding its action at the root-soil interface. Plant Soil 34: 595–606CrossRefGoogle Scholar
  34. Foster RC, Rovira AD (1976) Ultrastructure of wheat rhizosphere. New Phytol 76: 343–352CrossRefGoogle Scholar
  35. Gill AM, Tomlinson PB (1975) Aerial roots: an array of forms and functions. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, London New York, pp 238–260Google Scholar
  36. Goff CW (1973) Localization of nucleoside diphosphatase in the onion root tip. Protoplasma 78: 397–416PubMedCrossRefGoogle Scholar
  37. Grant GT, McNab C, Rees DA, Skerrett RJ (1969) Seed mucilages as examples of polysaccharide denaturation. Chem Commun 805–806Google Scholar
  38. Greaves MP, Darbyshire JF (1972) The ultrastructure of the mucilaginous layer on plant roots. Soil Biol Biochem 4: 443–449CrossRefGoogle Scholar
  39. Green JR, Northcote DH (1978) The structure and function of glycoproteins synthesized during slime-polysaccharide production by membranes of the root-cap cells of maize (Zea mays). Biochem J 170: 599–608PubMedGoogle Scholar
  40. Green JR, Northcote DH (1979 a) Polyprenyl phosphate sugars synthesized during slime-polysaccharide production by membranes of the root-cap cells of maize (Zea mays). Biochem J 178: 661–671PubMedGoogle Scholar
  41. Green JR, Northcote DH (1979b) Location of fucosyl transferases in the membrane system of maize root cells. J Cell Sci 40: 235–244PubMedGoogle Scholar
  42. Greenland DJ (1979) The physics and chemistry of the soil-root interface: some comments. In : Harley JL, Russell RS (eds) The soil-root interface. Academic Press, London New York, pp 83–98Google Scholar
  43. Griffin GJ, Hale MG, Shay FJ (1976) Nature and quantity of sloughed organic matter produced by roots of axenic peanut plants. Soil Biol Biochem 8: 29–32CrossRefGoogle Scholar
  44. Guckert A, Breisch H, Reisinger O (1975) Interface sol-racine-I. Etude au microscope électronique des relations mucigel-argile-microorganismes. Soil Biol Biochem 7: 241–250CrossRefGoogle Scholar
  45. Haberlandt G (1974) Physiological plant anatomy, 4th German edn (translation by M Dummond), Mac Millan, LondonGoogle Scholar
  46. Hall D, Mollenhauer HH, Morre DJ (1966) Evidence for secretion of cell dispersing enzymes from maize root cap and epidermis. Am J Bot 75: p65Google Scholar
  47. Hamad-Fares I (1976) La fixation de l’azote dans la rhizosphère du riz. Réalisation d’un modèle gnotobiotique. Thèse Doct Etat, Univ Nancy IGoogle Scholar
  48. Harkes PAA (1973) Structure and dynamics of the root cap of Avena sativa L. Acta Bot Neerl 22: 321–328Google Scholar
  49. Harkes PAA (1976) Organization and activity of the root cap meristem of Avena sativa L. New Phytol 76: 367–375CrossRefGoogle Scholar
  50. Harris PJ, Hartley RD (1976) Detection of bound ferulic acid in cell walls of the gramineae by ultraviolet fluorescence microscopy. Nature (London) 259: 508–510CrossRefGoogle Scholar
  51. Harris PJ, Northcote DH (1970) Patterns of polysaccharide biosynthesis in differentiating cells of maize root-tips. Biochem J 120: 479–491PubMedGoogle Scholar
  52. Hemming FW (1974) Lipids in glycan biosynthesis. In: Goodwin TW (ed) Biochemistry of lipids, 4 series one: Univ Park Press Baltimore, pp 39–97Google Scholar
  53. James DW Jr, Jones RL (1979 a) Characterization of GDP-fucose polysaccharide fucosyl transferase in corn roots (Zea mays L.). Plant Physiol 64: 909–913PubMedCrossRefGoogle Scholar
  54. James DW Jr, Jones RL (1979b) Intracellular localization of GDP-fucose polysaccharide fucosyl transferase in corn roots (Zea mays L.). Plant Physiol 64: 914–918PubMedCrossRefGoogle Scholar
  55. Jenny H, Grossenbacher K (1963) Root-soil boundary zones as seen in the electron microscope. Proc Soil Sci Soc Am 27: 273–277CrossRefGoogle Scholar
  56. Jones DD, Morré DJ (1967) Golgi apparatus mediated polysaccharide secretion by outer root cap cells of Zea mays. II. Isolation and characterization of the secretory product. Z Pflanzenphysiol 56: 166–169Google Scholar
  57. Jones DD, Morré DJ (1973) Golgi apparatus mediated polysaccharide secretion by outer root cap cells of Zea mays. III. Control by exogenous sugars. Physiol Plant 29: 68–75CrossRefGoogle Scholar
  58. Juniper BE (1972) Mechanisms of perception and pattern of organisation in root caps. In: Miller MW, Kuehnert CC (eds) The dynamics of meristem cell populations. Plenum Publishing Corporation, New York London, pp 119–131Google Scholar
  59. Juniper BE, Barlow PW (1969) The distribution of plasmodesmata in the root tip of maize. Planta 89: 352–360CrossRefGoogle Scholar
  60. Juniper BE, Clowes FAL (1965) Cytoplasmic organelles and cell growth in root caps. Nature (London) 208: 864–865CrossRefGoogle Scholar
  61. Juniper BE, French A (1970) The fine structure of the cells that perceive gravity in the root tip of maize. Planta 95: 314–329CrossRefGoogle Scholar
  62. Juniper BE, French A (1973) The distribution and redistribution of endoplasmic reticulum (ER) in geoperceptive cells. Planta 109: 211–224CrossRefGoogle Scholar
  63. Juniper BE, Pask G (1973) Directional secretion by the Golgi bodies in maize root cells. Planta 109: 225–231CrossRefGoogle Scholar
  64. Juniper BE, Roberts RM (1966) Polysaccharide synthesis and the fine structure of root cells. JR Microsc Soc 85: 63–72Google Scholar
  65. Juniper BE, Gilchrist AJ, Robins RJ (1977) Some features of secretory systems in plants. Histochem J 9: 659–680PubMedCrossRefGoogle Scholar
  66. Kirby EG, Roberts RM (1971) The localized incorporation of 3H-L-fucose into cell wall polysaccharides of the cap and epidermis of corn roots. Autoradiographic and biosynthetic studies. Planta 99: 211–221CrossRefGoogle Scholar
  67. Kosuge T (1969) The role of phenolics in host response to infection. Annu Rev Phytopathol 7: 195–222CrossRefGoogle Scholar
  68. Lechene De La Porte P (1976) Différenciation des cellules de la coiffe de pois et d’orge. Etude morphologique et cytochimique des modifications des dictyosomes. Ann Sci Nat 12 Ser 17: 345–356Google Scholar
  69. Leiser AT (1968) A mucilaginous root shealth in Ericaceae. Am J Bot 55: 391–398CrossRefGoogle Scholar
  70. Leppard GG (1974) Rhizoplane fibrils in wheat: demonstration and derivation. Science 185: 1066–1067PubMedCrossRefGoogle Scholar
  71. Leppard GG, Ramamoorthy S (1975) The aggregation of wheat rhizoplane fibrils and the accumulation of soil-bound cations. Can J Bot 53: 1729–1735CrossRefGoogle Scholar
  72. MacLeod RD (1976) Cap formation during the elongation of lateral roots of Vicia faba L. Ann Bot 40: 877–885Google Scholar
  73. Maitra SC, De DN (1972) Ultrastructure of root cap cells: formation and utilization of lipid. Cytobios 5: 111–118Google Scholar
  74. Martin EM, Harris WM (1976) Adventitious root development from the coleoptilar zone in Zea mays L. Am J Bot 63: 890–897CrossRefGoogle Scholar
  75. Mollenhauer HH (1965a) Transition forms of Golgi apparatus secretion vesicles. J Ultrastruct Res 12: 439–446PubMedCrossRefGoogle Scholar
  76. Mollenhauer HH (1965b) An intercisternal structure in the Golgi apparatus. J Cell Biol 24: 504–511PubMedCrossRefGoogle Scholar
  77. Mollenhauer HH (1967) A comparison of root cap cells of epiphytic, terrestrial and aquatic plants. Am J Bot 54: 1249–1259CrossRefGoogle Scholar
  78. Mollenhauer HH, Morré DJ (1966) Tubular connections between dictyosomes and forming secretory vesicles in plant Golgi apparatus. J Cell Biol 29: 373–376PubMedCrossRefGoogle Scholar
  79. Mollenhauer HH, Morré DJ (1974) Polyribosomes associated with the Golgi apparatus. Protoplasma 79: 333–336PubMedCrossRefGoogle Scholar
  80. Mollenhauer HH, Morré DJ (1975) A possible role for intercisternal elements in the formation of secretory vesicles in plant Golgi apparatus. J Cell Sci 19: 231–237PubMedGoogle Scholar
  81. Mollenhauer HH, Morré DJ (1976) Cytochalasin B, but no colchicine, inhibits migration of secretory vesicles in root tips of maize. Protoplasma 87: 39–48PubMedCrossRefGoogle Scholar
  82. Mollenhauer HH, Whaley WG (1963) An observation of the functioning of the Golgi apparatus. J Cell Biol 17: 222–225PubMedCrossRefGoogle Scholar
  83. Mollenhauer HH, Whaley WG, Leech JH (1961) A function of the Golgi apparatus in outer root cap cells. J Ultrastruct Res 5: 193–200PubMedCrossRefGoogle Scholar
  84. Mollenhauer HH, Morré DJ, Vanderwoude WJ (1975) Endoplasmic reticulum-Golgi apparatus associations in maize root tips. Mikroskopie 31: 257–272Google Scholar
  85. Morré DJ, Jones DD, Mollenhauer HH (1967) Golgi apparatus mediated polysaccharide secretion by outer root cap cells of Zea mays. I. Kinetics and secretory pathway. Planta 74: 286–301CrossRefGoogle Scholar
  86. Mota M, Silva MT, Salema R (1975) Electron microscopic study of bacteria in the intercellular spaces of the root cap of Luzula purpurea Link. J Submicr Cytol 7: 373–378Google Scholar
  87. Nicolson GL (1978) Ultrastructural localization of lectin receptors. In: Koehler JK (ed) Advanced techniques in biological electron microscopy. Springer, Berlin Heidelberg New York, pp 1–30CrossRefGoogle Scholar
  88. Northcote DH (1979) The involvement of the Golgi apparatus in the biosynthesis and secretion of glycoproteins and polysaccharides. Biomembranes 10: 51–76PubMedGoogle Scholar
  89. Northcote DH, Pickett-Heaps JD (1966) A function of the Golgi apparatus in polysaccharide synthesis and transport in the root-cap cells of wheat. Biochem J 98: 159–167PubMedGoogle Scholar
  90. Old KM, Nicolson TH (1975) Electron microscopical studies of the microflora of roots of sand dune grasses. New Phytol 74: 51–58CrossRefGoogle Scholar
  91. Paull RE, Jones RL (1975 a) Studies on the secretion of maize root cap slime. II. Localization of slime production. Plant Physiol 56: 307–312PubMedCrossRefGoogle Scholar
  92. Paull RE, Jones RL (1975b) Studies on the secretion of maize root cap slime. III. Histo-chemical and autoradiographic localization of incorporated fucose. Planta 127: 97–110CrossRefGoogle Scholar
  93. Paull RE, Jones RL (1976 a) Studies on the secretion of maize root cap slime. IV. Evidence for the involvement of dictyosomes. Plant Physiol 57: 249–256PubMedCrossRefGoogle Scholar
  94. Paull RE, Jones RL (1976b) Studies on the secretion of maize root cap slime. V. The cell wall as a barrier to secretion. Z Pflanzenphysiol 79: 154–164Google Scholar
  95. Paull RE, Johnson CM, Jones RL (1975) Studies on the secretion of maize root cap slime. I. Some properties of the secreted polymer. Plant Physiol 56: 300–306PubMedCrossRefGoogle Scholar
  96. Peterson RL, Brisson JD (1977) Root cap structure in the fern Ophioglossum petiolatum: light and electron microscopy. Can J Bot 55: 1861–1878CrossRefGoogle Scholar
  97. Phillips HL, Torrey JG (1971) Deoxyribonucleic acid synthesis in root cap cells of cultured roots of Convolvulus. Plant Physiol 48: 213–218PubMedCrossRefGoogle Scholar
  98. Phillips HL, Torrey JG (1974) The ultrastructure of the root cap in cultured roots of Convolvulus arvensis L. Am J Bot 61: 879–887CrossRefGoogle Scholar
  99. Pickett-Heaps JD (1967 a) The use of autoradiography for investigating wall secretion in plant cells. Protoplasma 64: 49–66CrossRefGoogle Scholar
  100. Pickett-Heaps JD (1967 b) Preliminary attempts at ultrastructural polysaccharide localization in root tip cells. J Histochem Cytochem 15: 442–455PubMedCrossRefGoogle Scholar
  101. Pickett-Heaps JD (1968) Further ultrastructural observations on polysaccharide localization in plant cells. J Cell Sci 3: 55–64PubMedGoogle Scholar
  102. Pope DG, Thorpe JR, Al-Azzawi MJ, Hall JL (1979) The effect of cytochalasin B on the rate of growth and ultrastructure of wheat coleoptiles and maize roots. Planta 144: 373–383CrossRefGoogle Scholar
  103. Roland JC (1974) Cytochimie des polysaccharides végétaux: détection et extraction sélectives. J Microsc 21: 233–244Google Scholar
  104. Roth J (1978) The lectins. Molecular probes in cell biology and membrane research. Exp Pathol Suppl 3: 1–186Google Scholar
  105. Rougier M (1971) Etude cytochimique de la sécrétion des polysaccharides végétaux à l’aide d’un matériel de choix: les cellules de la coiffe de Zea mays. J Microsc 10: 67–82Google Scholar
  106. Rougier M (1975) Incorporation de fucose tritié dans l’apex radiculaire de mais. J Microsc 23: 73a–74aGoogle Scholar
  107. Rougier M (1976a) Sécrétion de polysaccharides dans l’apex radiculaire de maïs: étude radioautographique par incorporation de fucose tritié. J Microsc 26: 161–166Google Scholar
  108. Rougier M (1976b) Méthodes et perspectives d’étude des sécrétions végétales. Soc Bot Coll Sécrét Veg 123: 7–18Google Scholar
  109. Rougier M, Vian B, Gallant D, Roland JC (1973) Aspects cytochimiques de l’étude ultra-structurale des polysaccharides végétaux. Ann Biol 12: 43–75Google Scholar
  110. Rougier M, Kieda C, Monsigny M (1979a) Use of lectin to detect the sugar components of maize root cap slime. J Histochem Cytochem 27: 878–881PubMedCrossRefGoogle Scholar
  111. Rougier M, Chaboud A, Kieda C, Monsigny M (1979b) Distribution and ultrastructural localization of fucose-containing glycoconjugates at the surface of slime secretory root cap cells. Biol Cell 36: 9AGoogle Scholar
  112. Rovira AD (1972) Studies on the interactions between plant roots and micro-organisms. J Austr Inst Agr Sc 6: 91–94Google Scholar
  113. Rovira AD (1973) Zones of exudation along plant roots and spatial distribution of microorganisms in the rhizosphere. Pestic Sci 4: 361–366CrossRefGoogle Scholar
  114. Rovira AD (1976) Biology of the soil-root interface. In: Harley JL, Scott Russel R (eds) The soil-root interface. Academic Press, London New York, pp 145–160Google Scholar
  115. Rovira AD, Campbell R (1974) Scanning electron microscopy of micro-organisms on the roots of wheat. Microbiol Ecol 1: 15–23CrossRefGoogle Scholar
  116. Sambin B (1978) Etude de l’influence du milieu sur la structure et le fonctionnement de la coiffe racinaire. Thèse Doct Spécialité, Univ Lyon IGoogle Scholar
  117. Sambin B, Rougier M, Zandonella P (1978) Renewal of the root cap of Cissus sicyoïdes. In: Riedacker A, Gagnaire-Michard J (eds) Symposium Root Physiol Symbiosis, Nancy, 11–15, Septembre 1978, pp 160–170Google Scholar
  118. Samtsevich SA (1965) Active excretions of plant roots and their significance. Fiziol Rast 12: 837–846Google Scholar
  119. Samtsevich SA (1971) Root excretions of plants. An important source of humus formation in the soil. Humus Planta 5: 147–154Google Scholar
  120. Street HE, Öpik H, James FEL (1967) Fine structure of the main axis meristems of cultured tomato roots. Phytomorphology 17: 391–101Google Scholar
  121. Sueiro SF, Felipe Anton MR (1974) Localization histoquimica de fosfatasa acida en el mucilago de raices de plantas de maiz crecidas en soluciones nutritivas. An Edaf Agrobiol 33: 199–214Google Scholar
  122. Thiery JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc 6: 987–1017Google Scholar
  123. Turchenek LW, Oades JM (1976) Organo-clay particles in soils. In: Emerson WW, Dexter AR (eds) Modification of soil structure. Wiley, Chichester, pp 137–144Google Scholar
  124. Umali-Garcia M, Rubbell DH, Gaskins MH, Dazzo FB (1979) Adsorption and mode of entry of Azospirillum brasilense to grass roots. Int Workshop Assoc N2-fixation 2–6 July 1979, Cena, Piracicaba, Brasil, p 6Google Scholar
  125. Vian B (1972) Aspects, en cryodécapage, de la fusion des membranes des vésicules cytoplas-miques et du plasmalemme lors des phénomènes de sécrétion végétale. CR Acad Sc 275: 2471–2474Google Scholar
  126. Vian B (1974 a) Recherches sur les relations ultrastructurales et ontogéniques entre plasmalemme et paroi dans les cellules végétales en croissance. Thèse Doct Etat, Université Paris VIGoogle Scholar
  127. Vian B (1974b) Précisions fournies par le cryodécapage sur la restructuration et l’assimilation au plasmalemme des membranes des dérivés golgiens. CR Acad Sci 278: 1483–1486Google Scholar
  128. Vian B, Roland JC (1972) Différenciation des cytomembranes et renouvellement du plasmalemme dans les phénomènes de sécrétion végétales. J Microsc 13: 119–136Google Scholar
  129. Vian B, Roland JC (1974) Cytochemical and ultrastructural observations on polysaccharides during secretion and exocytosis. Port Acta Biol 14: 1–6Google Scholar
  130. Werker E, Kislev M (1978) Mucilage on the root surface and root hairs of Sorghum: heterogeneity in structure, manner of production and site of accumulation. Ann Bot 42: 809–816Google Scholar
  131. Whaley WG (1966) Proposals concerning replication of the Golgi apparatus. In: Sitte P (ed) Funktionelle und morphologische Organisation der Zelle. Probleme der biologischen Reduplikation, 3 Wiss Konf Ges Dtsch Naturforsch Ärzte. Springer, Berlin Heidelberg New York, pp 340–370Google Scholar
  132. Whaley WG, Kephart JE, Mollenhauer HH (1959) Developmental changes in the Golgi apparatus of maize root cells. Am J Bot 46:743–751CrossRefGoogle Scholar
  133. Whaley WG, Kephart JE, Mollenhauer HH (1964) The dynamics of cytoplasmic membranes during development. In : Locke M (ed) Cellular membranes in development. 22nd Symp Soc Study Dev Growth. Academic Press, London New York pp 135–174Google Scholar
  134. Wright K (1975) Polysaccharides of root-cap slime from five maize varieties. Phytochemistry 14: 759–763CrossRefGoogle Scholar
  135. Wright K, Northcote DH (1974) The relationship of root-cap slimes to pectins. Biochem J 139: 525–534PubMedGoogle Scholar
  136. Wright K, Northcote DH (1975) An acidic oligosaccharide from maize slime. Phytochemistry 14: 1793–1798CrossRefGoogle Scholar
  137. Wright K, Northcote DH (1976) Identification of β-1-4-glucan chains as part of a fraction of slime synthesized within the dictyosomes of maize root caps. Protoplasma 88: 225–239CrossRefGoogle Scholar
  138. Wright K, Northcote DH, Davey R (1976) Preparation of rat epididymal α-L-fucosidase free from other glycosidases; its action on root-cap slime from Zea mays L. Carbohydr Res 47: 141–150PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1981

Authors and Affiliations

  • M. Rougier

There are no affiliations available

Personalised recommendations