Skip to main content

The Inverse Problem: Estimation of Kinetic Parameters

  • Conference paper
Modelling of Chemical Reaction Systems

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 18))

Abstract

During the past few years, there has been an overwhelming trend in applied mathematics to formulate and develop algorithmic procedures to solve the inverse problem described by nonlinear ordinary differential equations (ODE’s) [7.1–4]. Yet surprisingly only very few significant results have been obtained. Moreover, the estimation of kinetic parameters for systems of nonlinear ODE’s having many variables is still a formidable problem [7.5–7], It is the purpose of this article to present an improved method for parameter estimation designed specifically for large systems described by nonlinear ODE’s and to outline a new methodology together with new algorithms. (Full theoretical analysis of the algorithms will be presented elsewhere.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bellman, R. Kalaba: Quasilinearization and Non-linear Boundary-Value Problems ( American Elsevier, New York 1965 )

    Google Scholar 

  2. H. Hemker, B. Hess: Analysis and Simulation of Biochemical Systems ( Elsevier/North-Holland, Amsterdam 1972 )

    Google Scholar 

  3. W. Squire: A simple integral method for system identification. Math. Biosci. 10, 145 (1971)

    Article  Google Scholar 

  4. R. Tanner: Estimating kinetic rate constant using orthogonal polynomial and Picard’s iteration method. Ind. Eng. Chem. Fundam. 11, 1 (1972)

    Article  CAS  Google Scholar 

  5. H.T. Banks: Modeling and Control in the Biomedical Sciences, Springer Lecture Notes in Biomathematics, Vol. 6 ( Springer, Berlin, Heidelberg, New York 1975 )

    Google Scholar 

  6. H.J. Bremermann: “Complexity of Automata Brains and Behavior”, in Physics and Mathematics of the Nervous System, ed. by M. Conard, W. Guttinger, M. Dalcin, Springer Lectures Notes in Biomathematics, Vol. 4 ( Springer, Berlin, Heidelberg, New York 1974 )

    Google Scholar 

  7. Physics and Mathematics of the Nervous System

    Google Scholar 

  8. D. Garfinkel, L. Garfinkel, M. Pring, S. Green, B. Chance: Computer applications to biochemical kinetics. Annu. Rev. Biochem. 39, 473 (1970)

    Article  CAS  Google Scholar 

  9. D. Garfinkel: “Simulation of Glycolitic Systems”, in Concepts and Models of Biomathematics, ed. by F. Heimmets ( Dekker, New York 1969 )

    Google Scholar 

  10. D.M. Himmelblau: Determination of rate constants for complex kinetic models. Ind. Eng. Chem. Fundam. 6, 539 (1967)

    Article  CAS  Google Scholar 

  11. J. Swartz: Parameter estimation in biological systems. Ph.D. Thesis, University of California, Berkeley (1973)

    Google Scholar 

  12. J. Milstein: Estimation of the dynamical parameters of the Calvin photosynthesis cycle optimization and ill conditioned inverse problems. Ph.D. Thesis, University of California, Berkeley (1975)

    Google Scholar 

  13. J. Milstein, H. Bremermann: Parameter identification of the Calvin photosynthesis cycle. J Math Biol. 7, 99 - 116 (1979)

    Article  Google Scholar 

  14. J. Milstein: Fitting multiple trajectories simultaneously to a model of inducible enzyme synthesis. Math Biosci. 40, 175 - 184 (1978)

    Article  CAS  Google Scholar 

  15. J. Milstein: Error estimates for rate constants of non-linear inverse problems. SIAM J Appl Math. 35, 479 (1978)

    Article  Google Scholar 

  16. J. Milstein: Modeling and parameter identification of insulin action on gluconeogenesis. Proceeding methodology in systems modelling and simulation (Weizmann Institute of Science, Rehovot, Israel 1978 )

    Google Scholar 

  17. J.H. Bremermann: A method of unconstrained global optimization. Math Biosci. 9, 1 (1970)

    Article  Google Scholar 

  18. J. Swartz, J.H. Bremermann: Discussion of parameter estimation in bio-logical modelling: Algorithms for estimation and evaluation of the estimates. J Math Biol. 1, 241 (1975)

    Article  Google Scholar 

  19. C.W. Gear: Numerical Initial Value Problems in Ordinary Differential Equations ( Prentice Hall, Englewood Cliffs, 1971 )

    Google Scholar 

  20. H. Rosenbrock, C. Storey: Computational Techniques for Chemical Engineers ( Pergamon, Oxford 1966 )

    Google Scholar 

  21. W.S. Brown: Altran User’s Manual (Bell Laboratories, 1973)

    Google Scholar 

  22. D.A. Garfinkel: A simulation study of the effect on simple ecological systems of making rate of increase of population density-dependent. J Theor Biol. 14, 67 (1967)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heildelberg

About this paper

Cite this paper

Milstein, J. (1981). The Inverse Problem: Estimation of Kinetic Parameters. In: Ebert, K.H., Deuflhard, P., Jäger, W. (eds) Modelling of Chemical Reaction Systems. Springer Series in Chemical Physics, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68220-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68220-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68222-3

  • Online ISBN: 978-3-642-68220-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics