Skip to main content

Structure, Function, and Regulation of Mammalian Pyruvate Dehydrogenase Complex

  • Conference paper
Metabolic Interconversion of Enzymes 1980

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The mammalian pyruvate dehydrogenase complex consists of three catalytic components — pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehydrogenase (E3). These three enzymes, acting in sequence, catalyze the reactions shown in Fig. 1 (Reed 1974). E1 catalyzes both the decarboxylation of pyruvate (reaction 1) and the subsequent reductive acetylation of the lipoyl moiety (reaction 2) which is covalently bound to E2. E2 catalyzes the transacetylation step (reaction 3), and E3 catalyzes the reoxidation of the dihydrolipoyl moiety NAD+ as the ultimate electron acceptor (reactions 4 and 5). The mammalian complex also contains small amounts of two regulatory enzymes, a kinase and a phosphatase, which modulate the activity of E1 by phosphorylation and dephosphorylation, respectively (Linn et al. 1969). This paper discusses some aspects of the structural organization of the mammalian pyruvate dehydrogenase complex and regulation of its activity by a phosphorylation-dephosphorylation cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrera CR, Namihira G, Hamilton L, Munk P, Eley MH, Linn TC, Reed LJ (1972) Studies on the subunit structure of the pyruvate dehydrogenase complexes from bovine kidney and heart. Arch Biochem Biophys 148: 343–358.

    Article  PubMed  CAS  Google Scholar 

  • Bleile DM, Munk P, Oliver RM, Reed LJ (1979) Subunit structure of dihydrolipoyl transacetylase component of pyruvate dehydrogenase complex from Escherichia coli. Proc Natl Acad Sci USA 76: 4385–4389.

    Article  PubMed  CAS  Google Scholar 

  • Bleile DM, Hackert ML, Pettit FH, Reed LJ (1981) Subunit structure of dihydrolipoyl transacetylase component of pyruvate dehydrogenase complex from bovine heart. J Biol Chem 256: 514–519.

    PubMed  CAS  Google Scholar 

  • Butler JR, Pettit FH, Davis PF, Reed LJ (1977) Binding of thiamin thiazolone pyrophosphate to mammalian pyruvate dehydrogenase and its effects on kinase and phosphatase activities. Biochem Biophys Res Commun 74: 1667–1674.

    Article  PubMed  CAS  Google Scholar 

  • Chock PB, Rhee SG, Stadtman ER (1980) Interconvertible enzyme cascades in cellular regulation. Annu Rev Biochem 49: 813–843.

    Article  PubMed  CAS  Google Scholar 

  • Davis PF, Pettit FH, Reed LJ (1977) Peptides derived from pyruvate dehydrogenase as substrates for pyruvate dehydrogenase kinase and phosphatase. Biochem Biophys Res Commun 75: 541–549.

    Article  PubMed  CAS  Google Scholar 

  • Denton RM, Hughes WA (1978) Pyruvate dehydrogenase and the hormonal regulation of fat synthesis in mammalian tissues. Int J Biochem 9: 545–552.

    Article  PubMed  CAS  Google Scholar 

  • Denton RM, Randle PJ, Martin BR (1972) Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase. Biochem J 128: 161–163.

    PubMed  CAS  Google Scholar 

  • Garland PB, Randle PJ (1964) Control of pyruvate dehydrogenase in perfused rat heart by concentration of acetyl CoA. Biochem J 91: 6c.

    PubMed  CAS  Google Scholar 

  • Hamada M, Otsuka K-I, Tanaka N, Ogasahara K, Koike K, Hiraoka T, Koike M (1975) Purification, properties, and subunit composition of pig heart lipoate acetyltransferase. J Biochem (Tokyo) 78: 187–197.

    CAS  Google Scholar 

  • Junger E, Reinauer H (1972) Untersuchungen zur Struktur der Pyruvatdehydrogenase aus Schweineherzmuskel. Biochim Biophys Acta 250: 478–490.

    Google Scholar 

  • Kerbey AL, Randle PJ (1979) Role of multi-site phosphorylation in regulation of pig heart pyruvate dehydrogenase phosphatase. FEBS Lett 108: 485–488.

    Article  PubMed  CAS  Google Scholar 

  • Kresze G-B, Steber L (1979) Inactivation and disassembly of the pyruvate dehydrogenase multienzyme complex from bovine kidney by limited proteolysis with an enzyme from rat liver. Eur J Biochem 95: 569–578.

    Article  PubMed  CAS  Google Scholar 

  • Kresze G-B, Dietl B, Ronft H (1980) Mammalian acetyltransferase: Molecular weight determination by gel filtration in the presence of guanidinium chloride. FEBS Lett 112: 48–50.

    Article  PubMed  CAS  Google Scholar 

  • Larner J, Galasko G, Cheng K, DePaoli-Roach AA, Huang L, Daggy P, Kellog J (1979) Generation by insulin of a chemical mediator that controls protein phosphorylation and dephosphorylation. Science 206: 1408–1410.

    Article  PubMed  CAS  Google Scholar 

  • Linn TC, Pettit FH, Reed LJ (1969) Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc Natl Acad Sci USA 62: 234–241.

    Article  PubMed  CAS  Google Scholar 

  • Machicao F, Wieland OH (1980) Evidence for two-domain subunit structure of kidney lipoate acetyltransferase. FEBS Lett 115: 156–158.

    Article  PubMed  CAS  Google Scholar 

  • Pettit FH, Roche TE, Reed LJ (1972) Function of calcium ions in pyruvate dehydrogenase phosphatase activity. Biochem Biophys Res Commun 49: 563–571.

    Article  PubMed  CAS  Google Scholar 

  • Pettit FH, Pelley JW, Reed LJ (1975) Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD+ ratios. Biochem Biophys Res Commun 65: 575–582.

    Article  PubMed  CAS  Google Scholar 

  • Popp DA, Kiechle FL, Kotagal N, Jarett L (1980) Insulin stimulation of pyruvate dehydrogenase in an isolated plasma membrane-mitochondrial mixture occurs by activation of pyruvate dehydrogenase phosphatase. J Biol Chem 255: 7540–7543.

    PubMed  CAS  Google Scholar 

  • Pratt ML, Roche TE, Dyer DW, Cate RL (1979) Enhanced dissociation of pyruvate dehydrogenase from the pyruvate dehydrogenase complex following phosphorylation and regulatory implications. Biochem Biophys Res Commun 91: 289–296.

    Article  PubMed  CAS  Google Scholar 

  • Radcliffe PM, Kerbey AL, Randle PJ (1980) Inactivation of pig heart pyruvate dehydrogenase complex by adenosine-5′-O(3-thiotriphosphate). FEBS Lett 111: 47–50.

    Article  PubMed  CAS  Google Scholar 

  • Reed LJ (1974) Multienzyme complexes. Acc Chem Res 7: 40–46.

    Article  CAS  Google Scholar 

  • Reed LJ, Oliver RM (1968) The multienzyme α-keto acid dehydrogenase complexes. Brookhaven Symp Biol 21: 397–411.

    PubMed  CAS  Google Scholar 

  • Reed LJ, Pettit FH, Yeaman SJ, Teague WM, Bleile DM (1980) Structure, function and regulation of the mammalian pyruvate dehydrogenase complex. In: Mildner P, Ries B (eds) Enzyme regulation and mechanism of action. Pergamon Press, Oxford New York, pp 47–56.

    Google Scholar 

  • Roche TE, Reed LJ (1974) Monovalent cation requirement for ADP inhibition of pyruvate dehydrogenase kinase. Biochem Biophys Res Commun 59: 1341–1348.

    Article  PubMed  CAS  Google Scholar 

  • Siess EA, Wieland OH (1972) Purification and characterization of pyruvate dehydrogenase phosphatase from pig heart muscle. Eur J Biochem 26: 96–105.

    Article  PubMed  CAS  Google Scholar 

  • Stadtman ER, Chock PB (1977) Superiority of interconvertible enzyme cascades in metabolic regulation: Analysis of monocyclic systems. Proc Natl Acad Sci USA 74: 2761–2765.

    Article  PubMed  CAS  Google Scholar 

  • Sugden PH, Randle PJ (1978) Regulation of pig heart pyruvate dehydrogenase by phosphorylation. Studies on the subunit and phosphorylation stoichiometries. Biochem J 173: 659–668.

    CAS  Google Scholar 

  • Sugden PH, Hutson NJ, Kerbey AL, Randle PJ (1978) Phosphorylation of additional sites on pyruvate dehydrogenase inhibits its reactivation by pyruvate dehydrogenase phosphate phosphatase. Biochem J 169: 433–435.

    PubMed  CAS  Google Scholar 

  • Sugden PH, Kerbey AL, Randle PJ, Waller CA, Reid KBM (1979) Amino acid sequences around the sites of phosphorylation in the pig heart pyruvate dehydrogenase complex. Biochem J 181: 419–426.

    PubMed  CAS  Google Scholar 

  • Teague WM, Pettit FH, Yeaman SJ, Reed LJ (1979) Function of phosphorylation sites on pyruvate dehydrogenase. Biochem Biophys Res Commun 87: 244–252.

    Article  PubMed  CAS  Google Scholar 

  • Tsai CS, Burgett MW, Reed LJ (1973) A kinetic study of the pyruvate dehydrogenase complex from bovine kidney. J Biol Chem 248: 8348–8352.

    PubMed  CAS  Google Scholar 

  • Wahl M, Utter MF (1980) Resolution of the phosphorylated forms of pyruvate dehydrogenase. Fed Proc 39: 1975.

    Google Scholar 

  • White RH, Bleile DM, Reed LJ (1980) Lipoic acid content of dihydrolipoyl transacylases determined by isotope dilution analysis. Biochem Biophys Res Commun 94: 78–84.

    Article  PubMed  CAS  Google Scholar 

  • Yeaman SJ, Hutcheson ET, Roche TE, Pettit FH, Brown JR, Reed LJ, Watson DC, Dixon GH (1978) Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart. Biochemistry 17: 2364–2370.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Reed, L.J., Pettit, F.H., Bleile, D.M., Wu, TL. (1981). Structure, Function, and Regulation of Mammalian Pyruvate Dehydrogenase Complex. In: Holzer, H. (eds) Metabolic Interconversion of Enzymes 1980. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68211-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68211-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68213-1

  • Online ISBN: 978-3-642-68211-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics