Skip to main content

Modeling of Growth and Production

  • Chapter
Physiological Plant Ecology IV

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / D))

Abstract

Building models is one way of integrating knowledge. It has as important features that it

  • helps to define and categorize the state of knowledge of the subject;

  • helps to locate gaps in knowledge and to make hypotheses explicit, and thus helps to set priorities for research;

  • provides a tool to make the integrated information operational;

  • provides an effective link between scientists from adjacent disciplines, between researchers studying different levels of biological organization, and between fu3ndamental and applied scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker CH, Curry RB (1976) Structure of agricultural simulators: a philosophic view. Agric Syst 1:201–218

    Google Scholar 

  • Baker DN, Lambert JR, Phene CJ, McKinion JM (1976) GOSSYM: a simulator of cotton crop dynamics. In: Computers applied to large-scale agricultural enterprises. Proc US — USSR Semin, Moscow Riga Kishinev, Mississippi State Univ, Mississippi

    Google Scholar 

  • Barnes A (1979) Vegetable plant part relationships II quantitative hypothesis for shoot-storage root development. Ann Bot 43:487–499

    Google Scholar 

  • Barnes A, Hole CC (1978) A theoretical basis of growth and maintenance respiration. Ann Bot 42:1217–1221

    Google Scholar 

  • Barnes A, Greenwood DJ, Cleaver TJ (1976) A dynamic model for the effects of potassium and nitrogen fertilizers on the growth and nutrient uptake of crops. J Agric Sci 86(2): 225–244

    Google Scholar 

  • Barrett JR, Peart RM (eds) (1979) Abstracts of the workshop on crop simulation, May 1979. Purdue Univ, West Lafayette, Indiana, USA

    Google Scholar 

  • Bar-Yosef B, Lambert JR, Baker DN (1978) RHIZOS, a simulator of root growth and soil processes. Tech Contr 1559. SC Agric Exp Stn, SC, USA

    Google Scholar 

  • Beek J (1979) Phosphate retention by soil in relation to waste disposal. PhD thesis, Agric Univ, Wageningen, The Netherlands

    Google Scholar 

  • Beek J, Frissel MJ (1973) Simulation of nitrogen behaviour in soils, PUDOC, Wageningen, The Netherlands

    Google Scholar 

  • Bennett D, Downes PA, Janes AVJ (1978) The 1978 phosphate fertilizer rates. Manage Rep 3 (CSIRO, Australia)

    Google Scholar 

  • Brockington NR (1978) Simulation models in crop production research. Acta Agric Scand 28:33–44

    Google Scholar 

  • Brockington NR (1979) Computer modeling in agriculture. Oxford Univ Press, London

    Google Scholar 

  • Brouwer R, Wit de CT (1969) A simulation model of plant growth with special attention to root growth and its consequences. In: Whittington WJ (ed) Root growth. Butter-worth, London

    Google Scholar 

  • Buringh P, Heemst van HDJ, Staring GJ (1975) Computation of the maximum food production of the world. Publ 558 Dept Trop Soil Sci. Agric Univ, Wageningen

    Google Scholar 

  • Challa H (1977) An analysis of the diurnal course of growth carbon dioxide exchange and carbohydrate reserve content of cucumber. Agric Res Rep 861, PUDOC, Wageningen

    Google Scholar 

  • Challa H, Vooren van de J (1980) A strategy for climate control in greenhouses in early winter production. Acta Hortic 106:159–164

    Google Scholar 

  • Cole CV, Innis GS, Steward JWB (1977) Simulation of phosphorus cycling in semi arid grasslands. Ecology 58:1–15

    CAS  Google Scholar 

  • Curry RB, Baker CH, Streeter JG (1975) SOYMOD I, a dynamic simulation of soybean growth and development. Trans Am Soc Agric Eng 18(5): 963–974

    Google Scholar 

  • Dayan E, Dovrat A (1977) Measured and simulated herbage production of Rhodes grass. PhD thesis, Hebrew Univ, Jerusalem

    Google Scholar 

  • Doorenbos J, Kassam AH (1979) Yield response to water, FAO irrigation and drainage paper 33, FAO, Rome

    Google Scholar 

  • Edminster TW (1978) Concepts for using modeling as a research tool. TM520 USDA-ARS 20/1/78. US Dept Agric Washington DC 20250

    Google Scholar 

  • Egmond van F (1975) The ionic balance of the sugar beet plant. Agric Res Rep 832. PUDOC, Wageningen

    Google Scholar 

  • Erickson RO (1976) Modeling of plant growth. Annu Rev Plant Physiol 27:407–434

    Google Scholar 

  • Fagerström T (1977) Growth in Scots pine (mechanism of response to N). Oecologia 26:305–315

    Google Scholar 

  • Fick GW (1977) The mechanism of alfalfa regrowth, a computer simulation approach. Search Agric 7(3): 1–26, Cornell Univ, New York

    Google Scholar 

  • Flavell RB, Barratt DHP (1977) Mitochondrial efficiency and grain yield in wheat. Ann Bot 41:1323–1331

    Google Scholar 

  • Forrester JW (1961) Industrial dynamics. MIT Press, Boston, USA

    Google Scholar 

  • Gerloff GC (1977) Plant efficiencies in use of nitrogen, phosphorus and potassium. In: Wright MJ, Ferrari SA (eds) Agric Exp Stn, Cornell Univ, Ithaca

    Google Scholar 

  • Goudriaan J, Laar van HH (1978) Relations between leaf resistance, CO2-concentrations and CO2-assimilation in maize, beans, Lalang grass and sunflower. Photosynthetica 12(3): 241–249

    CAS  Google Scholar 

  • Greenwood DJ, Cleaver TJ, Loquens SMH, Niendorf KB (1977) Relationships between plant weight and growing period for vegetable crops in the United Kingdom. Ann Bot 41:987–997

    Google Scholar 

  • Gutierrez AP, Wang Y (1977) Applied population ecology: models for crop production and pest management. In: Norton GA, Holling CS (eds) Proc Conf Pest Manage. IIASA. Vienna, Austria

    Google Scholar 

  • Hall CAS, Day JW (1977) Ecosystem modeling in theory and practice: an introduction with case histories. Wiley and Sons, New York

    Google Scholar 

  • Hanks RJ (1974) Model for predicting plant yield as influenced by water use. Agron J 66:660–665

    Google Scholar 

  • Hansen GK, Jensen CR (1977) Growth and maintenance respiration in whole plants, tops and roots of Lolium multtflorum. Physiol Plant 39:155–164

    Google Scholar 

  • Hari P, Leikola M (1974) Further development of the dynamic growth model of plant height growth. Flora 163(5): 357–370

    Google Scholar 

  • Haun JR (1975) Potato growth environment relationships. Agric Meteorol 15(3): 325–332

    Google Scholar 

  • Hesketh JD, Jones JW (1976) Some comments on computer simulators for plant growth-1975. Ecol Model 2(3): 235–247

    Google Scholar 

  • Ho LC, Thornley JHM (1978) Energy requirements for assimilate translocation from mature tomato leaves. Ann Bot 42:481–483

    Google Scholar 

  • Hogeweg P (1978) Simulating the growth of cellular forms. Simulation 31:90–98

    Google Scholar 

  • Holt DA, Bula RJ, Miles GE, Schreiber GE, Peart RM (1975) Environmental physiology, modeling of alfalfa growth. I. conceptual development of SIMED. Res Bull 907. Purdue Univ, Indiana

    Google Scholar 

  • Horie T, Wit de CT, Goudriaan J, Bensink J (1979) A formal template for the development of cucumber in its vegetative stage I, II and III. Proc K Ned Acad Wet Ser C 82(4): 433–479

    Google Scholar 

  • Hunt WF, Loomis RS (1979) Respiration modeling and hypothesis testing with a dynamic model of sugar beet growth. Ann Bot 44:75–77

    Google Scholar 

  • Hsiao TC, Fereres E, Acevedo E, Henderson DW (1976) Water stress and dynamics of growth and yield of crop plants. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Ecol Stud Vol 19. Springer, Berlin Heidelberg New York

    Google Scholar 

  • IBM (1975) Continuous system modeling program III. general system information manual (GH19–7000) and users manual (SH19–7001–2). IBM data processing div, White Plains, NY

    Google Scholar 

  • Innis GS (1977) Dynamic simulation of the belowground ecosystem. In: Marshal JK (ed) The belowground ecosystem. Range Sci Dept Ser 26, Colorado State Univ, Fort Collins, Colorado

    Google Scholar 

  • Innis GS (ed) (1978) Grassland simulation model. Ecol Stud Vol 26. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Keulen van H (1975) Simulation of water use and herbage growth in arid regions. Simulation Monograph, PUDOC, Wageningen

    Google Scholar 

  • Keulen van H (1976) A calculation method for potential rice production. Contr Centr Res Inst Agric Bogor 21. Central Research Institut for Agriculture, Bogor, Indonesia

    Google Scholar 

  • Keulen van H, Seligman NG, Goudriaan J (1975) Availability of anions in the growth medium of roots of an actively growing plant. Neth J Agric Sci 23:131–138

    Google Scholar 

  • Keulen van H, Wit de CT, Lof H (1976) The use of simulation models for productivity studies in arid regions. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life. Ecol Stud, Vol 19. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Keulen van H, Seligman NG, Benjamin RW (1980a) Simulation of water use and herbage growth in arid regions: a reevaluation and further development of the model ARID CROP. Agric Syst 6:159–193

    Google Scholar 

  • Keulen van H, Laar van HH, Louwerse W, Goudriaan J (1980 b) Physiological aspects of increased CO2-concentration. Experientia 36:786–812

    Google Scholar 

  • Khan MA, Tsunoda S (1970) Evolutionary trends in leaf photosynthesis and related leaf characteristics among cultivated wheat species and its wild relatives. Jpn J Breed 20(3): 133–140

    Google Scholar 

  • Lambers HT (1979) Energy metabolism in higher plants in different environments. PhD thesis, Univ Groningen

    Google Scholar 

  • Lambert JR, Baker DN, Phene CJ (1976) Dynamic simulation of processes in the soil under growing row crops: RHIZOS. In: Computers applied to the management of large scale agricultural enterprises. Proc US-USSR seminar, Moscow Riga Kishinev

    Google Scholar 

  • Landivar JA (1979) The application of cotton simulation model GOSSYM in genetic feasability studies. MSc. thesis, Mississippi State Univ, Mississippi

    Google Scholar 

  • Loomis RS, Ng E (1978) Influence of climate on photosynthetic productivity of sugar beet. In: Hall DO, Coombs J, Goodwin FW (eds) Proc 4th Int Congr Photosynthesis. Biochem Soc (London)

    Google Scholar 

  • Loomis RS, Rabbinge R, Ng E (1979) Explanatory models in crop physiology. Annu Rev Plant Physiol 30:339–367

    Google Scholar 

  • Maas SJ, Arkin GF (1978) Users guide to SORGF, a dynamic sorghum growth model with feed back capacity. Program and model documentation 78–1. Texas Agric Exp Stn, Texas A & M Univ, Texas

    Google Scholar 

  • Mapp HP, Eidman VR, Stone JF, Davidson JM (1975) Simulating soil water and atmospheric stress-crop yield relationships for economic analysis. Tech Bull T-140. Agric Exp Stn, Oklahoma State Univ, Oklahoma

    Google Scholar 

  • McCree KJ (1970) An equation for the rate of respiration for white clover plants under controlled conditions. In: Setlik I (ed) Prediction and measurement of photosynthetic productivity. Proc IBP/RP Tech Meet Trebon, PUDOC, Wageningen

    Google Scholar 

  • McCree KJ (1974) Equations for the rate of dark respiration of white clover and grain sorghum as functions of dry weight, photosynthetic rate and temperature. Crop. Sci 14(4): 509–514

    Google Scholar 

  • McKinion JE, Weaver REC (1979) Simulation of plant response to primary stress factors. Trans Am Soc Agric Eng 22:586–597

    CAS  Google Scholar 

  • Meisel WS, Collins DC (1973) Repromodelling: an approach to efficient model utilisation and interpretation. IEEE Transactions on systems, man and cybernetics, vol SMC III(4): 349–358

    Google Scholar 

  • Menon KAP, Bowonder B (1978) A model for forecasting wheat production. Technol Forecast Soc Change 11:261–271

    Google Scholar 

  • Mesarovic MD, Macko D, Takahara Y (1970) Theory of hierarchical, multilevel systems. Academic Press, New York

    Google Scholar 

  • Meyer GE, Curry RB, Streeter JG, Baker CH (1979) Analysis and computer simulation of flowering and reproductive growth in indeterminant soybeans. Trans ASAE (in press)

    Google Scholar 

  • Miller PC, Stoner WA, Richards SP (1978) MEDECS, a simulator for mediterranean ecosystems. Simulation 6:173–190

    Google Scholar 

  • Moldau H, Karolin A (1977) Effect of reserve pool on the relationship between respiration and photosynthesis. Photosynthetica 11:38–47

    CAS  Google Scholar 

  • Murata Y (1975) Estimation and simulation of rice yield from climatic factors. Agric Meteorol 15:117–131

    Google Scholar 

  • Nelson WL, Dale RF (1978) A methodology for testing the accuracy of yield predictions from weather-yield regression models for corn. Agron J 70:734–740

    Google Scholar 

  • Ören TI (1977) Software for simulation of combined and discrete systems, a state of the art review. Simulation 28:33–45

    Google Scholar 

  • Passioura JB (1972) The effect of root geometry on the yield of wheat growing on stored water. Aust J Agric Sci 23:745–751

    Google Scholar 

  • Passioura JB (1973) Sense and nonsense in crop simulation. J Aust Inst Agric Sci 39:181–183

    Google Scholar 

  • Penning de Vries FWT (1975a) The cost of maintenance processes in plant cells. Ann Bot 39:77–92

    CAS  Google Scholar 

  • Penning de Vries FWT (1975b) Use of assimilates in higher plants. In: Cooper(ed) Photosynthesis and productivity in different environments. Cambridge Univ Press, Cambridge, UK

    Google Scholar 

  • Penning de Vries FWT (1981) Simulation models of growth of crops, particularly under nutrient stress. In: Künzli, Peter von A (eds) Proc. 15th Int Potash Inst Colloq, Wageningen 1980

    Google Scholar 

  • Penning de Vries FWT, Laar van HH (1977) Substrate utilization in germinating seeds. In: Landsberg, JJ, Cutting CV (eds) Environmental effects on crop physiology. Academic Press, London New York

    Google Scholar 

  • Penning de Vries FWT, Brunsting AB, Laar van HH (1974) Products, requirements and efficiency of biological synthesis, a quantitative approach. J Theor Biol 45:339–377

    PubMed  CAS  Google Scholar 

  • Penning de Vries FWT, Murphy CE, Wells CG, Jorgensen JR (1975) Simulation of nitrogen distribution and its effect on productivity in even aged loblolly pine plantations. In: Howell FG, Gentry JB, Smith MM (eds) Mineral cycling in south eastern ecosystems. Natl Techn Info Serv US Dept Commerce, Springfield, VA

    Google Scholar 

  • Penning de Vries FWT, Witlage JM, Kremer DJ (1979) Rates of respiration and of increase in structural dry matter in young wheat, ryegrass and maize plants in relation to temperature, to water stress and to their sugar content. Ann Bot 44:591–609

    Google Scholar 

  • Penning de Vries FWT, Laar van HH (1982) Simulation of plant growth and crop production. Simulation Monograph, PUDOC, Wageningen

    Google Scholar 

  • Penning de Vries FWT, Krul J, Keulen van H (1980) Productivity of sahelian grasslands and the availability of nitrogen and phosphorus from the soil. In: Rosswall T (ed) Nitrogen cycling in west African ecosystems. Proc SCOPE-UNEP Nitrogen Unit Workshop, Ibadan R Swed Acad Sci

    Google Scholar 

  • Phene CJ, Baker DN, Lambert JR, Pearsons JE, McKinion JM (1978) SPAR, a soil-plantatmosphere research system. Trans Am Soc Agric Eng 21:924–930

    Google Scholar 

  • Raschke K (1975) Stomatal action. Annu Rev Plant Physiol 26:309–340

    CAS  Google Scholar 

  • Rees AR, Thornley JHM (1973) A simulation model for tulip growth in the field. Ann Bot 37(149): 121–131

    Google Scholar 

  • Reinhardt H (1975) Möglichkeiten zur Vorschätzung von Ertragshöhe und Ertragsschwankungen im Körnermaisbau. Ber Landwirtsch 53:386–397

    Google Scholar 

  • Reuss JO, Innis GS (1977) A grassland nitrogen flow simulation model. Ecology 58:379–388

    CAS  Google Scholar 

  • Rick JR (1978) The tomato. Sci Am 8:66–76

    Google Scholar 

  • Rose MR, Harmsen R (1978) Using sensitivity analysis to simplify ecosystem models: a case study. Simulation 31:15–26

    Google Scholar 

  • Russo JM, Knapp WW (1976) A numerical simulation of plant growth. Int J Biometeorol 20(3): 276–285

    Google Scholar 

  • Sauer RH (1978) Simulation model for grassland primary producer phenology and biomass dynamics. In: Innis GS (ed) Grassland simulation model. Ecol Stud Vol 26. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schreiber MM, Miles GE, Holt DA, Bula RJ (1978) Sensitivity analysis of SIMED (a basic crop growth model for alfalfa). Agron J 70(1): 105–108

    Google Scholar 

  • Seaton KA, Landsberg JJ (1978) Resistance to water movement through wheat root systems. Austr J Agricul Sci 29:913–924

    CAS  Google Scholar 

  • Seginer I (1980) Optimizing greenhouse operations for best aerial environment. Acta Hortic 106:169–178

    Google Scholar 

  • Seligman N, Keulen van H (1980) PAPRAN, a simulation model for annual pasture production limited by rainfall and nitrogen supply. In: Frissel MJ, van Veen JA (eds) Models for behaviour of nitrogen in soils and uptake by plants. PUDOC, Wageningen

    Google Scholar 

  • Setlik I (1970) Prediction and measurement of photosynthetic productivity. Proc IBP/RP Tech Meet Trebon, PUDOC, Wageningen

    Google Scholar 

  • Sinclair TR, Wit de CT (1976) Analysis of the carbon and nitrogen limitations to soybean yield. Agron J 68(2): 319–324

    CAS  Google Scholar 

  • Stapleton HN, Buxton DR, Watson FL, Nolting DJ, Baker DN (1974) COTTON, a computer simulation of cotton growth. Tech Bull 206. Agric Exp Stn, Arizona Univ, Tucson, Arizona

    Google Scholar 

  • Steyeart LT, Ducle SK, McQuigg JD (1978) Atmospheric pressure and wheat yield modeling. Agric Meteorol 18:23–34

    Google Scholar 

  • Talpaz H, Chun ChH, Tailor HR (1977) Prediction of dry land crop yields using rainfall. South J Agric Econ july, 115–121

    Google Scholar 

  • Thornley JHM (1976) Mathematical models in plant physiology. Academic Press, London New York

    Google Scholar 

  • Thornley JHM (1977) Growth, maintenance and respiration, a reinterpretation. Ann Bot 41:1191–1203

    Google Scholar 

  • Tollenaar M (1977) Sink-source relationships during reproductive development in maize. A review. Maydica 22:49–75

    Google Scholar 

  • Veen van JA (1977) The behaviour of nitrogen in soil. PhD thesis. Agric Univ, Wageningen

    Google Scholar 

  • Waggoner PE (1970) Consultation on how models are made, how they are tested and what they tell us of experiments to be done. In: Setlik I (ed) Prediction and measurement of photosynthetic productivity. Proc IBP/RP Tech Meet Trebon, PUDOC, Wageningen

    Google Scholar 

  • Waggoner PE (1977) Simulation of modeling of plant physiological processes to predict crop yields. In: Landsberg JJ, Cutting CV (eds) Environmental effects on crop physiology. Academic Press, London New York

    Google Scholar 

  • Welch SM, Croft BA (1979) The design of biological monitoring systems for pest management. Simulation Monographs PUDOC, Wageningen

    Google Scholar 

  • Wit de CT (1970) Dynamic concepts in biology. In: Setlik I (ed) Prediction and measurement of photosynthetic productivity. Proc IBP/RP Tech Meet Trebon, PUDOC, Wageningen

    Google Scholar 

  • Wit de CT, Goudriaan J (1978) Simulation of ecological processes. Simulation monograph. PUDOC, Wageningen

    Google Scholar 

  • Wit de CT, Penning de Vries FWT (1982) In: Penning de Vries FWT, Djiteye MA (eds) La Productivité des Pâturages sahéliens. Agric Res Rep 918 PUDOC, Wageningen

    Google Scholar 

  • Wit de CT, Brouwer R, Penning de Vries FWT (1970) The simulation of photosynthetic systems. In: Setlik I (ed) Prediction and measurement of photosynthetic productivity. Proc IBP/RB Tech Meet Trebon, PUDOC, Wageningen

    Google Scholar 

  • Wit de CT, et al. (1978) Simulation of assimilation, respiration and transpiration of crops. Simulation Monograph. PUDOC, Wageningen

    Google Scholar 

  • Wit de CT, Laar van HH, Keulen van H (1979) Physiological potential of crop production. In: Sneep J, Hendriksen AJT (eds) Plant breeding perspectives. PUDOC, Wageningen

    Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlate with photosynthetic capacity. Nature (London) 282:424–426

    Google Scholar 

  • Wright MJ (1977) Plant adaptation to mineral stress in problem soils. Proc Workshop Cornell Univ Agric Exp Stn, Cornell Univ, Ithaca, New York

    Google Scholar 

  • Yamaguchi J (1978) Respiration and the growth efficiency in relation to crop productivity. J Fac Agric Hokkaido Univ, Jpn 59:59–129

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Penning De Vries, F.W.T. (1983). Modeling of Growth and Production. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology IV. Encyclopedia of Plant Physiology, vol 12 / D. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68156-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68156-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68158-5

  • Online ISBN: 978-3-642-68156-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics