Nutrient Cycling in Freshwater Ecosystems

  • A. Melzer
  • Ch. Steinberg
Part of the Encyclopedia of Plant Physiology book series (PLANT, volume 12 / D)


Limnology has been developed mainly from biological sciences. Limnochemistry, a part of limnology, has long been neglected by researchers and was thus referred to as “illustrative tapestry” by Schindler et al. (1975). The stimulating works of Ohle (e.g. 1954, 1958, 1962) and the investigations on the problem of eutrophication, by shedding light on the importance of the different nutritive substances in freshwaters, changed the role of limnochemistry substantially.


Nitrogen Fixation Fulvic Acid Particulate Organic Carbon Nutrient Cycling Dissolve Organic Nitrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander M, Marshall KC, Hirsch P (1960) Autotrophy and heterotrophy in nitrification. Proc Comm III, 7th Int Congr Soil Sci, Madison, WisGoogle Scholar
  2. Andersen JM (1974) Nitrogen and phosphorus budgets and the role of sediments in six shallow Danish lakes. Arch Hydrobiol 74:528–550Google Scholar
  3. Andersen JM (1975) Influences of pH on release of phosphorus from lake sediments. Arch Hydrobiol 76:411–419Google Scholar
  4. Andersen JM (1977) Rates of denitrification of undisturbed sediment from six lakes as a function of nitrate concentration, oxygen and temperature. Arch Hydobiol 80:147–159Google Scholar
  5. Austin ER, Lee FG (1973) Nitrogen release from lake sediments. J Water Pollut Control Fed 45:870–879Google Scholar
  6. Baccini P, Suter U (1979) Chemical speciation and biological availability of copper in lake water. Schweiz Z Hydrol 41:291–314Google Scholar
  7. Barber LE, Ensign JC (1979) Methane formation and release in a small Wisconsin lake. Geomicrobiol J 1:341–353Google Scholar
  8. Barber RT (1974) Organic ligands and phytoplankton growth in nutrient rich seawater. In: Singer P (ed) Trace metals and metal-organic interactions in natural waters. Ann Arbor Science, Ann ArborGoogle Scholar
  9. Barko JW, Smart RM (1980) Mobilization of sediment phosphorus by submersed freshwater macrophytes. Freshwater Biol 10:229–238Google Scholar
  10. Bärlocher F, Mackay RJ, Wiggins GB (1978) Detritus processing in a temporary vernal pool in southern Ontario. Arch Hydrobiol 81:269–295Google Scholar
  11. Barnes JR, Ovink R, Cummins KW (1978) Leaf litter processing in Gull Lake, Michigan, USA. Verh Int Ver Limnol 20:475–479Google Scholar
  12. Beauchamp RSA (1953) Sulphates in African inland waters. Nature (London) 171:769–771Google Scholar
  13. Bechard MJ, Rayburn WR (1979) Volatile organic sulfides from freshwater algae. J Phycol 15:379–383Google Scholar
  14. Bergmann W (1978) Zur Strukturaufklärung von Huminsäuren aus Abwasser. Dissertation, Univ TübingenGoogle Scholar
  15. Berman T (1970) Alkaline phosphatases and phosphorous availability in Lake Kinneret. Limnol Oceanogr 15:663–674Google Scholar
  16. Berman T (1976) Release of dissolved organic matter by photosynthesizing algae in Lake Kinneret, Israel. Freshwater Biol 6:13–18Google Scholar
  17. Bernice R (1972) Nitrogen excretion in Streptocephalus dichotomus BAIRD (Crustaceae: Anostraca). Hydrobiologia 39:449–156Google Scholar
  18. Best D, Mantai KE (1978) Growth of Myriophyllum: Sediment or lake water as the source of nitrogen and phosphorous. Ecology 59:1075–1080Google Scholar
  19. Binder BJ, Chisholm SW (1980) Changes in the soluble silicon pool size in the marine diatom Thalassiosira weisflogii. Mar Biol Lett 1:205–212Google Scholar
  20. Blackburn WM, Petr T (1979) Forest litter decomposition and benthos in a mountain stream in Victoria, Australia. Arch Hydrobiol 86:453–498Google Scholar
  21. Braun R (1952) Limnologische Untersuchungen an einigen Seen im Amazonasgebiet. Schweiz Z Hydrol 14:1–128Google Scholar
  22. Brezonik PL, Lee GF (1968) Denitrification as a nitrogen sink in Lake Mendota, Wis. Environ Sci Technol 2:120–125Google Scholar
  23. Bristow JM (1974) Nitrogen fixation in the rhizosphere of freshwater angiosperms. Can J Bot 52:217–221Google Scholar
  24. Bristow JM, Whitcombe M (1971) The role of roots in the nutrition of aquatic vascular plants. Am J Bot 58:8–13Google Scholar
  25. Brooks RH, Brezonik PL, Putnam HD, Keirn MA (1971) Nitrogen fixation in an estuarine environment: the Waccasassa on the Florida Gulf Coast. Limnol Oceanogr 16:701–711Google Scholar
  26. Brown EJ, Harris RF (1978) Kinetics of algal transient phosphate uptake and the cell quota concept. Limnol Oceanogr 23:35–40Google Scholar
  27. Brown EJ, Harris RF, Koonce JK (1978) Kinetics of phosphate uptake by aquatic microorganisms: deviation from a simple Michaelis-Menten equation. Limnol Oceanogr 23:26–34Google Scholar
  28. Burnison BK (1975) Microbial ATP studies. Verh Int Ver Limnol 19:286–290Google Scholar
  29. Burns NM, Nriagu JO (1976) Forms of iron and manganese in Lake Erie waters. J Fish Res Board Can 33:463–470Google Scholar
  30. Campbell PGC, Baker JH (1978) Estimation of bacterial production in freshwaters by the simultaneous measurement of [35S]sulphate and D-[3H]glucose uptake in the dark. Can J Microbiol 24:939–946PubMedGoogle Scholar
  31. Cappenberg ThE (1975 a) A study of mixed continuous cultures of sulfate-reducing and methane-producing bacteria. Microb Ecol 2:60–72Google Scholar
  32. Cappenberg ThE (1975 b) Relationships between sulfate-reducing and methane-producing bacteria. Plant Soil 43:125–139Google Scholar
  33. Cappenberg ThE (1978) Microenvironments for sulfate reduction and methane production in freshwater sediments. In: Krumbein WE (ed) Environ Biogeochem Geomicrobiol, vol. I. Ann Arbor Science, Ann ArborGoogle Scholar
  34. Chatarpaul L, Robinson JB, Kaushik NK (1979) Role of tubificid worms on nitrogen transformations in stream sediment. J Fish Res Board Can 36:673–678Google Scholar
  35. Chave KE (1970) Carbonate-organic interactions in sea water. In: Hood DW (ed) Organic matter in natural waters. Inst Mar Sci Occas Publ 1, pp 373–385Google Scholar
  36. Chen RL, Keeney DR, Graetz DA (1972) Nitrification in sediments of selected Wisconsin lakes. J Environ Qual 1:151–154Google Scholar
  37. Curtis EJC, Durrant K, Harman MMI (1975) Nitrification in rivers in the Trent basin. Water Res 9:255–268Google Scholar
  38. Dacey JWH, Klug MJ (1979) Methane efflux from lake sediments through water lilies. Science 203:1253–1255PubMedGoogle Scholar
  39. Denny P (1972) Sites of nutrient absorption in aquatic macrophytes. J Ecol 60:819–829Google Scholar
  40. Dieckert GB, Graf EG, Thauer RK (1979) Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum. Arch Microbiol 122:117–120Google Scholar
  41. Edwards RW, Rolley HLJ (1965) Oxygen consumption in river muds. J Ecol 59:1–19Google Scholar
  42. Einsele W (1938) Über chemische und kolloidchemische Vorgänge in Eisen-Phosphat-Systemen unter limnochemischen und limnogeologischen Gesichtspunkten. Arch Hydrobiol 33:361–387Google Scholar
  43. Ferguson AR, Bollard EG (1969) Nitrogen metabolism of Spirodela oligorrhiza. I. Utilization of ammonium, nitrate and nitrite. Planta 88:344–352Google Scholar
  44. Ferrante JG (1976) The characterization of phosphorus excretion products of a natural population of limnetic Zooplankton. Hydrobiologia 50:11–15Google Scholar
  45. Finke R, Seeley HW Jr (1978) Nitrogen fixation (acetylene reduction) by epiphytes of freshwater macrophytes. Appl Environ Microbiol 36:129–138PubMedGoogle Scholar
  46. Finstein MS, Strom PF, Matulewich VA (1978) Discussion of: R.J. Courchaine (1968) Significance of nitrification in stream analysis-effects on the oxygen balance. J Water Pollut Control Fed 40:835–847Google Scholar
  47. R.J. Courchaine (1968) Significance of nitrification in stream analysis-effects on the oxygen balance. J Water Pollut Control Fed 50:2055–2057Google Scholar
  48. Fischer WR, Baumann G (1978) Die Sorption von Phosphat an carbonatreichen Unterwasserböden. Z Pflanzenernaehr Bodenkd 141:607–620Google Scholar
  49. Fisher SG, Likens GE (1972) Stream ecosystems: organic energy budget. BioScience 22:33–35Google Scholar
  50. Focht DD, Verstraete W (1977) Biochemical ecology of nitrification and denitrification. In: Alexander M (ed) Advances in microbial ecology, vol I. Plenum, New York LondonGoogle Scholar
  51. Fogg GE (1971) Extracellular products of algae in freshwater. Arch Hydrobiol Beih Ergebn Limnol 5:1–25Google Scholar
  52. Fogg GE (1977) Excretion of organic matter by phytoplankton. Limnol Oceanogr 22:576–577Google Scholar
  53. Forsberg C (1977) Nitrogen as a growth factor in fresh water. Prog Water Tech 8:275–290Google Scholar
  54. Francko DA, Wetzel RG (1980) Cyclic adenosine-3′5′-monophosphate: production and extracellular release from green and blue-green algae. Physiol Plant 49:65–67Google Scholar
  55. Fuhrmann JA, Azam F (1980) Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl Environ Microbiol 39:1085–1095Google Scholar
  56. Fuhs GW, Demmerle SD, Canelli E, Chen M (1972) Characterization of phosphoruslimited plankton algae (with reflections on the limiting nutrient concept). In: Likens GE (ed) Nutrients and eutrophication: the limiting nutrient controversy. Spec Symp Am Soc Limnol Oceanogr 1:113–133Google Scholar
  57. Gallepp GW, Kitchell JF, Bartell SM (1978) Phosphorus release from lake sediments as effected by chironomids. Verh Int Ver Limnol 20:458–465Google Scholar
  58. Gamble DS, Schnitzer M (1974) The chemistry of fulvic acid and its reactions with metal ions. In: Singer P (ed) Trace Metals and Metal-Organic Interactions in Natural Waters. Ann Arbor Science, Ann ArborGoogle Scholar
  59. Garland JHN (1973) Nitrification in rivers: studies in the Trent basin. In: James A (ed) Symposium on the use of mathematical models in water pollution control, vol II. Wiley-Interscience, NewcastleGoogle Scholar
  60. Gersberg RM, Axler RP, Krohn K, Peek N, Goldman CR (1978) Nitrate uptake by phytoplankton: measurements utilizing the radiotracer 13N. Verh Int Ver Limnol 20:388–392Google Scholar
  61. Giesy JP Jr (1976) Stimulation of growth in Scenedesmus obliquus (Chlorophyceae) by humic acids under iron-limited conditions. J Phycol 12:172–179Google Scholar
  62. Gjessing ET (1976) Physical and chemical characteristics of aquatic humus. Ann Arbor Science, Ann ArborGoogle Scholar
  63. Gocke K (1970) Untersuchungen über Abgabe und Aufnahme von Aminosäuren und Polypeptiden durch Planktonorganismen. Arch Hydrobiol 67:285–367Google Scholar
  64. Godshalk GL, Wetzel RG (1978) Decomposition in the littoral zone of lakes. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, London New YorkGoogle Scholar
  65. Goering JJ (1972) The role of nitrogen in eutrophic processes. In: Mitchel R (ed) Water pollution microbiology. Wiley-Interscience, New YorkGoogle Scholar
  66. Golterman HL (1975) Physiological limnology. Elsevier, AmsterdamGoogle Scholar
  67. Graetz DA, Keeney DR, Aspiras RB (1973) Eh status of lake sediment-water systems in relation to nitrogen transformations. Limnol Oceanogr 18:908–917Google Scholar
  68. Granhall U, Lundgren A (1971) Nitrogen fixation in Lake Erken. Limnol Oceanogr 16:711–719Google Scholar
  69. Gregory E, Perry RS, Staley JT (1980) Characterization, distribution and significance of Metallogenium in Lake Washington. Microb Ecol 6:125–140Google Scholar
  70. Gregory SV (1978) Phosphorus dynamics on organic and inorganic substrates in streams. Verh Int Ver Limnol 20:1340–1346Google Scholar
  71. Groth P (1971) Untersuchungen über einige Spurenmetalle in Seen. Arch Hydrobiol 68:305–375Google Scholar
  72. Haan de H (1977) Effect of benzoate on microbial decomposition of fulvic acids in Tjeukemeer (The Netherlands). Limnol Oceanogr 22:38–44Google Scholar
  73. Hargrave BT, Green GH (1968) Phosphorus excretion by Zooplankton. Limnol Oceanogr 13:332–342Google Scholar
  74. Harris GP (1978) Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Arch Hydrobiol Beih Ergebn Limnol 10:1–171Google Scholar
  75. Harrison W (1978) Experimental measurement of nitrogen mineralization in coastal waters. Limnol Oceanogr 23:659–683Google Scholar
  76. Harrits SM, Hanson RS (1980) Stratification of aerobic methane-oxidizing organisms in Lake Mendota, Madison, Wis. Limnol Oceanogr 25:412–421Google Scholar
  77. Heath RT, Cooke GD (1975) The significance of alkaline phosphatase in a eutrophic lake. Verh Int Ver Limnol 19:959–965Google Scholar
  78. Hellebust JA (1974) Extracellular products. In: Stewart WDP (ed) Algal physiology and biochemistry. Bot Monogr 10:838–863Google Scholar
  79. Herrera J, Paneque A, Maldonado JM, Barea JL, Losada M (1972) Regulation by ammonia of nitrate reductase synthesis and activity in Chlamydomonas reinhardi. Biochem Biophys Res Commun 48:996–1003PubMedGoogle Scholar
  80. Herrmann V, Jüttner F (1977) Excretion products of algae. Anal Biochem 78:365–373PubMedGoogle Scholar
  81. Horne AJ (1977) Nitrogen fixation — a review of this phenomenon as a polluting process. Prog Water Tech 8:359–372Google Scholar
  82. Home AJ, Carmiggelt CJW (1975) Algal nitrogen fixation in California streams. I. Seasonal cycles. Freshwater Biol 5:461–470Google Scholar
  83. Horne AJ, Fogg GE (1970) Nitrogen fixation in some English lakes. Proc R Soc London Ser B 175:351–366Google Scholar
  84. Home AJ, Goldman CR (1972) Nitrogen fixation in Clear Lake, California. I. Seasonal variation and the role of heterocysts. Limnol Oceanogr 17:693–703Google Scholar
  85. Home AJ, Sandusky JC, Carmiggelt CJW (1979) Nitrogen fixation in Clear Lake, California. 3. Repetitive synoptic sampling of the spring Aphanizomenon blooms. Limnol Oceanogr 24:316–328Google Scholar
  86. Hough RA, Wetzel RG (1975) The release of dissolved organic carbon from submersed aquatic macrophytes: diel, seasonal, and community relationships. Verh Int Ver Limnol 19:939–948Google Scholar
  87. Hutchinson GE (1957–75) A treatise on limnology, vol I-III. Wiley and Sons, New YorkGoogle Scholar
  88. Jackson TA, Schindler DW (1975) The biogeochemistry of phosphorus in an experimental lake environment: evidence for the formation of humic-metal-phosphate complexes. Verh Int Ver Limnol 19:211–221Google Scholar
  89. Jansson M (1976) Phosphatases in lake water: characterization of enzymes from phytoplankton and Zooplankton by gel filtration. Science 194:320–321PubMedGoogle Scholar
  90. Jenkins D, Medsker LL, Thomas JF (1967) Odorous compounds in natural waters. Some sulfur compounds associated with blue-green algae. Environ Sci Technol 1:731–735Google Scholar
  91. Johannes RE (1964) Phosphorus excretion and body size in marine animals: microzooplankton and nutrient regeneration. Science 146:923–924PubMedGoogle Scholar
  92. Jordan MJ, Likens GE (1980) Measurement of planktonic bacterial production in an oligotrophic lake. Limnol Oceanogr 25:719–732Google Scholar
  93. Jüttner F (1981) Biologically active compounds released during algal blooms. Paper presented at: Verh Int Ver Limnol, Kyoto 21:227–230Google Scholar
  94. Jüttner F, Matuschek T (1978) The release of low molecular weight compounds by the phytoplankton in a eutrophic lake. Water Res 12:251–255Google Scholar
  95. Junge CE (1960) Sulfur in the atmosphere. J Geophys Res 69:227–237Google Scholar
  96. Kamp-Nielsen L (1974) Mud-water exchange of phosphate and other ions in undisturbed sediment cores and factors affecting the exchange rates. Arch Hydrobiol 73:218–237Google Scholar
  97. Kaplan LA, Goldman CR, Knight AW (1975) Phosphorus sorption in a phosphorus poor stream. Bull Ecol Soc Am 56:24Google Scholar
  98. Kaushik NK (1975) Decomposition of allochthonous organic matter and secondary production in stream ecosystems. In: Productivity of world ecosystems. Nat Acad Sci, Washington DCGoogle Scholar
  99. Kaushik NK, Hynes HBN (1971) The fate of dead leaves that fall into streams. Arch Hydrobiol 68:465–515Google Scholar
  100. Keeney DR (1973) The nitrogen cycle in sediment water systems. J Environ Qual 2:15–29Google Scholar
  101. Keeney DR, Chen RI, Graetz DA (1971) Importance of denitriflcation and nitrate reduction in sediments to nitrogen budgets of lakes. Nature (London) 233:66–67Google Scholar
  102. Keirn MA, Brezonik PL (1971) Nitrogen fixation by bacteria in Lake Mize, Florida, and in some lacustrine sediments. Limnol Oceanogr 16:720–731Google Scholar
  103. Kellar PE, Goldman CR (1979) A comparative study of nitrogen fixation by the Anabaena-Azollae symbiosis and free-living populations of Anabaena spp. in Lake Ngahewa, New Zeeland. Oecologia 43:269–281Google Scholar
  104. Kelly Robertson C (1979) Quantitative comparison of the significance of methane in the carbon cycles of two small lakes. Arch Hydrobiol Beih Ergebn Limnol 12:123–135Google Scholar
  105. Kessel van JF (1977) Factors affecting the denitriflcation rate in two water-sediment systems. Water Res 11:259–267Google Scholar
  106. Kirkman H, Griffith FB, Parker RR (1979) The release of reactive phosphate by a Posidonia australis seagrass community. Aquat Bot 6:329–337Google Scholar
  107. Klaveness D (1977) Morphology, distribution and significance of the manganese-accumulating microorganism Metallogenium in lakes. Hydrobiologia 56:25–33Google Scholar
  108. Krambeck C (1979) Application and limitations of the Michaelis-Menten equation in microbial ecology. Arch Hydrobiol Beih Ergebn Limnol 12:64–76Google Scholar
  109. Ku WC, Digiano FA, Feng TH (1978) Factors affecting phosphate adsorption equilibria in lake sediments. Water Res 12:1069–1974Google Scholar
  110. Kuenzler EJ, Perras JP (1965) Phosphatases of marine algae. Biol Bull Woods Hole Mass 128:271–284Google Scholar
  111. Kusnetsov SI (1968) Recent studies on the role of microorganisms in the cycling of substances in lakes. Limnol Oceanogr 13:211–224Google Scholar
  112. Kusnezov SI (1959) Die Rolle der Mikroorganismen im Stoffkreislauf der Seen. Deutscher Verlag der Wissenschaften, LeipzigGoogle Scholar
  113. Lännergren C, Lundgren A (1974) Acetylene reduction and primary production in Lake Erken. Oikos 25:365–369Google Scholar
  114. Lam CWY, Vincent WF, Silvester WB (1979) Nitrogenase activity of nitrogen fixation by freshwater benthic blue-green algae. NZ J Mar Freshwater Res 13:187–192Google Scholar
  115. Lamarra VA Jr (1975) Digestive activities of carp as a major contributor to the nutrient loading of lakes. Verh Int Ver Limnol 19:2461–2468Google Scholar
  116. Lampert W (1978) Release of dissolved organic carbon by grazing Zooplankton. Limnol Oceanogr 23:831–834Google Scholar
  117. Larow EJ, McNaught DC (1978) Systems and organismal aspects of phosphorus remineralization. Hydrobiologia 59:151–154Google Scholar
  118. Lean DRS (1973) Phosphorus dynamics in lake water. Science 179:678–680PubMedGoogle Scholar
  119. Lee K, Nalewajko C (1978) Photosynthesis, extracellular release and glycollic acid uptake by plankton: fractionation studies. Verh Int Ver Limnol 20:257–262Google Scholar
  120. Levine S (1975) Orthophosphate concentration and flux within the epilimnion of two Canadian Shield lakes. Verh Int Ver Limnol 19:624–629Google Scholar
  121. Li WC, Armstrong DE, Williams JDH, Harris RF, Syers JK (1972) Rate and extent of inorganic phosphate exchange in lake sediments. Soil Sci Am Proc 36:279–285Google Scholar
  122. Likens GE (ed) (1972) Nutrients and eutrophication: the limiting nutrient controversy, Spec Symp. Am Soc Limnol Oceanogr 1:1–328Google Scholar
  123. Lindström K (1980) Peridinium cinctum bioassay of Se in Lake Erken. Arch Hydrobiol 89:110–117Google Scholar
  124. Littlefield L, Forsberg C (1965) Absorption and translocation of phosphorus-32 by Chara globularis (Thuill.). Physiol Plant 18:291–296Google Scholar
  125. Lovelock JE, Maggs RJ, Rasmussen RA (1972) Atmospheric dimethyl sulfide and the natural sulfur cycle. Nature (London) 237:252–253Google Scholar
  126. Lundgren DG, Dean W (1979) Biogeochemistry of iron. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, AmsterdamGoogle Scholar
  127. Marxsen J (1980) Untersuchungen zur Ökologie der Bakterien in der fließenden Welle von Bächen. I. Chemismus, Primärproduktion, CO2-Dunkelfixierung und Eintrag von partikulärem organischem Material. Arch Hydrobiol Suppl 57:461–533Google Scholar
  128. McCracken MD, Middaugh RE, Middaugh RS (1980) A chemical characterization of an algal inhibitor obtained from Chlamydomonas. Hydrobiologia 70:271–276Google Scholar
  129. McGregor AN, Keeney DR, Chen KL (1973) Nitrogen fixation in lake sediments: contribution to nitrogen budget of Lake Mendonta. Environ Lett 4:21–26Google Scholar
  130. McKnight DM, Morel FMM (1979) Release of weak and strong copper complexing agents by algae. Limnol Oceanogr 24:823–838Google Scholar
  131. McKnight DM, Morel FMM (1980) Copper complexation by siderophores from filamentous blue-green algae. Limnol Oceanogr 25:62–71Google Scholar
  132. McRoy CP, Barsdate RJ (1970) Phosphate absorption in eelgrass. Limnol Oceanogr 15:6–13Google Scholar
  133. Melchiorri-Santolini U, Hopton JW (eds) (1972) Detritus and its role in aquatic ecosystems. Mem Ist Ital Idrobiol Suppl 29Google Scholar
  134. Merek EL (1973) Imaging and life detection. Bio Sci 23:364–371Google Scholar
  135. Meyer JL (1979) The role of sediments and bryophytes in phosphorus dynamics in a headwater stream ecosystem. Limnol Oceanogr 24:365–375Google Scholar
  136. Meyer JL (1980) Dynamics of phosphorus and organic matter during leaf decomposition in a forest stream. Oikos 34:44–53Google Scholar
  137. Monheimer RH (1975) Planktonic microbial heterotrophy: its significance to community biomass production. Verh Int Ver Limnol 19:2658–2663Google Scholar
  138. Morgan JJ, Stumm W (1965) The role of multivalent metal oxides in limnological transformations as examplifîed by iron and manganese. Proc 2nd Int Water Pollut Res Conf Tokyo, JapanGoogle Scholar
  139. Morris I (ed) (1980) The physiological ecology of phytoplankton. Studies in ecology, vol VII. Blackwell, OxfordGoogle Scholar
  140. Müller U (1977) Stoffhaushalt, Phytoplankton und Primärproduktion in drei ostholsteinischen Seen unterschiedlichen Trophiegrades. Dissertation, Univ KielGoogle Scholar
  141. Murphy TP, Lean DRS, Nalewajko C (1976) Blue-green algae: Their excretion of ironselective chelators enables them to dominate other algae. Science 192:900–902PubMedGoogle Scholar
  142. Nalewajko C, Lean DRS (1978) Phosphorus kinetics — algal growth relationships in batch cultures. Mitt Int Ver Limnol 21:184–192Google Scholar
  143. Nalejwajko C, Schindler DW (1976) Primary production, extracellular release, and heterotrophy in two lakes in the ELA, Northwestern Ontario. J Fish Res Board Can 33:219–226Google Scholar
  144. Nedwell DB (1975) Inorganic nitrogen metabolism in a eutrophicated tropical mangrove estuary. Water Res 9:221–232Google Scholar
  145. Neuland H, Schrimpff E, Herrmann R (1978) Zur Änderung der Spurenmetallgehalte im fließenden Wasserkörper und in den Sedimenten entlang eines Flußabschnittes des Roten Mains in Abhängigkeit von Redoxpotential, pH und anderen Einflußgrößen. Catena 5:19–31Google Scholar
  146. Nichols DS, Keeney DR (1976) Nitrogen nutrition of Myriophyllum spicatum: uptake and translocation of 15N by shoots and roots. Freshwater Biol 6:145–154Google Scholar
  147. Niewolak S, Korycka A, Potocka E (1978) Ammonification processes in fertilized lakes. Ekol Pol 26:555–572Google Scholar
  148. Nowak KE (1975) Die Bedeutung des Zooplanktons für den Stoffhaushalt des Schierensees. Arch Hydrobiol 75:149–224Google Scholar
  149. Nriagu JO (ed) (1980 a) Cadmium in the environment. Wiley and Sons, New YorkGoogle Scholar
  150. Nriagu JO (ed) (1980 b) Zinc in the environment. Wiley and Sons, New YorkGoogle Scholar
  151. Nriagu JO, Coker RD, Kemp ALW (1979) Thiosulfate, polythionates and rhodanese activity in Lakes Erie and Ontario sediments. Limnol Oceanogr 24:383–389Google Scholar
  152. Ogawa RE, Carr JF (1969) The influence of nitrogen on heterocyst production in bluegreen algae. Limnol Oceanogr 14:342–351Google Scholar
  153. Ohle W (1937) Kolloidgele als Nährstoffregulanten der Gewässer. Naturwissenschaften 25:471–474Google Scholar
  154. Ohle W (1954) Sulfat als „Katalysator“ des limnischen Stoffkreislaufes. Vom Wasser 21:13–32Google Scholar
  155. Ohle W (1958) Die Stoffwechseldynamik der Seen in Abhängigkeit von der Gasausscheidung ihres Schlammes. Wasser 25:127–149Google Scholar
  156. Ohle W (1962) Der Stoffhaushalt der Seen als Grundlage einer allgemeinen Stoffwechseldynamik der Gewässer. Kiel Meeresforsch 18:107–120Google Scholar
  157. Olsen S (1958) Phosphate adsorption and isotopic exchange in lake muds. Experiments with P-32. Preliminary report. Verh Int Ver Limnol 13:915–922Google Scholar
  158. Orebamjo TO, Stewart GR (1975) Ammonium inactivation of nitrate reductase in Lemna minor L. Planta 122:37–44Google Scholar
  159. Överbeck J (1979) Dark CO2 uptake — biochemical background and its relevance to in situ bacterial production. Arch Hydrobiol Beih Ergebn Limnol 12:38–47Google Scholar
  160. Overbeck J, Daley RJ (1973) Some precautionary comments on the Romanenko technique for estimating heterotrophic bacterial production. Bull Ecol Res Commun (Stockholm) 17:342–344Google Scholar
  161. Paerl HW (1979) Optimization of carbon dioxide and nitrogen fixation by the blue-green alga Anabaena in freshwater blooms. Oecologia 38:275–290Google Scholar
  162. Paerl HW, Lean DRS (1976) Visual observations of the uptake of phosphorus by lake-water plankton. J Fish Res Board Can 33:2805–2813Google Scholar
  163. Painter HA (1970) A review of literature of inorganic nitrogen metabolism in microorganisms. Water Res 4:393–450Google Scholar
  164. Painter HA (1977) Microbial transformations of inorganic nitrogen. Prog Water Technol 8:3–29Google Scholar
  165. Parker JI, Conway HL, Yaguchi EM (1977) Dissolution of diatom frustules and recycling of amorphous silicon in Lake Michigan. J Fish Res Board Can 34:545–551Google Scholar
  166. Parsons TR, Strickland JDH (1962) On the production of particulate organic carbon by heterotrophic processes in sea water. Deep Sea Res 8:211–222Google Scholar
  167. Patrick R (1978) Effects of trace metals in the aquatic ecosystem. Am Sci 66:185–191Google Scholar
  168. Payne WJ (1973) Reduction of nitrogenous oxides by microorganisms. Bacteriol Rev 37:410–452Google Scholar
  169. Penhale PA, Smith WO Jr (1977) Excretion of dissolved organic carbon by eelgrass (Zostera marina) and its epiphytes. Limnol Oceanogr 22:400–403Google Scholar
  170. Peters RH (1977) Availability of atmospheric orthophosphate. J Fish Res Board Can 34:918–924Google Scholar
  171. Peters RH (1978) Concentrations and kinetics of phosphorus fractions in water from streams entering Lake Memphremagog. J Fish Res Board Can 35:315–328Google Scholar
  172. Peters RH (1979) Concentrations and kinetics of phosphorus fractions along the trophic gradient of Lake Memphremagog. J Fish Res Board Can 36:970–979Google Scholar
  173. Peters RH, Lean DRS (1973) The characterization of soluble phosphorus released by limnetic Zooplankton. Limnol Oceanogr 18:270–279Google Scholar
  174. Prentki RT, Adams MS (1979) The phosphorus budget of the littoral zone of Lake Wingra, Wisconsin. 42nd Meet Am Soc Limnol Oceanogr, Stony Brook, New YorkGoogle Scholar
  175. Reddy MM (1975) Kinetics of calcium carbonate formations. Verh Int Ver Limnol 19:429–438Google Scholar
  176. Reichardt W, Overbeck J, Steubing L (1967) Free dissolved enzymes in lake waters. Nature (London) 216:1345–1347Google Scholar
  177. Rhee GY (1973) A continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus sp. J Phycol 9:495–506Google Scholar
  178. Rich PH, Wetzel RG (1978) Detritus in the lake ecosystem. Am Nat 112:57–71Google Scholar
  179. Rigler FH (1973) A dynamic view of the phosphorus cycle in lakes. In: Griffith et al. (eds) Environmental phosphorus handbook. Wiley and Sons, New YorkGoogle Scholar
  180. Robb F, Davies BR, Cross R, Kenyon C, Howard-Williams C (1979) Cellulolytic bacteria as primary colonizers of Potamogeton pectinatus L. (sago pond weed) from a brackish south-temperate coastal lake. Microb Ecol 5:167–177Google Scholar
  181. Romanenko VI (1964) Heterotroph CO2 assimilation by bacterial flora of water. Mikrobiol 33:679–683 (in Russian), quoted in Overbeck and Daley (1973)Google Scholar
  182. Roth JC, Horne AJ (1981) Algal nitrogen fixation and microcrustacean abundance: an unregarded interrelationship between zoo- and phytoplankton. Verh Int Ver Limnol, Kyoto 21:333–338Google Scholar
  183. Rudd JWM, Hamilton RD (1978) Methane cycling in a eutrophic Shield lake and its effect on whole lake metabolism. Limnol Oceanogr 23:337–348Google Scholar
  184. Rudd JWM, Furutani A, Flett RJ, Hamilton RD (1976) Factors controlling methane oxidation in Shield lakes. The role of nitrogen fixation and oxygen concentration. Limnol Oceanogr 21:357–364Google Scholar
  185. Russo RC, Smith CF, Thurston RU (1974) Acute toxicity of nitrite to rainbow trout (Salmo gairdneri). J Fish Res Board Can 31:1653–1655Google Scholar
  186. Ruttner F (1938) Limnologische Studien an einigen Seen der Ostalpen. Arch Hydrobiol 32:167–319Google Scholar
  187. Saunders GW (1972) The transformation of artificial detritus in lake water. Mem Ist Ital Idrobiol Suppl 29:261–288Google Scholar
  188. Schindler DW, Brunskill GJ, Emerson S, Broecker WS, Peng TH (1972) Atmospheric carbon dioxide: its role in maintaining phytoplankton standing crops. Science 177:1192–1194PubMedGoogle Scholar
  189. Schindler DW, Lean DRS, Fee EJ (1975) Nutrient cycling in freshwater ecosystems. In: Productivity of world ecosystems. Natl Acad Sci, Washington DCGoogle Scholar
  190. Schindler JE, Williams DJ, Zimmerman AP (1976) Investigation of extracellular electron transport by humic acids. In: Nriagu JO (ed) Environmental biogeochemistry, vol I. Carbon, nitrogen, phosphorus, sulfur and selenium cycles. Ann Arbor Science, Ann ArborGoogle Scholar
  191. Schmidt WD (1979) Morphologie und Physiologie manganoxidierender Mikroorganismen. Kultur und in situ Untersuchungen zur ökologisch-mikrobiologischen Charakterisierung von Metallogenium sp. und Siderocapsa geminata im Plussee. Dissertation, Univ KielGoogle Scholar
  192. Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123:105–107PubMedGoogle Scholar
  193. Schweisfurth R (1973) Manganoxidierende Bakterien. Z Bakteriol I 233:257–270Google Scholar
  194. Schweisfurth R, Eleftheriadis D, Gundlach H, Jacobs M, Jung W (1978) Microbiology of the precipitation of manganese. In: Krumbein WE (ed) Environmental biogeochemistry and geomicrobiology, vol III. Methods, metals and assessment. Ann Arbor Science, Ann ArborGoogle Scholar
  195. Schwoerbel J, Tillmanns GC (1972) Ammonium-Adaptation bei submersen Phanerogamen in situ. Arch Hydrobiol Suppl 42:139–141Google Scholar
  196. Schwoerbel J, Tillmanns GC (1977) Nitrataufnahme aus dem Wasser und Nitratreduktase-Aktivität bei Fontinalis antipyretica L. im Hell-Dunkel-Wechsel. Arch Hydrobiol Suppl 48:412–423Google Scholar
  197. Sharp JH (1977) Excretion of organic matter by marine phytoplankton: do healthy cells do it? Limnol Oceanogr 22:381–399Google Scholar
  198. Sheridan RP (1973) Hydrogen sulfide production by Synechococcus lividus Y 52-s1. J Phycol 9:445–457Google Scholar
  199. Smith CS, Adams MS, Schmitt MR, Adams SS (1978) Phosphorus in the water, sediment, and vegetation of the Crnojvića River, Montenegro, Yugoslavia. Verh Int Ver Limnol 20:1536–1542Google Scholar
  200. Søndergaard M, Sand-Jensen K (1979) Carbon uptake by leaves and roots of Littorella uniflora (L.) Aschers. Aquat Bot 6:1–12Google Scholar
  201. Sorokin YuI (1970) Interrelations between sulphur and carbon turnover in meromictic lakes. Arch Hydrobiol 66:391–446Google Scholar
  202. Stabel HH (1977) Gebundene Kohlenhydrate als stabile Komponenten im Schöhsee und in Scenedesmus-Kultmen. Arch Hydrobiol Suppl 53:159–254Google Scholar
  203. Stabel HH (1981) In situ studies on the estimation of the heterotrophic bacterial activity using two types of substrates. Verh Int Ver Limnol, Kyoto 21:1359–1364Google Scholar
  204. Stabel HH, Moaledj K, Overbeck J (1979) On the degradation of dissolved organic molecules from Plußsee by oligocarbophilic bacteria. Arch Hydrobiol Beih Ergebn Limnol 12:95–104Google Scholar
  205. Steinberg C (1977) Schwer abbaubare, stickstoffhaltige gelöste organische Substanzen im Schöhsee und in Algenkulturen. Arch Hydrobiol Suppl 53:48–158Google Scholar
  206. Steinberg C (1978) Freisetzung gelösten organischen Kohlenstoffs (DOC) verschiedener Molekülgrößen in Planktongesellschaften. Arch Hydrobiol 82:155–165Google Scholar
  207. Steinberg C (1980) Species of dissolved metals derived from oligotrophic hard water. Water Res 14:1239–1250Google Scholar
  208. Steinberg C, Herrmann A (1981) Utilization of dissolved metal organic compounds by freshwater microorganisms. Verh Int Ver Limnol, Kyoto, 21:231–235Google Scholar
  209. Steinberg C, Schrimpf A (1980) Phosphoranalytik — ein gelöstes Problem? Vom Wasser 55:295–302Google Scholar
  210. Sternik KH (1978) Eine Methode zur kontinuierlichen Bestimmung der Phosphatexkretion von Fischen unter Verwendung eines Anionenaustauscherharzes. Arch Hydrobiol Suppl 55:24–61Google Scholar
  211. Stewart WDP (1979) N2-Fixation and photosynthesis in microorganisms. In: Gibbs M, Latzko E (eds) Photosynthesis IL Encyclopedia of plant physiology new ser vol VI. Springer, Berlin Heidelberg New YorkGoogle Scholar
  212. Stewart WDP, Pemble M, Al-Ugaily L (1978) Nitrogen and phosphorus storage and utilization in blue-green algae. Mitt Int Ver Limnol 21:224–247Google Scholar
  213. Stumm W, Bilinski H (1972) Trace metals in natural waters. Difficulties of interpretation arising from our ignorance on their speciation. In: Jenkins SH (ed) Advances in water pollution research. Pergamon, Oxford New YorkGoogle Scholar
  214. Stumm W, Morgan JJ (1970) Aquatic chemistry. Wiley and Sons, New YorkGoogle Scholar
  215. Suberkropp K, Klug MJ, Cummins KW (1975) Community processing of leaf litter in woodland streams. Verh Int Ver Limnol 19:1653–1685Google Scholar
  216. Sullivan CW (1979) Diatom mineralization of silicic acid. IV. Kinetics of soluble Si pool formation in exponentially growing and synchronized Navicula pelliculosa. J Phycol 15:210–216Google Scholar
  217. Sunda W, Guillard RRL (1976) The relationship between cupric ion activity and the toxicity of copper to phytoplankton. J Mar Res 34:511–529Google Scholar
  218. Swallow KC, Westall JC, McKnight DM, Morel NML, Morel FMM (1978) Potentiometric determination of copper complexation by phytoplankton exudates. Limnol Oceanogr 23:538–542Google Scholar
  219. Syrett PJ, Leftley JW (1976) Nitrate and urea assimilation by algae. In: Sunderland N (ed) Perspectives in experimental biology, vol II. Pergamon, Oxford New YorkGoogle Scholar
  220. Tessenow U (1966) Untersuchungen über den Kieselsäurehaushalt der Binnengewässer. Arch Hydrobiol Suppl 32:1–136Google Scholar
  221. Tessenow U (1972) Lösungs-, Diffusions- und Sorptionsprozesse in der Oberschicht von Seesedimenten. I. Ein Langzeitexperiment unter aeroben and anaeroben Bedingungen im Fließgleichgewicht. Arch Hydrobiol Suppl 38:353–398Google Scholar
  222. Tessenow U (1979) Die Wechselwirkungen zwischen Sediment und Wasser in ihrer Bedeutung für den Nährstoffhaushalt von Seen. Z Wasser Abwasserforsch 12:29–36Google Scholar
  223. Titman D (1976) Ecological competition between algae. Experimental confirmation of resource-based competition theory. Science 192:463–465PubMedGoogle Scholar
  224. Toetz DW (1974) Uptake and translocation of ammonia by freshwater hydrophytes. Ecology 55:199–201Google Scholar
  225. Toetz DW, Cole B (1980) Ammonia mineralization and cycling in Shagawa Lake, Minnesota. Arch Hydrobiol 88:9–23Google Scholar
  226. Twilley RR, Brinson MM, Davis GJ (1977) Phosphorus absorption, translocation, and secretion in Nuphar luteum. Limnol Oceanogr 22:1022–1032Google Scholar
  227. Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters with particular reference to nitrogen and phosphorous as factors in eutrophication. Tech Rep DAS/CSI/68.27. Organ Econ Coop Dev (OECD) ParisGoogle Scholar
  228. Werner D (1977) Silicate metabolism. In: Werner D (ed) The biology of diatoms. Botanical monographs, vol XIII. Blackwell, OxfordGoogle Scholar
  229. Werzenak CT, Gannon JJ (1968) Evaluation of nitrification in streams. J Sanit Eng Div Am Soc Div Eng 94:883–995Google Scholar
  230. Wetzel RG (1968) Dissolved organic matter and phytoplankton productivity in marl lakes. Mitt Int Ver Limnol 14:261–270Google Scholar
  231. Wetzel RG (1972) The role of carbon in hard-water marl lakes. In: Likens GE (ed) Nutrients and eutrophication: the limiting nutrient controversy. Spec Symp. Am Soc Limnol Oceanogr 1:84–97Google Scholar
  232. Wetzel RG (1975) Limnology. Saunders, Philadelphia London TorontoGoogle Scholar
  233. Wetzel RG (1979) The role of the littoral zone and detritus in lake metabolism. Arch Hydrobiol Beih Ergebn Limnol 13:145–161Google Scholar
  234. Wetzel RG, Manny BA (1972 a) Secretion of dissolved organic carbon and nitrogen by aquatic macrophytes. Verh Int Ver Limnol 18:162–170Google Scholar
  235. Wetzel RG, Manny BA (1972 b) Decomposition of dissolved organic carbon and nitrogen compounds from leaves in an experimental hard-water stream. Limnol Oceanogr 17:927–931Google Scholar
  236. Wetzel RG, Otsuki A (1974) Allochthonous organic carbon of a marl lake. Arch Hydrobiol 73:31–56Google Scholar
  237. Wetzel RG, Penhale PA (1979) Transport of carbon and excretion of dissolved organic carbon by leaves and roots/rhizomes in seagrasses and their epiphytes. Aquat Bot 6:149–158Google Scholar
  238. Wetzel RG, Rich PH (1973) Carbon in freshwater systems. In: Woodwell GM, Pecan EV (eds) Carbon in the biosphere. Brookhaven Symp Biol 24. Springsfîeld, VirginiaGoogle Scholar
  239. Wheeler P, North B, Littler M, Stephens G (1977) Uptake of glycine by natural phytoplankton populations. Limnol Oceanogr 22:900–910Google Scholar
  240. White E, Payne G (1980) Distribution and biological availability of reactive high molecular weight phosphorus in natural waters in New Zealand. Can J Fish Aquat Sci 37:664–669Google Scholar
  241. Williams JD, Syers JK, Harris RF, Armstrong DE (1970) Adsorption and desorption of inorganic phosphorus by lake sediments in a 0.1 M NaCl system. Environ Sci Technol 4:517–519Google Scholar
  242. Williams JDH, Murphy TP, Mayer T (1976) Rates of phosphorus forms in Lake Erie sediments. J Fish Res Board Can 33:430–439Google Scholar
  243. Wilson AL (1979) Trace metals in waters. Philos Trans R Soc London Ser B 228:25–39Google Scholar
  244. Witzel KP (1973) Untersuchungen zur Physiologie heterotropher Nitrifikanten und ihr Vorkommen in ostholsteinischen Seen. Dissertation, Univ KielGoogle Scholar
  245. Witzel KP, Overbeck J (1979) Heterotrophic nitrification by Arthrobacter sp. (strain 9006) as influenced by different cultural conditions, growth state and acetate metabolism. Arch Microbiol 122:137–143Google Scholar
  246. Wium-Andersen S (1971) Photosynthetic uptake of free CO2 by roots of Lobelia dortmanna. Physiol Plant 25:245–248Google Scholar
  247. Wolfe JM, Rice EL (1979) Allelopathic interactions among algae. J Chem Ecol 5:533–542Google Scholar
  248. Wright RT, Hobbie JE (1966) Use of glucose and acetate by bacteria in aquatic ecosystems. Ecology 47:447–464Google Scholar
  249. Zaiss U (1976) Physiologische und ökologische Untersuchungen zur Regulation der Phosphatspeicherung bei Oscillatoria redekei. Dissertation, Univ KielGoogle Scholar
  250. Zaiss U, Kaltwasser H (1979) Über den Einfluß wasserbaulicher Maßnahmen auf die mikrobiologische Gasproduktion in Fließgewässersedimenten. Arch Hydrobiol 87:314–326Google Scholar
  251. Zevenboom W, Mur LR (1978) On nitrate uptake by Oscillatoria agardhii. Verh Int Ver Limnol 20:2302–2307Google Scholar
  252. Ziegler H (1979) Diskriminierung von Kohlenstoff- und Wasserstoffisotopen: Zusammenhänge mit dem Photosynthesemechanismus und den Standortbedingungen. Ber Dtsch Bot Ges 92:162–184Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1983

Authors and Affiliations

  • A. Melzer
  • Ch. Steinberg

There are no affiliations available

Personalised recommendations