Skip to main content

Plant Life Forms and Their Carbon, Water and Nutrient Relations

  • Chapter

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / B))

Abstract

The vegetation of the earth is characterized by distinct zones which have a rather uniform physiognomical appearance or structure even though they may be composed of many different plant species, genera, and families and may have a very different evolutionary history. The classic example of such “convergence” of morphological structure in a plant community is the evergreen sclerophyllous vegetation of the mediterranean-type climates (Grisebach 1872), but also the rain forest, the tropical and temperate grasslands, the savannahs or boreal forests and other formation types (Whittaker 1973) may be considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allessio ML, Tieszen LL (1978) Translocation and allocation of 14C-photoassimilate by Dupontia fisheri. In: Tieszen LL (ed) Vegetation and production ecology of an Alaskan arctic tundra. Ecol Stud Vol 29. Springer, Berlin Heidelberg New York, pp 393–413

    Google Scholar 

  • Ando T, Chiba K, Nishimura T, Tanimoto T (1977) Temperate fir and hemlock forests in Shikoku. In: Shidei T, Kira T (eds) Primary productivity of Japanese forests. JIBP Synthesis Vol 16. Univ Press, Tokyo, pp 213–245

    Google Scholar 

  • Axelrod DI (1966) Origin of deciduous and evergreen habits in temperate forests. Evolution 20:1–15

    Google Scholar 

  • Balding FR, Cunningham GL (1974) The influence of soil water potential on the perennial vegetation of a desert arroyo. Southwest Nat 19:241–248

    Google Scholar 

  • Benecke P (1976) Soil water relations and water exchange of forest ecosystems. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Ecol Stud Vol. 19 Springer, Berlin Heidelberg New York, pp 101–132

    Google Scholar 

  • Best KF, Macintyre GI (1975) The biology of Canadian weeds. 9. Thlaspi arvense L. Can J Plant Sci 55:279–292

    Google Scholar 

  • Billings WD (1974) Adaptations and origins of alpine plants. Arct Alp Res 6:129–142

    Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529

    Google Scholar 

  • Björkman O, Ludlow MM, Morrow PA (1972) Photosynthetic performance of two rainforest species in their native habitat and analysis of their gas exchange. Carnegie Inst Yearb 72:94–102

    Google Scholar 

  • Bonnemann A, Röhrig E (1972) Baumartenwahl, Bestandesgründung und Bestandespflege. Waldbau auf ökologischer Grundlage, Vol 2. Parey, Hamburg, Berlin

    Google Scholar 

  • Bornkamm R (1970) Über den Einfluß der Konkurrenz auf die Substanzproduktion und den N-Gehalt der Wettbewerbspartner. Flora 159:84–104

    Google Scholar 

  • Boysen-Jensen P (1932) Die Stoffproduktion der Pflanzen. Fischer, Jena

    Google Scholar 

  • Brougham RW (1958) Interception of light by the foliage of pure and mixed stands of pasture plants. Aust J Agric Res 9:39–52

    Google Scholar 

  • Brouwer R (1963) Some aspects of the equilibrium between overground and underground plant parts. Jaarb Inst Biol Scheikd Onderzoek (IBS) pp 31–39

    Google Scholar 

  • Brown LF (1974) Photosynthesis of two important grasses of the shortgrass prairie as affected by several ecological variables. PhD Thesis, Colo State Univ, Fort Collins

    Google Scholar 

  • Brown LF, Trlica MJ (1977) Interacting effects of soil water, temperature and irradiance on CO2 exchange rates of two dominant grasses of the shortgrass prairie. J Appl Ecol 14:197–204

    Google Scholar 

  • Burrows WH (1976) Aspects of nutrient cycling in semi-arid Mallee and Mulga communities. PhD Thesis, Aust Natl Univ, Canberra

    Google Scholar 

  • Caldwell MM (1979) Plant life and ultraviolet radiation: some perspective in the history of the earth’s climate. Biol Sci 29:520–525

    Google Scholar 

  • Caldwell MM, White RS, Moore RT, Camp LM (1977) Carbon balance, productivity, and water use of cold-winter desert shrub communities dominated by C3 and C4 species. Oecologia 29:275–300

    Google Scholar 

  • Candolle De AP (1818) Regni vegetabilis systema naturale Vol I. Treuttel et Würtz, Paris

    Google Scholar 

  • Chapman SB, Webb NR (1978) The productivity of a Calluna heathland in Southern England. In: Heal OW, Perkins DF (eds) Production ecology of British moors and montane grasslands. Ecol Stud Vol 27. Springer, Berlin Heidelberg New York, pp 247–269

    Google Scholar 

  • Chew RM, Chew AE (1965) The primary productivity of a desert-shrub (Larrea tridentata) community. Ecol Monogr 35:355–375

    Google Scholar 

  • Christie EK (1978) Ecosystem processes in semi-arid grasslands. I. Primary production and water use of two communities possessing different photosynthetic pathways. Aust J Agric Res 29:773–787

    Google Scholar 

  • Claussen W, Lenz F (1979) Die Bedeutung des Assimilatstaus in den Blättern für die Regulierung der Nettophotosyntheserate bei Auberginen (Solanum melongena L). Angew Bot 53:41–52

    CAS  Google Scholar 

  • Clements FE (1920) Plant indicators. The relation of plant communities to process and practice. Carnegie Inst Washington Publ 290

    Google Scholar 

  • Dale HM (1974) The biology of Canadian weeds. 5. Daucus carota. Can J Plant Sci 54:673–685

    Google Scholar 

  • Day W, Legg BJ, French BK, Johnston AE, Lawlor DW, Jeffers WDeC (1978) A drought experiment using mobile shelters: The effect of drought on barley yield, water use and nutrient uptake. Agric Sci 91:599–623

    Google Scholar 

  • Detling JK (1979) Processes controlling blue grama production on the short grass prairie. In: French NR (ed) Perspectives in grassland ecology, Ecol Stud Vol 32. Springer, Berlin Heidelberg New York, pp 25–42

    Google Scholar 

  • DeWit CT (1978) Simulation of assimilation, respiration and transpiration of crops. Simulation Monographs. PUDOC, Wageningen

    Google Scholar 

  • Dodd JL, Lauenroth WK (1979) Analysis of the response of a grassland ecosystem to stress. In: French NR (ed) Perspectives in grassland ecology. Ecol Stud Vol 32. Springer, Berlin Heidelberg New York, pp 43–58

    Google Scholar 

  • Doanald CM (1963) Competition among crop and pasture plants. Adv Agron 15:1–118

    Google Scholar 

  • Donald CM, Hamblin J (1976) The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv Agron 28:361–405

    Google Scholar 

  • Drude O (1887) Die systematische und geographische Anordnung der Phanerogamen. In: Schenk A (ed) Handbuch der Botanik Vol III/2. Trewendt, Breslau, pp 175–496

    Google Scholar 

  • Drude O (1928) Pflanzengeographische Ökologie. In: Abderhalden’s Handbuch der biologischen Arbeitsmethoden, Abt XI. Urban and Schwarzenberg, Berlin Wien, pp 1–56

    Google Scholar 

  • Duvigneaud P, Kestemont P, Ambroes P (1971) Primary productivity of the temperate deciduous forests of Western Europe. In: Duvigneaud P (ed) Productivity of forest ecosystems. UNESCO, Paris, pp 259–270

    Google Scholar 

  • Eagles CF (1973) Effect of light intensity on growth of natural populations of Dactylis glomerata L. Ann Bot (London) 37:253–262

    Google Scholar 

  • Ellenberg H (1978) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht, 2nd edn. Ulmer, Stuttgart

    Google Scholar 

  • El-Sharkawy M, Hesketh J, Muramoto H (1968) Leaf photosynthetic rates and other growth characteristics among 26 species of Gossypium. Crop Sci 8:670–674

    Google Scholar 

  • Evans LT, Dunstone RJ (1970) Some physiological aspects of evolution in wheat. Aust J Biol Sci 23:725–738

    Google Scholar 

  • Evans LT, Bingham J, Jackson P, Sutherland J (1972) Effects of awns and drought on the supply of photosynthate and its distribution within wheat ears. Ann Appl Biol 70:67–76

    Google Scholar 

  • Evenari M, Shanan L, Tadmor N (1971) The Negev. The challenge of a desert. Harvard Univ Press, Cambridge, Mass

    Google Scholar 

  • Evenari M, Lange OL, Schulze E-D, Kappen L, Buschbom U (1977) Net photosynthesis, dry matter production, and phenological development of apricot trees (Prunus armeniaca L.) cultivated in the Negev Highlands (Israel). Flora 166:383–414

    CAS  Google Scholar 

  • Ewers FW, Schmid R (1981) Longevity of needle fascicles of Pinus longaeva (Bristlecone Pine) and other North American pines. Oecologia 51:107–115

    Google Scholar 

  • Farrar JF (1980) Allocation of carbon to growth, storage and respiration in the vegetative barley plant. Plant Cell Environ 3:97–106

    CAS  Google Scholar 

  • Fekete G, Szujkó-Lacza J (1971) A survey of the plant life-form systems and the respective research approaches. III. Raunkiaer’s life-form concept. The application of life-forms in the characterization of phytoclimate and vegetation analysis. Ann Hist Nat Mus Nat Hung Botanica 63:37–50

    Google Scholar 

  • Fischer RA (1975) Future role of physiology in wheat breeding. In: Johnson VA (ed) Proc 2nd international winter wheat congress. Univ Neb Misc Publ 32:178–196

    Google Scholar 

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29:897–912

    Google Scholar 

  • Fischer RA, Turner NC (1978) Plant productivity in the arid and semiarid zones. Ann Rev Plant Physiol 29:277–317

    CAS  Google Scholar 

  • Fonda RW, Bliss LC (1966) Annual carbohydrate cycle of alpine plants on Mt Washington, New Hampshire. Bull Torrey Bot Club 93:268–277

    Google Scholar 

  • Fritschen LJ, Hsia J, Doraiswamy P (1977) Evapotranspiration of a douglas fir determined with a weighing lysimeter. Water Resour Res 13:145–148

    Google Scholar 

  • Gäumann E (1935) Der Stoffhaushalt der Buche im Laufe eines Jahres. Ber Schweiz Bot Ges 44:157–334

    Google Scholar 

  • Gifford RM, Marshall C (1973) Photosynthesis and assimilate distribution in Lolium multiflorum Lam. following differential tiller defoliation. Aust J Biol Sci 16:517–526

    Google Scholar 

  • Gloser J (1977) Photosynthesis and respiration of some alluvial meadow grasses: responses to soil water stress, diurnal and seasonal courses. Acta Sci Nat Acad Sci Bohemoslovacae Brno NS 11:1–36

    Google Scholar 

  • Good R (1974) The geography of the flowering plants. 4th edn. Longman, London New York

    Google Scholar 

  • Gortinsky GB (1975) Productivity of forests of the European part of the USSR. In: Resources of the biosphere (Synthesis of the Soviet studies for the International Biological Programme) Vol I. Leningrad, NAUKA, pp 34–42

    Google Scholar 

  • Goryshina TK (1969) Prevernai photosynthesis in the leaves of nemoral herbaceous plants after overwintering. Bot J Acad Nauka CCCP 54:919–923

    Google Scholar 

  • Grabherr G, Cernusca A (1977) Influence of radiation, wind, and temperature on the CO2 gas exchange of the alpine dwarf shrub community Leuseleurietum cetrariosum. Photosynthetica 11:22–28

    Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley and Sons, New York

    Google Scholar 

  • Grisebach A (1872) Die Vegetation der Erde nach ihrer klimatischen Anordnung. Ein Abriß der vergleichenden Geographie der Pflanzen. Engelmann, Leipzig

    Google Scholar 

  • Hall AE, Schulze E-D (1980) Stomatal response to environment and a possible interrelation between stomatal effects on transpiration and CO2 assimilation. Plant Cell Environ 3:467–474

    Google Scholar 

  • Hall AE, Foster KW, Waines JG (1979) Crop adaptation to semi-arid environments. In: Hall AE, Cannell GH, Lawton HW (eds) Agriculture in semi-arid environments, Ecol Stud Vol 34. Springer, Berlin Heidelberg New York, pp 148–179

    Google Scholar 

  • Harper JL, Ogden J (1970) The reproductive strategy of higher plants. I. The concept of strategy with special reference to Senecio vulgaris L. J Ecol 58:681–698

    Google Scholar 

  • Harris P (1974) A possible explanation of plant yield increases following insect damage. Agroecosystems 1:219–225

    Google Scholar 

  • Harris W (1974) Competition among pasture plants. V. Effects of frequency and height of cutting on competition between Agrostis tenuis and Trifolium repens. NZ J Agric Res 17:251–256

    Google Scholar 

  • Harris W, Pandey KK, Gray YS, Conchman PK (1979) Observations on the spread of perennial ryegrass by stolons in a lawn. NZ J Agric Res 22:61–68

    Google Scholar 

  • Hasselt Van PR, Strickwerd JT (1976) Pigment degradation in discs of the thermophilic Cucumis sativus as affected by light, temperature, sugar application and inhibitors. Physiol Plant 37:253–257

    Google Scholar 

  • Heim G, Landsberg JJ, Watson RL, Brian P (1979) Eco-physiology of apple trees: Dry matter production and partitioning by young golden delicious trees in France and England. J Appl Ecol 16:179–194

    Google Scholar 

  • Hellmuth EO (1968) Eco-physiological studies on plants in arid and semi-arid regions in Western Australia. I. Autecology of Rhagodia baccata (Labili.) Moq. J Ecol 56:319–344

    Google Scholar 

  • Hinckley TM, Lassoie JP, Running SW (1978) Temporal and spacial variations in the water status of forest trees. For Sci Monogr 20:1–72

    Google Scholar 

  • Hodgkinson KC, Johnson PS, Norton BE (1978) Influence of summer rainfall on root and shoot growth of a cold-winter desert shrub Atriplex confertifolia. Oecologia 34:353–362

    Google Scholar 

  • Holmen K (1957) The vascular plants of Peary Land, North Greenland. Medd Groenl 124:1–149

    Google Scholar 

  • Hozumi K, Yoda K, Kokawa S, Kira T (1969 a) Production ecology of tropical rain forests in southwestern Cambodia. I. Plant biomass. Ibid 6:1–51

    Google Scholar 

  • Hozumi K, Yoda K, Kira T (1969 b) Ibid. II. Photosynthetic production in an evergreen seasonal forest. I. Plant biomass Ibid 6:57–81

    Google Scholar 

  • Hozumi K, Yoda K, Kira T (1969c) Production ecology of tropical rain forests in southwestern Cambodia. II. Photosynthetic production in an evergreen seasonal forest. In: Kira T, Iwata K (eds) Nature and life in Southeast Asia Vol 6. Jpn Soc Promotion Sci, Tokyo, pp 57–81

    Google Scholar 

  • Hsiao TC, Ferreres E, Acevedo E, Henderson DW (1976) Water stress and dynamics of growth and yield of crop plants. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Ecol Stud Vol 19. Springer, Berlin Heidelberg New York, pp 281–306

    Google Scholar 

  • Huffaker CB (1959) Biological control of weeds with insects. Ann Rev Entomol 4:251–276

    Google Scholar 

  • Humboldt von A (1806) Ideen zu einer Physiognomik der Gewächse. Cotta, Tübingen

    Google Scholar 

  • Jackman RH, Mouat MCH (1972) Competition between grass and clover for phosphate. II. Effect of root activity, efficiency of response to phosphate, and soil moisture. NZ J Agric Res 15:667–675

    CAS  Google Scholar 

  • Janzen DH (1971) Seed predation by animals. Annu Rev Ecol Syst 2:465–492

    Google Scholar 

  • Johansson LG, Linder S (1975) The seasonal pattern of photosynthesis of some vascular plants on a subarctic mire. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems. I. Plants and microorganisms. Ecol Stud Vol 16. Springer, Berlin Heidelberg New York, pp 194–200

    Google Scholar 

  • Johnson DA, Tieszen LL (1976) Above ground biomass allocation, leaf growth, and photosynthesis patterns in tundra plant forms in arctic Alaska. Oecologia 24:159–173

    Google Scholar 

  • Jordan CF, Uhl C (1978) Biomass of a “terra firme” forest of the Amazon basin. Oecol Plant 13:287–400

    Google Scholar 

  • Jurgens SK, Johnson RR, Boyer JS (1978) Dry matter production and translocation in maize subjected to drought during grain fill. Agron J 70:678–682

    CAS  Google Scholar 

  • Keulen Van H (1975) Simulation of water use and herbage growth in arid regions. PUDOC Wageningen

    Google Scholar 

  • Kiese O (1971) The measurement of climatic elements which determine production in various plant stands. In: Ellenberg H (ed) Integrated experimental ecology. Ecol Stud Vol 2. Springer, Berlin Heidelberg New York, pp 132–142

    Google Scholar 

  • King RW, Wardlaw IF, Evans LT (1967) Effect of assimilate utilization on photosynthetic rate in wheat. Planta 77:261–276

    Google Scholar 

  • Kira T (1978) Community architecture and organic matter dynamics in tropical lowland rain forests of southeast Asia with special reference to Pasoh Forest, West Malaysia. In: Tomlinson PB, Zimmermann MH (eds) Tropical trees as living systems. Cambridge Univ Press, London, pp 561–590

    Google Scholar 

  • Kira T, Ogawa H, Yoda K, Ogimo K (1967a) Comparative ecological studies on three main types of forest vegetation in Thailand. IV. Dry matter production, with special reference to the Khao Chong rain forest. In: Kira T, Iwata K (eds) Nature and life in Southeast Asia Vol 6. Jpn Soc Promotion Sci, Tokyo, pp 149–174

    Google Scholar 

  • Kira T, Ogawa H, Yoda K, Ogino K (1967 b) Ibid. IV. Dry matter production, with special reference to the Khao Chong rain forest. Nature Life SE Asia (Kyoto) 5:149–174

    Google Scholar 

  • Kira T, Ono Y, Hosokawa T (1978) Biological production in a warm-temperate evergreen oak forest of Japan. JIBP Synthesis Vol 18. Univ Press, Tokyo

    Google Scholar 

  • Kiruma M (1960) Primary production of the warm-temperate laurel forest in the southern part of Osumi Peninsula, Kyushu, Japan. Misc Rep Res Inst Natl Recour (Tokyo) 52/53:36–47

    Google Scholar 

  • Klinge H (1976a) Root mass estimation in lowland tropical rain forests of central Amazonia, Brazil. III. Nutrients in fine roots from giant humus podsols. Trop Ecol 16:28–38

    Google Scholar 

  • Klinge H (1976 b) Bilanzierung von Hauptnährstoffen im Ökosystem tropischen Regenwalds (Manaus) — Vorläufige Daten. Biogeographica 7:59–77

    Google Scholar 

  • Klötzli F (1976) Grenzen von Laubwäldern in Europa. Ber Dtsch Bot Ges 89:371–380

    Google Scholar 

  • Körner CH, Moraes De JAPV (1979) Water potential and diffusion resistance in alpine cushion plants on clear summerdays. Oecol Plant 14:109–120

    Google Scholar 

  • Körner CH, Scheel JA, Bauer H (1979) Maximum leaf diffusive conductance in vascular plants. Photosynthetica 13:45–82

    Google Scholar 

  • Künstle E, Mitscherlich G (1977) Photosynthese, Transpiration und Atmung in einem Mischbestand im Schwarzwald. IV. Bilanz. All Forst Jagdztg 148:227–238

    Google Scholar 

  • Laing DR, Fischer RA (1977) Adaptation of semi-dwarf wheat cultivars to rainfed conditions. Euphytica 26:129–139

    Google Scholar 

  • LaMarche VC (1969) Environment in relation to age of Bristlecone Pine. Ecology 50:53–59

    Google Scholar 

  • Lamotte M (1975) The structure and function of a tropical savannah ecosystem. In: Golley EB, Medina E (eds) Tropical ecological systems. Ecol Stud Vol 11, Springer, Berlin Heidelberg New York, pp 179–222

    Google Scholar 

  • Lange OL, Schulze E-D, Evenari M, Kappen L, Buschbom U (1974) The temperature related photo synthetic capacity of plants under desert conditions. I. Seasonal changes of the photo synthetic response to temperature. Oecologia 17:97–110

    Google Scholar 

  • Larcher W (1963) Zur spätwinterlichen Erschwerung der Wasserbilanz von Holzpflanzen an der Waldgrenze. Ber Naturwiss Med Ver Innsbruck 53:125–137

    Google Scholar 

  • Larcher W (1976) Ökologie der Pflanzen. UTB 232, 2nd edn. Ulmer, Stuttgart

    Google Scholar 

  • Larcher W (1977) Ergebnisse des IBP-Projektes „Zwergstrauchheide Patscherkofel“ Sit-zungsber Oesterr Akad Wiss Math Naturwiss Kl Abt I 186:301–371

    Google Scholar 

  • Lieth H (1975) Primary production of the major vegetation units of the world. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Ecol Stud Vol 14. Springer, Berlin Heidelberg New York, pp 203–215

    Google Scholar 

  • Loomis RS, Gerakis PA (1975) Productivity of agricultural ecosystems. In: Cooper JP (ed) Photosynthesis and productivity in different environments. Univ Press, Cambridge IBP 3:145–172

    Google Scholar 

  • Loveless AR (1961) A nutritional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves, Ann Bot (London) 25:168–184

    CAS  Google Scholar 

  • Marchant PJ, Chabot BF (1978) Winter water relations of tree-line plant species on Mt Washington, New Hampshire. Arct Alp Res 10:105–116

    Google Scholar 

  • Marshall C, Sagar GR (1968) The interdependence of tillers in Lolium multiflorum Lam — a quantitative assessment. J Exp Bot 19:785–794

    Google Scholar 

  • Maruyama K (1977) Beech forests in the Naeba Mountains. Part I. Comparison of forest structure, biomass and net productivity between the upper and lower parts of beech forest zone. In: Shidei T, Kira T (eds) Primary productivity of Japanese forests. JIBP Synthesis Vol 16. Univ Press, Tokyo, pp 186–201

    Google Scholar 

  • McCown B (1978) The interaction of organic nutrients, soil nitrogen, and soil temperature and plant growth and survival in the arctic environment. In: Tieszen LL (ed) Vegetation and production ecology of an Alaskan arctic tundra. Ecol Stud Vol 29. Springer, Berlin Heidelberg New York, pp 435–456

    Google Scholar 

  • McCree KJ, Troughton JH (1966) Non-existence of an optimum leaf area index for the production rate of white clover grown under constant conditions. Plant Physiol 41:1615–1622

    PubMed  CAS  Google Scholar 

  • Meusel H (1978) Wuchsform und ökogeographisches Verhalten von Bupleurum spinosum Gouan im Vergleich mit einigen nahe verwandten Arten. Bot Jahrb Syst 99:222–248

    Google Scholar 

  • Miller PC, Bradbury DE, Hajek E, La Marche V, Thrower NJ (1977) Past and present environment. In: Mooney HA (ed) Convergent evolution in Chile and California. Mediterranean climate ecosystems, US/IBP Synthesis 5. Dowden, Hutchinson and Ross, Stroudsburg, pp 27–72

    Google Scholar 

  • Miller PC, Poole DK (1979) Patterns of water use by shrubs in Southern California. For Sci 25:84–98

    Google Scholar 

  • Mitscherlich G, Künstle E (1970) Untersuchungen über die Bodentemperatur in einigen Nadel- und Laubholzbeständen in der Nähe von Freiburg/Br. Allg Forst Jagdztg 141:129–133

    Google Scholar 

  • Mitscherlich G, Moll W, Künstle E, Maurer P (1965) Ertragskundlich-ökologische Untersuchungen im Rein- und Mischbestand. IL Wind, Globalstrahlung und Bestandeshelligkeit. Allg Forst Jagdztg 136:149–257

    Google Scholar 

  • Mitscherlich G, Moll W, Künstle E, Maurer P (1966) Ertragskundlich-ökologische Untersuchungen im Rein- und Mischbestand. IV. Niederschlag, Stammablauf und Bodenfeuchtigkeit. Allg Forst Jagdztg 137:1–12

    Google Scholar 

  • Monsi M (1960) Dry-matter reproduction in plants. I. Schemata of dry-matter reproduction. Bot Mag 73:81–90

    Google Scholar 

  • Monsi M (1968) Mathematical models of plant communities. In: Eckardt FE (ed) Functioning of terrestrial ecosystems at the primary production level. UNESCO, Paris, pp 131–149

    Google Scholar 

  • Monsi M, Murata Y (1970) Development of photosynthetic systems as influenced by distribution of matter. In: Prediction and measurement of photosynthetic productivity. PUDOC, Wageningen, pp 115–130

    Google Scholar 

  • Mooney HA (1963) Physiological ecology of coastal, subalpine and alpine populations of Polygonum bistortoides. Ecology 44:813–816

    Google Scholar 

  • Mooney HA, Billings WD (1965) Effects of altitude on carbohydrate content of mountain plants. Ecology 46:750–751

    Google Scholar 

  • Mooney HA, Dunn EL (1970) Photosynthetic systems of mediterranean climate shrubs and trees of California and Chile. Am Nat 104:447–453

    Google Scholar 

  • Mooney HA, Ehleringer JR (1978) The carbon gain benefits of solar tracking in a desert annual. Plant Cell Environ 1:307–312

    Google Scholar 

  • Mooney HA, Ehleringer JR, Berry JA (1976) High photosynthetic capacity of a winter annual in Death Valley. Science 194:322–324

    PubMed  CAS  Google Scholar 

  • Mooney HA, Ferrar PJ, Slatyer RO (1978) Photosynthetic capacity and carbon allocation patterns in diverse growth forms of Eucalyptus. Oecologia 36:103–111

    Google Scholar 

  • Morilla CA, Boyer JS, Hageman RH (1973) Nitrate reductase activity and polyribosomal content of corn (Zea mays L.) having low leaf water potentials. Plant Physiol 51:817–824

    PubMed  CAS  Google Scholar 

  • Morrow PA, Mooney HA (1974) Drought adaptations in two Californian evergreen sclerophylls. Oecologia 15:205–222

    Google Scholar 

  • Moser W (1973) Licht, Temperatur und Photosynthese an der Station „Hoher Nebelkogel“ (3184 m). In: Ellenberg H (ed) Ökosystemforschung. Springer, Berlin Heidelberg New York, pp 203–223

    Google Scholar 

  • Moser W, Brzoska W, Zachhuber K, Larcher W (1977) Ergebnisse des IBP-Projektes „Hoher Nebelkogel 3184m“. Sitzungsber Oesterr Akad Wiss Math Naturwiss Kl Abt I 186:387–419

    Google Scholar 

  • Müller D, Nielsen J (1965) Production brute, pertes par respiration et production nette dans la forêt ombrophile tropicale. Forstl Forsoegsvaes Dan 29:69–160

    Google Scholar 

  • Nicholson JE (1973) Growth stress differences in Eucalypts. For Sci 19:169–174

    Google Scholar 

  • Ogawa H, Yoda K, Kira T, Ogino K, Shidei T, Ratanawongse D, Apasutaya C (1965a) Comparative ecological studies on three main types of forest vegetation in Thailand. I. Structure and floristic composition, Nature Life SE Asia (Kyoto) 4:13–48

    Google Scholar 

  • Ogawa H, Yoda K, Ogino K, Kira T (1965b) Ibid. II. Plant biomass. Nature Life SE Asia (Kyoto) Ibid 4:49–80

    Google Scholar 

  • Ogino K (1977) A beech forest at Ashiu — biomass, its increment and net production. In: Shidei T, Kira T (eds) Primary productivity of Japanese forests. JIBP Synthesis, Vol 16. Univ Press, Tokyo, pp 172–186

    Google Scholar 

  • Ogino K, Ratanawongse D, Tsutsumi T, Shidei T (1967) The primary production of tropical forest in Thailand. SE Asian Stud (Kyoto) 5:121–154

    Google Scholar 

  • Orshan G (1973) Morphological and physiological plasticity in relation to drought. In: McKell CM, Blaisdell JP, Goodin JR (eds) Wildland shrubs — their biology and utilization, USDA forest service. Gen Tech Rep INT-1:245–259

    Google Scholar 

  • Packham JR, Willis AJ (1977) The effects of shading on Oxalis acetosella. J Ecol 65:619–642

    CAS  Google Scholar 

  • Payton IJ, Brasch DJ (1978) Growth and nonstructural carbohydrate reserves in Chinochloa rigida and C. macra, and their short-term response to fire. NZ J Bot 16:435–460

    CAS  Google Scholar 

  • Penning de Vries FW (1975) Use of assimilates in higher plants. In: Cooper JP (ed) Photosynthesis and productivity in different environments. IBP 3. Cambridge London New York Melbourne, pp 459–480

    Google Scholar 

  • Pisek A, Larcher W, Unterholzner R (1967) Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. I. Temperaturminimum der Nettoassimilation, Gefrier- und Frostschadensbereiche der Blätter. Flora (Jena) Abt B 157:239–264

    Google Scholar 

  • Pons TL (1977) An ecophysiological study in the field layer of ash coppice. III. Influence of diminishing light intensity during growth on Geum urbanum and Cirsium palustre. Acta Bot Neerl 26:251–263

    Google Scholar 

  • Poole DK, Miller PC (1975) Water relations of selected species of chaparral and coastal sage communities. Ecology 56:1118–1128

    Google Scholar 

  • Poole DK, Miller PC (1978) Water related characteristics of some evergreen sclerophyll shrubs in central Chile. Oecol Plant 13:289–299

    Google Scholar 

  • Pressland AJ (1976) Soil moisture redistribution as affected by throughfall and stemflow in an arid zone shrub community. Aust J Bot 24:641–649

    Google Scholar 

  • Raunkiaer C (1904) Biological types with reference to the adaptation of plants to survive the unfavourable season. In: Egerton FN (ed) History of ecology, life forms of plants and statistical plant geography. Arno Press, New York, Reprint 1977

    Google Scholar 

  • Redmann RE (1978) Plant and soil water potentials following fire in a northern mixed grassland. J Range Manage 3:443–445

    Google Scholar 

  • Richards PW (1952) The tropical rainforest. An ecological study. Univ Press, Cambridge

    Google Scholar 

  • Ridder De N, Seligman NG, Keulen Van H (1981) Analysis of environmental and species effects on the magnitude of biomass investment in the reproductive effort of annual pasture plants. Oecologia (in press)

    Google Scholar 

  • Rietz Du GE (1931) Life-forms of terrestrial flowering plants. Acta Phytogeogr Suec 3:1–95

    Google Scholar 

  • Rodin LE (1976) Primary productivity of desert communities in North Africa and Asia. Probl Desert Dev 3–4:55–65 Ashkhabad

    Google Scholar 

  • Rodin LE (1979) Productivity of desert communities in central Asia. In: Perry RA, Goodall DW (eds) Arid-land ecosystems: structure, functioning and management Vol I. Univ Press, Cambridge, pp 273–298

    Google Scholar 

  • Rodin LE, Bazilivich NJ, Rozov HN (1975) Productivity of the world’s main ecosystems. In: Reichle DE, Franklin JF, Goodall DW (eds) Productivity of world ecosystems. Natl Acad Sci, Washington, pp 13–26

    Google Scholar 

  • Rook DA, Whyte AGD (1976) Partial defoliation and growth of 5-year-old Radiata pine. NZ J For Sci 6:40–56

    Google Scholar 

  • Ross PJ, Henzell EF, Ross DR (1972) Effects of nitrogen and light in grass-legume pastures — a systems analysis approach. J Appl Ecol 9:535–556

    Google Scholar 

  • Rychnovská M (1978) Energy flow and relevant processes in a meadow ecosystem. In: Sen DN (ed) Environmental physiology and ecology of plants. Bishen Singh Mahendra Pal Singh, Dehra Dun, pp 315–322

    Google Scholar 

  • Rychnovská M (1979) Ecosystem synthesis of meadows. Energy flow. In: Coupland RT (ed) Grassland ecosystems of the world: analysis of grasslands and their uses. IBP 18. Univ Press, Cambridge, pp 165–169

    Google Scholar 

  • Ryle GJA, Powell CE (1975) Defoliation and regrowth in the graminaceous plant: The role of current assimilate. Ann Bot (London) 39:297–310

    Google Scholar 

  • Saeki T (1960) Interrelationship between leaf amount, light distrubition and total photosynthesis in a plant community. Bot Mag 73:55–63

    Google Scholar 

  • Satoo T (1956) Materials for the study of growth in stands. III. Amount of leaves and production of wood in an aspen (Populus davidiana) second growth in Hokkaido. Bull Tokyo Univ For 51:33–51

    Google Scholar 

  • Satoo T (1968) Materials for the studies of growth in stands. 7. Primary production and distribution of produced dry matter in a plantation of Cinnamomum camphora. Bull Tokyo Univ For 64:241–275

    Google Scholar 

  • Satoo T (1970 a) Primary production in a plantation of Japanese larch, Larix leptolepis: A summarized report of JPTE-66 KOIWAI. J Jpn For Soc 52:154–158

    Google Scholar 

  • Satoo T (1970b) A synthesis of studies by the harvest method: Primary production relations in the temperate deciduous forests of Japan. In: Reichle DE (ed) Analysis of temperate forest ecosystems. Ecol Stud Vol I. Springer, Berlin Heidelberg New York, pp 55–72

    Google Scholar 

  • Satoo T (1974 a) Primary production relations in a natural forest of Betula maximowicziana in Hokkaido: materials for the studies of growth in forest stands. 1. Bull Tokyo Univ For 66:109–117

    Google Scholar 

  • Satoo T (1974b) Primary production relations of a young stand of Metasequoia glyptostroboides planted in Tokyo: materials for the studies of growth in forest stands. 13. Bull Tokyo Univ For 66:153–164

    Google Scholar 

  • Satoo T (1974c) Primary production relations in plantations of Thujopsis dolabrata in the Noto Peninsula: materials for the studies of growth in forest stands. 12. Bull Tokyo Univ For 66:139–151

    Google Scholar 

  • Schäfer R (1973) Microbial activity under seasonal conditions of drought in mediterranean climates. In: DiCastri F, Mooney HA (eds) Mediterranean type ecosystems. Ecol Stud Vol 7. Springer, Berlin Heidelberg New York, pp 191–198

    Google Scholar 

  • Schimper AFW (1898) Pflanzen-Geographie auf physiologischer Grundlage. Fischer, Jena Schmidt L (1977) Phytomassevorrat und Nettoprimärproduktivität alpiner Zwergstrauchbestände. Oecol Plant 12:195–213

    Google Scholar 

  • Schmithüsen J (1968) Allgemeine Vegetationsgeographie, 3rd edn. De Gruyter, Berlin

    Google Scholar 

  • Schulze E-D (1970) Der CO2-Gaswechsel der Buche (Fagus silvatica L.) in Abhängigkeit von den Klimafaktoren im Freiland. Flora 159:177–232

    Google Scholar 

  • Schulze E-D, Fuchs MI, Fuchs M (1977a) Spacial distribution of photosynthetic capacity and performance in a montane spruce forest of Northern Germany. I. Biomass distribution and daily CO2 uptake in different crown layers. Oecologia 29:43–61

    Google Scholar 

  • Schulze E-D, Fuchs M, Fuchs MI (1977 b) Spacial distribution of photosynthetic capacity and performance in a mountain spruce forest of Northern Germany. III. The significance of the evergreen habit. Oecologia 30:239–248

    Google Scholar 

  • Schulze E-D, Hall AE, Lange OL, Evenari M, Kappen L, Buschbom U (1980) Long-term effects of drought on wild and cultivated plants in the Negev Desert. I. Maximal rates of net photosynthesis. Oecologia 45:11–18

    Google Scholar 

  • Schwarz W (1970) Der Einfluß der Photoperiode auf das Austreiben, die Frosthärte und die Hitzeresistenz von Zirbe und Alpenrose. Flora 159:258–285

    Google Scholar 

  • Shackel KA, Hall AE (1979) Reversible leaflet movements in relation to drought adaptation of cowpeas, Vigna unguiculata (L.) Walp. Aust J Plant Physiol 6:265–276

    Google Scholar 

  • Shields LM (1950) Leaf xeromorphy as related to physiological and structural influences. Bot Rev 16:299–447

    Google Scholar 

  • Sims PL, Coupland RT (1979) Producers. In: Coupland RT (ed) Grassland ecosystems of the world: analysis of grasslands and their uses. IBP 18. Univ Press, Cambridge, pp 49–72

    Google Scholar 

  • Sims PL, Singh JS (1978) The structure and function of ten western North American grasslands. IV. Compartmental transfers and energy flow within the ecosystem. J Ecol 466:983–1010

    Google Scholar 

  • Singh JS, Joshi MC (1979) Primary production. In: Coupland RT (ed) Grassland ecosystems of the world: analysis of grasslands and their use. IBP 18. Univ Press, Cambridge, pp 187–217

    Google Scholar 

  • Singh KP, Gopal B (1973) The effects of photoperiod and light intensity on the growth of some weeds of crop fields. In: Slatyer RO (ed) Plant responses to climatic factors. Ecology and conservation 5. UNESCO, Paris, pp 77–85

    Google Scholar 

  • Singh JS, Yadava PS (1974) Seasonal variation in composition, plant biomass and net primary productivity of a tropical grassland at Kwukshetra, India. Ecol Monogr 44:351–375

    Google Scholar 

  • Slatyer RO (1961) Internal water balance of Acacia aneura F. Muell. in relation to environmental conditions. UNESCO Arid Zone Res 16:137–146

    Google Scholar 

  • Small E (1972a) Water relations of plants in raised Sphagnum peat bogs. Ecology 53:726–728

    Google Scholar 

  • Small E (1972b) Photosynthetic rates in relation to nitrogen recycling as an adaptation to nutrient deficiency in peat bog plants. Can J Bot 50:2227–2233

    CAS  Google Scholar 

  • Small E (1973) Xeromorphy in plants as a possible basis for migration betweeen arid and nutritionally deficient environments. Bot Not 126:534–539

    Google Scholar 

  • Smith EM, Hadley EB (1974) Photosynthetic and respiratory acclimation to temperature in Ledum groenlandicum populations. Arct Alp Res 6:13–27

    Google Scholar 

  • Sørensen T (1941) Temperature relations and phenology of the northeast Greenland flowering plants. Medd Groenl 125:1–305

    Google Scholar 

  • Stanhill G (1970) The water flux in temperate forests: Precipitation and evapotranspiration. In: Reichle DE (ed) Analysis of temperate forest ecosystems. Ecol Stud Vol I. Springer, Berlin Heidelberg New York, pp 247–256

    Google Scholar 

  • Stearns SC (1976) Life-history tactics: A review of the ideas. Q Rev Biol 51:3–47

    PubMed  CAS  Google Scholar 

  • Stocker O (1971) Der Wasser- und Photo Synthesehaushalt von Wüstenpflanzen der mauretanischen Sahara. II. Wechselgrüne, Rutenzweige und stammsukkulente Bäume. Flora 160:1–43

    Google Scholar 

  • Stocker O (1976) The water-photosynthesis syndrome and the geographical plant distribution in the Saharan desert. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Ecol Stud, Vol 19. Springer, Berlin Heidelberg New York, pp 506–522

    Google Scholar 

  • Summers CF (1968) Production in montane dwarf shrub communities. In: Heal OW, Perkins DF (eds) Production ecology of British moors and montane grasslands. Ecol Stud Vol 27. Springer, Berlin Heidelberg New York, pp 263–276

    Google Scholar 

  • Swan LW (1967) Alpine and aeolian regions of the world. In: Wright HE Jr, Osborn WH (eds) Arctic and alpine environments. Indiana Univ Press, Blommington, pp 29–54

    Google Scholar 

  • Szarek SR, Woodhouse RM (1977) Ecophysiological studies of Sonoran Desert plants. II. Seasonal photosynthesis patterns and primary production of Ambrosia deltoidea and Olneya tesola. Oecologia 28:365–375

    Google Scholar 

  • Szujkó-Lacza J, Fekete G (1969) A survey of the plant-form systems and the respective research approaches I. Ann Hist Nat Mus Natl Hung 62:129–139

    Google Scholar 

  • Tadaki Y (1968) Studies on the production structure of forest (XIV). The third report on the primary production of a young stand of Castanopsis cuspidata. J Jpn For Soc 50:60–65

    Google Scholar 

  • Tadaki Y, Hatiya K, Tochiaki K, Muyauchi H, Matsuda U (1970) Studies on the production structure of forest (XVI). Primary productivity of Abies veitchii forests in the subalpine zone of Mt Fuji. Bull Gov For Exp Stn 229:1–22

    Google Scholar 

  • Tieszen LL (1978) Vegetation and production ecology of an Alaskan arctic tundra. Ecol Stud Vol 29. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Troll C (1956) Das Wasser als pflanzengeographischer Faktor. In: Ruhland W (ed) Handbuch der Pflanzenphysiol Vol 3, pp 750–786

    Google Scholar 

  • Turk KJ, Hall AE (1980) Drought adaptations of cowpeas. II. Influence of soil water deficits and evaporative demand on plant water status and relation with seed yield. Agron J (in press)

    Google Scholar 

  • Turner NC, Begg JE (1977) Response of pasture plants to water deficits. In: Wilson JR (ed) Plant relations in pastures. CSIRO, Melbourne, pp 50–66

    Google Scholar 

  • Turner NC, Jones MM (1980) Turgor maintenance by osmotic adjustment: A review and evaluation. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley-Interscience, New York London, pp 87–104

    Google Scholar 

  • Vasek FC (1980) Creosote bush: long-lived clones in the Mojave desert. Am J Bot 67:246–255

    Google Scholar 

  • Walter H (1968) Die Vegetation der Erde. II. Die gemäßigten und arktischen Zonen. Fischer, Stuttgart

    Google Scholar 

  • Walter H (1973) Die Vegetation der Erde. I. Tropische und subtropische Zonen, 3rd edn. Fischer, Jena Stuttgart

    Google Scholar 

  • Walter H (1979) Vegetation und Klimazonen, 4th edn. UTB 14. Ulmer, Stuttgart

    Google Scholar 

  • Walter H (1981) Über Höchstwerte der Produktion von natürlichen Pflanzenbeständen in NO Asien. Vegetatio 44:37–41

    Google Scholar 

  • Waring RH, Franklin JF (1979) Evergreen coniferous forests of the Pacific Northwest. Science 204:1380–1386

    PubMed  CAS  Google Scholar 

  • Waring RH, Emmingham WH, Gholz HL, Grier CC (1978) Variation in maximum leaf area of coniferous forests in Oregon and its ecological significance. For Sci 24:131–140

    Google Scholar 

  • Waring RH, Whitehead D, Jarvis PG (1979) The contribution of stored water to transpiration in Scots Pine. Plant Cell Environ 2:309–318

    Google Scholar 

  • Warming E (1884) Über perenne Gewächse. Bot Centralbl 18:184–188

    Google Scholar 

  • Warming E (1895) Plantesamfund. Grundtrack af den økologiske plantegeografi. PG Philipsen, Kjøbenhavn

    Google Scholar 

  • Warming E (1909) Ecology of plants. An introduction to the study of plant communities. Clarendon, Oxford

    Google Scholar 

  • Warming E (1923) Økologiens Grundformer. Udkast til en systematisk ordning Rackke IV, 2 København. K Vidensk Selsk Skr Naturvidensk Math Afd 8

    Google Scholar 

  • Watanabe I (1976) Transformation factor from CO2 net assimilation to dry matter in crop plants. Jpn Agric Res Q 10:114–118

    Google Scholar 

  • Watson DJ (1958) The dependence of net assimilation rate on leaf area index. Ann Bot NS 22:27–54

    Google Scholar 

  • Webb W, Szarek S, Lauenroth W, Kinerson R, Smith M (1978) Primary productivity and water use in native forest, grassland, and desert ecosystems. Ecology 59:1239–1247

    Google Scholar 

  • Whittaker RH (1973) Handbook of vegetation science. Ordination and classification of communities. Vol V. Junk, The Hague

    Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems, 2nd edn. MacMillan, New York

    Google Scholar 

  • Whittaker RH, Niering WA (1975) Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology 56:771–790

    Google Scholar 

  • Wielgolaski FE (1975) Primary production of tundra. In Cooper JP (ed) Photosynthesis and productivity in different environments. IBP 3. Univ Press, Cambridge, pp 75–106

    Google Scholar 

  • Wielgolaski FE, Kärenlampi L (1975) Plant phenology of Fennoscandian tundra areas. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems. I. Plants and microorganisms. Ecol Stud Vol. 16. Springer, Berlin Heidelberg New York, 94–102

    Google Scholar 

  • Wielgolaski FE, Kjelvik S, Kallio P (1975) Mineral content of tundra and forest tundra plants in Fennoscandia. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems. I. Plant and microorganisms. Ecol Stud Vol 16. Springer, Berlin Heidelberg New York, pp 316–332

    Google Scholar 

  • Williams RD (1964) Assimilation and translocation in perennial grasses. Ann Bot NS 28:419–425

    CAS  Google Scholar 

  • Wit CT De (1958) Transpiration and crop yields. Versi Landbouwkd 2 onderz Agr Res Rep 64. 6. PUDOC, Wageningen

    Google Scholar 

  • Wit CT De (1968) Plant production. Misc Pap Landbouwhogesch Wageningen 3:25–50

    Google Scholar 

  • Zohary M (1961) On the hydro-ecological relations of the Near Eastern desert vegetation. In: Plant water relationships in arid and semi-arid conditions. UNESCO Arid Zone Res 16:199–212

    Google Scholar 

  • Zwölfer H (1978) Mechanismen und Ergebnisse der Co-Evolution von phytophagen und entomophagen Insekten und höheren Pflanzen. Sonderbd Naturwiss Ver Hamburg 2:7–50

    Google Scholar 

  • Zwölfer H (1980) Distelblütenköpfe als ökologische Kleinsysteme: Konkurrenz und Koexistenz in Phytophagenkomplexen. Mitt Dtsch Entoml Ges 2:21–37

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Schulze, ED. (1982). Plant Life Forms and Their Carbon, Water and Nutrient Relations. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology II. Encyclopedia of Plant Physiology, vol 12 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68150-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68150-9_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68152-3

  • Online ISBN: 978-3-642-68150-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics