Comparative Physiology of the Renal Transport of Organic Solutes

  • W. H. Dantzler
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


This chapter concerns the transport of organic substances by the renal tubules of nonmammalian vertebrates. It treats primarily the transport of those organic substances for which there is substantial and distinctive material (except organic cations, see chapter on these). Moreover, it concentrates on recent work which is helping to define the cellular steps in the transport processes.


Proximal Tubule Apparent Permeability Luminal Membrane Bathing Medium Renal Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Austic RE, Cole RK (1972) Impaired renal clearance of uric acid in chickens having hyper-uricemia and articular gout. Am J Physiol 223: 525–530PubMedGoogle Scholar
  2. 2.
    Barfuss DW, Dantzler WH (1976) Glucose transport in isolated perfused proximal tubules of snake kidney. Am J Physiol 231: 1716–1728PubMedGoogle Scholar
  3. 3.
    Boylan JW (1972) A model for passive urea reabsorption in the elasmobranch kidney. Comp Biochem Physiol 42: 27–30CrossRefGoogle Scholar
  4. 4.
    Brand PH, Stansbury RS (1980) Lactate absorption in Thamnophis proximal tubule: transport versus metabolism. Am J Physiol 238 (Renal Fluid Electrolyte Physiol 7): F218–228PubMedGoogle Scholar
  5. 5.
    Brand PH, Stansbury R (1980) Na+ dependence of lactate absorption in proximal tubule. Fed Proc 39: 712Google Scholar
  6. 6.
    Bulger RE, Trump BF (1969) Ca2+ and K+ ion effects on ultrastructure of isolated flounder kidney tubules. J Ultrastruct Res 28: 301–319PubMedCrossRefGoogle Scholar
  7. 7.
    Burg MB, Weller PF (1969) Iodopyracet transport by isolated perfused flounder proximal renal tubules. Am J Physiol 217: 1053–1056PubMedGoogle Scholar
  8. 8.
    Coulson RA, Hernandez T (1964) Biochemistry of the alligator. Louisiana State University Press, Baton Rouge, p 138Google Scholar
  9. 9.
    Dantzler WH (1969) Effects of K, Na, and ouabain on urate and PAH uptake by snake and chicken kindey slices. Am J Physiol 217: 1510–1519PubMedGoogle Scholar
  10. 10.
    Dantzler WH (1973) Characteristics of urate transport by isolated, perfused snake proximal renal tubules. Am J Physiol 224: 445–453PubMedGoogle Scholar
  11. 11.
    Dantzler WH (1974) PAH transport by snake proximal renal tubules: differences from urate transport. Am J Physiol 226: 634–641PubMedGoogle Scholar
  12. 12.
    Dantzler WH (1974) K effects on PAH transport and membrane permeabilities in isolated snake renal tubules. Am J Physiol 227: 1361–1370PubMedGoogle Scholar
  13. 13.
    Dantzler WH (1976) Renal function (with special emphasis on nitrogen excretion). In: Gans CG, Dawson WR (eds) Biology of the reptilia, vol 5, Physiology A. Academic Press, London New York San Francisco, pp 447–503Google Scholar
  14. 14.
    Dantzler WH (1976) Comparison of uric acid and PAH transport by isolated, perfused snake renal tubules. In: Silbernagl S, Lang F, Greger R (eds) Amino acid transport and uric acid transport. Thieme, Stuttgart, pp 169–180Google Scholar
  15. 15.
    Dantzler WH (1978) Urate excretion in nonmammalian vertebrates. In: Kelley WN, Weiner IM (eds) Handbook of physiology, vol 51, Uric acid. Springer, Berlin Heidelberg New York, pp 185–210Google Scholar
  16. 16.
    Dantzler WH, Bentley SK (1976) Low Na+ effects on PAH transport and permeabilities in isolated snake renal tubules. Am J Physiol 230: 256–262PubMedGoogle Scholar
  17. 17.
    Dantzler WH, Bentley SK (1979) Effects of inhibitors in lumen on PAH and urate transport by isolated renal tubules. Am J Physiol 236 (Renal Fluid Electrolyte Physiol 5): F379–F386PubMedGoogle Scholar
  18. 18.
    Dantzler WH, Bentley SK (1980) Bath and lumen effects of SITS on PAH transport by isolated perfused renal tubules. Am J Physiol 238 (Renal Fluid Electrolyte Physiol 7): F16–F25PubMedGoogle Scholar
  19. 19.
    Eveloff J, Kinne R, Kinter WB (1979) p-Amino hippuric acid transport into brush border vesicles isolated from flounder kidney. Am J Physiol 237 (Renal Fluid Electrolyte Physiol 6 ): F291–F298Google Scholar
  20. 20.
    Forster RP (1970) Active tubular transport of urea and its role in environmental physiology. In: Schmidt-Neilson B, Kerr DWS (eds) Urea and the kidney. Excerpta Medica, Amsterdam, pp 229–237Google Scholar
  21. 21.
    Hernandez T, Coulson RA (1967) Amino acid excretion in the alligator. Comp Biochem Physiol 23: 775–784PubMedCrossRefGoogle Scholar
  22. 22.
    Hoshi T, Hayashi H (1970) Role of sodium ions in phenol red transport by renal tubules of the goldfish. Jpn J Physiol 20: 683–696PubMedCrossRefGoogle Scholar
  23. 23.
    Hoshi T, Sudo K, Suzuki Y (1976) Characteristics of changes in the intracellular potential associated with transport of neutral, dibasic and acidic amino acids in Triturus proximal tubule. Biochim Biophys Acta 448: 492–504PubMedCrossRefGoogle Scholar
  24. 24.
    Irish JM III (1975) Selected characteristics of transport in isolated perfused renal proximal tubules of the bullfrog (Rana catesbeiana). Ph D Diss Univ Arizona, TucsonGoogle Scholar
  25. 25.
    Irish JM III, Dantzler WH (1976) PAH transport and fluid absorption by isolated perfused frog proximal renal tubules. Am J Physiol 230: 1509–1516PubMedGoogle Scholar
  26. 26.
    Khuri RN, Flanigan WJ, Oken DJ, Solomon AK (1966) Influence of electrolytes on glucose absorption in Necturus kidney proximal tubules. Fed Proc 25: 899–902PubMedGoogle Scholar
  27. 27.
    Kikutu Y, Hayashi H, Saito Y (1979) Effects of changes in sodium electrochemical potential gradient on p-aminohippurate transport in newt kidney. Biochim Biophys Acta 556: 354–365CrossRefGoogle Scholar
  28. 28.
    Kikutu Y, Hoshi T (1979) Role of sodium ions in p-aminohippurate transport by newt kidney. Biochim Biophys Acta 553: 404–416CrossRefGoogle Scholar
  29. 29.
    Kleinzeller A, McAvoy EM (1973) Sugar transport across peritubular face of renal cells of the flounder. J Gen Physiol 62: 169–184PubMedCrossRefGoogle Scholar
  30. 30.
    Long WS (1973) Renal handling of urea in Rana catesbeiana. Am J Physiol 224: 482–490PubMedGoogle Scholar
  31. 31.
    Love JK, Lifson N (1958) Transtubular movements of urea in the doubly perfused bullfrog kidney. Am J Physiol 193: 662–668PubMedGoogle Scholar
  32. 32.
    Maruyama T, Hoshi T (1972) The effect of d-glucose on the electrical potential profile across the proximal tubule of newt kidney. Biochim Biophys Acta 282: 214–225PubMedCrossRefGoogle Scholar
  33. 33.
    Mudge GH, Berndt WO, Valtin H (1973) Tubular transport of urea, glucose, phosphate, uric acid, sulfate and thiosulfate. In: Orloff I, Berliner RW (eds) Handbook of physiology, sect 8, Renal physiology. Am Physiol Soc, Washington DC, pp 587–652Google Scholar
  34. 34.
    O’Dell RM, Schmidt-Nielsen B (9161) Rentention of urea by frog and mammalian kidney slices in vitro. J Cell Comp Physiol 57: 211–219Google Scholar
  35. 35.
    Oken DE, Wiese M (1978) Micropuncture studies of the transport of individual amino acids by the Necturus proximal tubule. Kidney Int 13: 445–451PubMedCrossRefGoogle Scholar
  36. 36.
    Rändle HW, Dantzler WH (1973) Effects of K+ and Na+ on urate transport by isolated per-fused snake renal tubules. Am J Physiol 225: 1206–1214PubMedGoogle Scholar
  37. 37.
    Schmidt-Nielsen B (1972) Renal transport of urea in elasmobranehs. In: Ussing HH, Thorn N (eds) Transport mechanisms in epithelia. Alfred Benzon Symposium V. Munksgaard, Copenhagen, pp 608–621Google Scholar
  38. 38.
    Schmidt-Nielsen B, Forster RP (1954) The effect of dehydration and low temperature on renal function in the bullfrog. J Cell Comp Physiol 44: 233–246CrossRefGoogle Scholar
  39. 39.
    Schmidt-Nielsen B, Shrauger CR (1963) Handling of urea and related compounds by the renal tubules of the frog. Am J Physiol 205: 483–488PubMedGoogle Scholar
  40. 40.
    Schröck H, Forster RP, Goldstein L (1980) Renal handling of taurine in the dogfish, Squalus acanthias. Bull Mt Desert Is Biol Lab (in press)Google Scholar
  41. 41.
    Sperber I (1960) Excretion. In: Marshall AJ (ed) Biology and comparative physiology of birds, vol I. Academic Press, London New York, pp 469–492Google Scholar
  42. 42.
    Stewart DJ, Holmes WN, Fletcher G (1969) The renal excretion of nitrogenous compounds by the duck (Anas platyrhynchus) maintained on freshwater and on hypertonic saline. J Exp Biol 50: 527–539PubMedGoogle Scholar
  43. 43.
    Sykes AH (1971) Formation and composition of the urine. In: Bell DJ, Freeman BM (eds) Physiology and biochemistry of the domestic fowl. Academic Press, London New York, pp 233–278Google Scholar
  44. 44.
    Tanner GA (1967) Micropuncture study of PAH and Diodrast transport in Necturus kidney. Am J Physiol 212: 1341–1346PubMedGoogle Scholar
  45. 45.
    Tanner GA, Carmines PK, Kinter WB (1979) Excretion of phenol red by the Necturus kidney. Am J Physiol 236 (Renal Fluid Electrolyte Physiol 5): F442–F447PubMedGoogle Scholar
  46. 46.
    Tanner GA, Kinter WB (1966) Reabsorption and secretion of p-aminohippurate and Diodrast in Necturus kidney. Am J Physiol 210: 221–231PubMedGoogle Scholar
  47. 47.
    Tune BM, Burg MB (1971) Glucose transport by proximal renal tubules. Am J Physiol 221: 580–585PubMedGoogle Scholar
  48. 48.
    Vogel G, Kröger W (1966) Die Bedeutung des Transportes, der Konzentration und der Dar-bietungsrichtung von Na+ für den tubulären Glucose- und PAH-Transport. Pflügers Arch 288: 342–358CrossRefGoogle Scholar
  49. 49.
    Vogel G, Kürten M (1967) Untersuchungen zur Na+-Abhängigkeit der renal-tubulären Harnstoff-Sekretion bei Rana ridibunda. Pflügers Arch 295: 42–55CrossRefGoogle Scholar
  50. 50.
    Vogel G, Lauterbach F, Kröger W (1965) Die Bedeutung des Natriums für die renalen Transporte von Glucose und Para-Aminohippursäure. Pflügers Arch 283: 151–159CrossRefGoogle Scholar
  51. 51.
    Vogel G, Stoeckert I (1966) Die Bedeutung des Anions für den renal-tubulären Transport von Na+ und den Transport von Glucose und PAH. Pflügers Arch 292: 309–315CrossRefGoogle Scholar
  52. 52.
    Vogel C, Tervooren V, Stoeckert I (1966) Untersuchungen zur Abhängigkeit des renal-tubulären Glueose-Transportes vom Ionen-Angebot sowie des Na+-Transportes vom Angebot an Glucose. Pflügers Arch 288: 359–368CrossRefGoogle Scholar
  53. 53.
    Walker AM, Hudson CL (1937) The reabsorption of glucose from the renal tubule in amphibia and the action of phlorizin upon it. Am J Physiol 118: 130–141Google Scholar
  54. 54.
    Walker AM, Hudson CL (1937) The role of the tubule in the excretion of urea by the amphibian kidney. Am J Physiol 118: 153–166Google Scholar
  55. 55.
    Weiner IM (1973) Transport of weak acids and base. In: Qrloff J, Berliner RW (eds) Handbook of physiology, sect 8, Renal physiology. Am Physiol Soc, Washington DC, pp 521–554Google Scholar
  56. 56.
    Zmuda MJ, Quebbemann AJ (1975) Localization of renal tubular uric acid transport defect in gouty chickens. Am J Physiol 229: 280–285Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • W. H. Dantzler
    • 1
  1. 1.Department of Physiology, College of MedicineUniversity of ArizonaTucsonUSA

Personalised recommendations