Renal Transport of Urea

  • F. Roch-Ramel
  • G. Peters
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


Urea is the main excreted endproduct of nitrogen metabolism, present in notable amounts in the body fluids, in elasmobranch fishes, semi-aquatic amphibians and in mammals. The movements of urea between different compartments of body fluids are usually described by three dogmatic statements: (1) Biological membranes are generally “freely” permeable to urea or, in other words, are practically as permeable to urea as to water. (2) The main exceptions to this rule are (a) a number of membranes constituting the blood brain barrier which are definitely less permeable to urea than to water and (b) a number of membranes constituting the wall of the renal tubules which, at least in part, must be less permeable to urea than to water in order to produce the relatively high concentration of urea in urine to which urea owes its discovery as well as its name. (3) All movements of urea across biological membranes freely permeable to this solute or not occur by free diffusion; there are no known membrane carriers for urea.


Urine Flow Rate Tubular Fluid Urea Transport Urea Excretion Thin Limb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andreoli TE, Berliner RW, Kokko JP, Marsh DJ (1978) Questions and replies: renal mechanisms for urinary concentrating and diluting processes. Am J Physiol 235: F1–F11Google Scholar
  2. 2.
    Armsen T, Reinhardt HW (1971) Transtubular movement of urea at different degrees of water diuresis. Pflügers Arch 326: 270–280PubMedGoogle Scholar
  3. 3.
    Armsen TR, Joppich R, Schubert G, Edel HH (1975) Single nephron study of intrarenal urea handling in experimental pyelonephritis. Res Exp Med 165: 141–152Google Scholar
  4. 4.
    Atherton JC (1978) Lability of renal papillary tissue composition in the rat. J Physiol (London) 274: 323–328Google Scholar
  5. 5.
    Atherton JC, Hai MA, Thomas S (1968) The time course of changes in renal tissue composition during water diuresis in the rat. J Physiol (London) 197: 429–443Google Scholar
  6. 6.
    Berliner RW (1976) The concentrating mechanism in the renal medulla. Kidney Int 9: 214–222PubMedGoogle Scholar
  7. 7.
    Brahm J, With JO (1977) Separate pathways for urea and water, and for chloride in chicken erythrocytes. J Physiol (London) 266: 727–749Google Scholar
  8. 8.
    Carlisky NJ (1970) Urea excretion and arginase in anuran kidney. In: Schmidt-Nielsen B, Kerr DWS (eds) Urea and the kidney. Excerpta Medica, Amsterdam, pp 263–271Google Scholar
  9. 9.
    Carvounis CP, Franki N, Levine SD, Hays RM (1979) Membrane pathways for water and solutes in the toad bladder: I. Independent activation of water and urea transport. J Membr Biol 49: 253–268PubMedGoogle Scholar
  10. 10.
    Carvounis CP, Levine SD, Franki N, Hays RM (1979) Membrane pathways for water and solutes in the toad bladder: II. Reflection coefficients of the water and solute channels. J Membr Biol 49: 269–281PubMedGoogle Scholar
  11. 11.
    Casavola V, Curci S, Lippe C (1966) Effect of cycloheximide on urea faciliated transport through toad gallbladder epithelium. Pfliigers Arch 384: 155–159Google Scholar
  12. 12.
    Clapp XR (1966) Renal tubular reabsorption of urea in normal and protein-depleted rats. Am J Physiol 210: 1304–1308PubMedGoogle Scholar
  13. 13.
    Curci S, Casavola V, Lippe C (1978) Facilitated transport of urea across the gall-bladder luminal membrane. Arch Int Physiol Biochem 86: 243–250Google Scholar
  14. 14.
    Danielson RA, Schmidt-Nielsen B (1972) Recirculation of urea analogs from renal collecting ducts of high- and low-protein-fed rats. Am J Physiol 223: 130–137PubMedGoogle Scholar
  15. 15.
    Diezi J (1973) The adaptation of renal urea excretion after unilateral nephrectomy and after overloading with urea. Pfliigers Arch 344: 287–298Google Scholar
  16. 16.
    Forster RP (1970) Urea and the early history of renal clearance studies. In: Schmidt-Nielsen B, Kerr DWS (eds) Urea and the kidney. Excerpta Medica, Amsterdam, pp 225–228Google Scholar
  17. 17.
    Foster DM, Jaequez J A (1978) Comparison using central core model of renal medulla of the rabbit and rat. Am J Physiol 234: F402–F414PubMedGoogle Scholar
  18. 18.
    Gilbert RM, Weber H, Turchin L, Fine LG, Bourgoignie JJ, Bricker NS (1976) A study of the intrarenal recycling of urea in the rat with chronic experimental pyelonephritis. J Clin Invest 58: 1348–1357PubMedGoogle Scholar
  19. 19.
    Goldberg M, Wojtczak AM, Ramirez MA (1967) Uphill transport of urea in the dog kidney: effects of certain inhibitors. J Clin Invest 46: 388–399PubMedGoogle Scholar
  20. 20.
    Goldstein L, Forster RP (1971) Osmoregulation and urea metabolism in the little skate Raja erinacea. Am J Physiol 220: 742–746PubMedGoogle Scholar
  21. 21.
    Gottschalk CW, Lassiter WE (1979) Transport of water: renal concentrating mechanism. In: Giebisch G (ed) Membrane transport in biology, vol 4A: Transport organs. Springer, Berlin Heidelberg New York, pp 449–471Google Scholar
  22. 22.
    Gross JB, Imai M, Kokko JP (1975) A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J din Invest 55: 1284–1294Google Scholar
  23. 23.
    Gunther RA, Rabinowitz L (1980) Urea and renal concentrating ability in the rabbit. Kidney Int 17: 205–222PubMedGoogle Scholar
  24. 24.
    Hays RM (1976) Antidiuretic hormone. New Engl J Med 295: 659–665Google Scholar
  25. 25.
    Hays RM, Levine SD, Myers JD, Heinemann HO, Kaplan MA, Franki N, Berliner H (1977) Urea transport in the dogfish kidney. J Exp Zool 199: 309–316PubMedGoogle Scholar
  26. 26.
    Hays RM, Franki N, Ross LS (1979) Effect of metabolic inhibitors on vasopressin-stimulated transport systems in the toad bladder. J Supramol Struct 10: 175–184PubMedGoogle Scholar
  27. 27.
    Hingson DJ, Diamond JM (1972) Comparison of nonelectrolyte permeability patterns in several epithelia. J Membr Biol 10: 93–135PubMedGoogle Scholar
  28. 28.
    Horn J (1978) Excretion of urea by the foetal guinea pig. Clin Sci Mol Med 55: 329–333PubMedGoogle Scholar
  29. 29.
    Hove K, Jacobsen E (1975) Renal excretion of urea in reindeer: effect of nutrition. Acta Vet Scand 16: 513–519PubMedGoogle Scholar
  30. 30.
    Hsu CH, Kurtz TW, Massari PU, Ponze SA, Chang BS (1978) Familial azotemia: Impaired urea excretion despite normal renal function. New Engl J Med 298: 117–121PubMedGoogle Scholar
  31. 31.
    Imai M, Kokko JP (1974) Sodium chloride, urea, and water transport in the thin ascending limb of Henle: generation of osmotic gradients by passive diffusion of solutes. J Clin Invest 53: 393–402PubMedGoogle Scholar
  32. 32.
    Imbert M, de Rouffignac C (1976) Role of sodium and urea in the renal concentrating mechanism in Psammomys obesus. Pfliigers Arch 361: 107–114Google Scholar
  33. 33.
    Jamison RL (1974) Counter current systems. In: Thurau K (ed) Kidney and urinary tract physiology. Butterworths, London, pp 199–245Google Scholar
  34. 34.
    Jamison R (1976) Urine concentration and dilution. In: Brenner BM, Rector FS Jr (eds) The kidney, vol I. Saunders, Philadelphia London Toronto, pp 391–441Google Scholar
  35. 35.
    Jamison RL, Robertson CR (1979) Recent formulations of the urinary concentrating mechanism: a status report. Kidney Int 16: 537–545PubMedGoogle Scholar
  36. 36.
    Jeevanandam M, Long CL, Kinney JM (1978) Distribution kinetics of urea between plasma and red blood cells of normal human blood. Proc Soc Exp Biol Med 157: 282–288Google Scholar
  37. 37.
    Joppich R, Deetjen P (1971) The relation between the reabsorption of urea and of water in the distal tubule of the rat kidney. Pflügers Arch 329: 172–185PubMedGoogle Scholar
  38. 38.
    Kaissling B, Kriz W (1979) Structural analysis of the rabbit kidney. (Advances in anatomy, embryology and cell biology, vol 56 ). Springer, Berlin Heidelberg New YorkGoogle Scholar
  39. 39.
    Kaissling B, de Rouffignac C, Barrett JM, Kriz W (1975) The structural organization of the kidney of the desert rodent Psammomys obesus. Anat Embryol 148: 121–143Google Scholar
  40. 40.
    Kaplan MA, Hays L, Hays RM (1974) Evolution of a facilitated diffusion pathway for amides in the erythrocyte. Am J Physiol 226: 1327–1332PubMedGoogle Scholar
  41. 41.
    Kauker ML, Lassiter WE, Gottschalk CW (1970) Micropuncture study of net transtubular movement of urea and water in rats expanded with isotonic saline. Proc Soc Exp Biol Med 133: 216–221PubMedGoogle Scholar
  42. 42.
    Kawamura S, Kokko JP (1976) Urea secretion by the straight segment of the proximal tubule. J din Invest 58: 604–612Google Scholar
  43. 43.
    Knepper MA, Danielson RA, Saidel GM, Johnston KH (1975) Effects of dietary protein restriction and glucocorticoid administration on urea excretion in rats. Kidney Int 8: 303–315PubMedGoogle Scholar
  44. 44.
    Kokko JP (1972) Urea transport in the proximal tubule and the descending limb of Henle. J Clin Invest 51: 1999–2008PubMedGoogle Scholar
  45. 45.
    Kokko JP (1974) Membrane characteristics governing salt and water transport in the loop of Henle. Fed Proc 33: 25–30PubMedGoogle Scholar
  46. 46.
    Kokko JP, Rector FC Jr (1972) Counter current multiplication system without active transport in inner medulla. Kidney Int 2: 214–223PubMedGoogle Scholar
  47. 47.
    Kriz W, Schnerman J, Koepsell H (1972) The position of short and long loops of Henle in the rat kidney. Z Anat Entwicklungsgesch 138: 301–319PubMedGoogle Scholar
  48. 48.
    Labouche C (1970) Elimination rénale de l’urée chez les bovins domestiques tropicaux. I. Relations entre l’urémie et l’élimination rénale de l’urée. Ann Biol Anim Biochem Biophys 10: 143–150Google Scholar
  49. 49.
    Lassiter WE, Gottschalk CW, Mylle M (1961) Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am J Physiol 200: 1139–1146PubMedGoogle Scholar
  50. 50.
    Lassiter WE, Mylle M, Gottschalk CW (1964) Net transtubular movement of water and urea in saline diuresis. Am J Physiol 206: 669–673PubMedGoogle Scholar
  51. 51.
    Lassiter WE, Mylle M, Gottschalk CW (1966) Micropuncture study of urea transport in rat renal medulla. Am J Physiol 210: 965–970PubMedGoogle Scholar
  52. 52.
    Levinsky NG, Berliner RW, Preston AS (1959) The role of urea in the urine concentrating mechanism. J Clin Invest 38: 741–748PubMedGoogle Scholar
  53. 53.
    Long WS (1973) Renal handling of urea in Rana catesbeiana. Am J Physiol 224: 482–490PubMedGoogle Scholar
  54. 54.
    Macey RI (1979) Transport of water and nonelectrolytes across red cell membranes. In: Tosteson DC (ed) Membrane transport in biology, vol II: Transport across single biological membranes. Springer, Berlin Heidelberg New York, pp 1–57Google Scholar
  55. 55.
    Marsh DJ (1970) Solute and water flows in thin limbs of Henle’s loop in the hamster kidney. Am J Physiol 218: 824–831PubMedGoogle Scholar
  56. 56.
    Marsh DJ (1971) Osmotic concentration and dilution of the urine. In: Rouiller C, Muller AF (eds) The kidney: Morphology, biochemistry, physiology, vol III. Academic Press, London New York, pp 71–126Google Scholar
  57. 57.
    Masoni A, Gareia-Romeu F (1972) Accumulation et excrétion de substances organiques par les cellules à chlorure de la branchie & Anguilla anguilla L. adaptée à l’eau de mer. Z Zell- forsch 133: 389–399Google Scholar
  58. 58.
    Medda AK, Frieden E (1970) Effect of prolactin, growth hormone and ACTH on the urea excretion of bullfrog tadpoles during normal and induced metamorphosis. Endocrinology 87: 356–365PubMedGoogle Scholar
  59. 59.
    Morel F, de Rouffignac C (1973) Kidney. Annu Rev Physiol 35: 17–54Google Scholar
  60. 60.
    Mudge GH, Berndt WO, Cooke WJ (1974) Renal excretion of urea in the dog during onset and subsidence of diuresis. Am J Physiol 227: 369–376PubMedGoogle Scholar
  61. 61.
    Mudge GH, Berndt WO, Valtin H (1973) Tubular transport of urea, glucose, phosphate, uric acid, sulfate and thiosulfate. In: Orloff J, Berliner RW, Geiger SR (eds) Handbook of physiology, sect 8: Renal physiology. Am Physiol Soc, Washington, pp 587–652Google Scholar
  62. 62.
    Murdaugh HV Jr (1970) Facilitated diffusion of ura in the elasmobranch erythrocyte. In: Schmidt-Nielsen B, Kerr DWS (eds) Urea and the kidney. Excerpta Medica, Amsterdam, pp 119–126Google Scholar
  63. 63.
    O’Connor WJ, Summerill RA (1976) The excretion of urea by dogs following a meat meal. J Physiol (London) 256: 93–102Google Scholar
  64. 64.
    Olson KR, Fromm PO (1971) Excretion of urea by two teleosts exposed to different con-centrations of ambient ammonia. Comp Biochem Physiol 40A: 999–1007Google Scholar
  65. 65.
    Payan P, Goldstein L, Forster RP (1973) Gills and kidneys in ureosmotic regulation in eury- haline skates. Am J Physiol 224: 367–372PubMedGoogle Scholar
  66. 66.
    Pennell JP, Lacy FB, Jamison RL (1974) An in vivo study of the concentrating process in the descending limb of Henle’s loop. Kidney Int 5: 337–347PubMedGoogle Scholar
  67. 67.
    Pennell JP, Sanjana V, Frey NR, Jamison RL (1975) The effect of urea infusion on the urinary concentrating mechanism in protein-depleted rats. J Clin Invest 55: 399–409PubMedGoogle Scholar
  68. 68.
    Rabinowitz L, Gunther RA (1972) Renal concentrating ability in sheep during urea, manni- tol, and methylurea diuresis. Am J Physiol 222: 801 - 806PubMedGoogle Scholar
  69. 69.
    Rabinowitz L, Gunther RA (1972) Excretion of urea in sheep during urea, mannitol, and methylurea osmotic diuresis. Am J Physiol 222: 807–809PubMedGoogle Scholar
  70. 70.
    Rabinowitz L, Gunther RA (1975) Urea and sodium in sheep kidneys during ethacrynic acid diuresis. Pfliigers Arch 353: 349–360Google Scholar
  71. 71.
    Rabinowitz L, Thompson AB, Wagman RB (1971) Effect of acute urea administration on urinary nonurea solute concentration. Am J Physiol 221: 242–245PubMedGoogle Scholar
  72. 72.
    Rabinowitz L, Gunther RA, Shoji ES, Freedland RA, Avery EH (1973) Effects of high and low protein diets on sheep renal function and metabolism. Kidney Int 4: 188–207PubMedGoogle Scholar
  73. 73.
    Rector FC Jr (1977) Renal concentrating mechanisms. In: Andreoli TE, Grantham J J, Rector FC Jr (eds) Disturbances in body fluid osmolality. Am Physiol Soc, Bethesda, pp 179–196Google Scholar
  74. 74.
    Roch-Ramel F, Peters G (1967) Intrarenal urea and electrolyte concentrations ans influenced by water diuresis and by hydrochlorothiazide. Eur J Pharmacol 1: 124–139PubMedGoogle Scholar
  75. 75.
    Roch-Ramel F, Chométy F, Peters G (1968) Urea concentrations in tubular fluid and in renal tissue of nondiuretic rats. Am J Physiol 215: 429–438PubMedGoogle Scholar
  76. 76.
    Roch-Ramel F, Diezi J, Chométy F, Michoud P, Peters G (1970) Disposal of large urea overloads by the rat kidney: a micropuncture study. Am J Physiol 218: 1524–1532PubMedGoogle Scholar
  77. 77.
    Roch-Ramel F, Churchill-Borloz M, Carmignac D, Michoud P, Peters G (1972) Excretion of urea by the rat kidney in isotonic saline diuresis: a micropuncture study. Am J Physiol 222: 489–494PubMedGoogle Scholar
  78. 78.
    Roch-Ramel F, Filloux B, Guignard JP, Peters G (1978) Fate of urea in Henle’s loops of the rabbit and the rat. In: Vogel HG, Ullrich KJ (eds) New aspects of renal function. (Excerpta Medica Int Conp Ser No 422). Excerpta Medica, Amsterdam, pp 118–121Google Scholar
  79. 79.
    Rocha AS, Kokko JP (1974) Permeability of medullary nephron segments to urea and water: effect of vasopressin. Kidney Int 6: 379–387PubMedGoogle Scholar
  80. 80.
    Rouffignac C de, Imbert M (1975) Données récentes sur les mécanismes de concentration et de dilution de l’urine. J Physiol (Paris) 71: 181A–255AGoogle Scholar
  81. 81.
    Rouffignac C de, Morel F (1969) Micropuncture study of water, electrolyte, and urea move-ments along the loops of Henle in psammomys. J Clin Invest 48: 474–486PubMedGoogle Scholar
  82. 82.
    Rouffignac C de, Lechène C, Guinnebault M, Morel F (1969) Etude par microponction de l’élaboration de l’urine. III. Chez le mérion non diurétique et en diurèse par le mannitol. Nephron 6: 643–666PubMedGoogle Scholar
  83. 83.
    Rouffignac C de, Stewart J, Morel F (1970) Etude par microponction de l’élaboration de l’urine. IV. Chez la souris en diurèse saline. Nephron 7: 350–362PubMedGoogle Scholar
  84. 84.
    Sasaki S, Imai M (1980) Effects of vasopressin on water and Nad transport across the in vitro perfused medullary thick ascending limb of Henle’s loop of mouse, rat, and rabbit kidneys. Pflugers Arch 383: 215–221PubMedGoogle Scholar
  85. 85.
    Schad H, Reinhardt HW, Armsen T (1974) Analysis of cortical urea sequestration in rat renal tissue slices. Pflugers Arch 346: 31–38PubMedGoogle Scholar
  86. 86.
    Schmidt-Nielsen B (1958) Urea excretion in mammals. Physiol Rev 38: 139–168PubMedGoogle Scholar
  87. 87.
    Schmidt-Nielsen B (1969) Comparative physiology of urea excretion. In: Peters C, Roch-Ramel F (eds) Progress in npehrology. Springer, Berlin Heidelberg New York, pp 1–12Google Scholar
  88. 88.
    Schmidt-Nielsen B (1977) Excretion in mammals: role of the renal pelvis in the modification of the urinary concentration and composition. Fed Proc 36: 2493–2503PubMedGoogle Scholar
  89. 89.
    Schmidt-Nielsen B (1979) Urinary concentrating processes in vertebrates. Yale J Biol Med 52: 545–561PubMedGoogle Scholar
  90. 90.
    Schmidt-Nielsen B, Kerr DWS (eds) (1970) Urea and the kidney. (Excerpta Medica Int Congr Ser No 195). Excerpta Medica, AmsterdamGoogle Scholar
  91. 91.
    Schmidt-Nielsen BM, Mackay WC (1972) Comparative physiology of electrolyte and water regulation, with emphasis on sodium, potassium, chloride, urea, and osmotic pressure. In: Maxwell MH, Kleeman CR (eds) Clinical disorders of fluid and electrolyte metabolism, 2nd edn. McGaw-Hill, New York, pp 45–93Google Scholar
  92. 92.
    Schmidt-Nielsen B, Rabinowitz L (1964) Methylurea and acetamide: active reabsorption by elasmobranch renal tubules. Science 146: 1587–1588PubMedGoogle Scholar
  93. 93.
    Schultheiss H (1977) The hormonal regulation of urea excretion in the Mexican axolotl (Ambystoma mexicanum Cope). Gen Comp Endocrinol 31: 45–52PubMedGoogle Scholar
  94. 94.
    Scott D, Mason GD (1970) Renal tubular reabsorption of urea in sheep. Q J Exp Physiol 55: 275–283Google Scholar
  95. 95.
    Sha’afi RI (1977) Water and small nonelectrolyte permeation in red cells. In: Ellory JC, Lew VL (eds) Membrane transport in red cells. Academic Press, London New York, pp 221–256Google Scholar
  96. 96.
    Stoner LC, Roch-Ramel F (1979) The effects of pressure on the water permeability of the descending limb of Henle’s loops of rabbits. Pflugers Arch 382: 7–15PubMedGoogle Scholar
  97. 97.
    Svelto M, Curci S, Micelli S, Gallucci E, Storelli C, Lippe C (1974) Comparative studies of non-electrolyte’s permeability through epithelia and lipid bilayers. In: Bolis L, Bloch K, Luria SE, Lynen F (eds) Comparative biochemistry and physiology of transport. North- Holland, Amsterdam, pp 367–370Google Scholar
  98. 98.
    Truniger B, Schmidt-Nielsen B (1964) Intrarenal distribution of urea and related compounds: effects of nitrogen intake. Am J Physiol 207: 971–978PubMedGoogle Scholar
  99. 99.
    Turner TT, Hartmann PK, Howards SS (1979) Urea in the seminiferous tubule: evidence for active transport. Biol Reprod 20: 511–515PubMedGoogle Scholar
  100. 100.
    Ullrich KJ, Rumrich G, Schmidt-Nielsen B (1967) Urea transport in the collecting duct of rats on normal and low protein diet. Pflugers Arch 295: 147–156Google Scholar
  101. 101.
    Ussing HH, Johansen B (1969) Anomalous transport of sucrose and urea in toad skin. Nephron 6: 317–328PubMedGoogle Scholar
  102. 102.
    Valtin H (1977) Structural and functional heterogeneity of mammalian nephrons. Am J Physiol 233: F491–F501PubMedGoogle Scholar
  103. 103.
    van Os HC, de Jong MD, Siegers JFG (1974) Dimensions of polar pathways through rabbit gallbladder epithelium. J Membr Biol 15: 363–382Google Scholar
  104. 104.
    Wieth JO, Funder J, Gunn RB, Brahm J (1974) Passive transport pathways for chloride and urea through the red cell membrane. In: Bolis L, Bloch K, Luria SE, Lynen F (eds) Comparative biochemistry and physiology of transport. North-Holland, Amsterdam, pp 317–337Google Scholar
  105. 105.
    Wirz H, Dirix R (1973) Urinary concentration and dilution. In: Orloff J, Berliner RW, Geiger SR (eds) Handbook of physiology, Sect 8: Renal physiology. Am Physiol Soc, Washington, pp 415–430Google Scholar
  106. 106.
    Yorio T, Bentley PJ (1978) The permeability of the skin of the aquatic anuran Xenopus laevis (Pipidae). J Exp Biol 72: 285–289PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • F. Roch-Ramel
  • G. Peters
    • 1
  1. 1.Institut de PharmacologieUniversité de LausanneLausanneSwitzerland

Personalised recommendations