Skip to main content

Nuclear Protein Phosphorylation and the Regulation of Gene Expression

  • Chapter
Cyclic Nucleotides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 58 / 1))

Overview

The involvement of cyclic AMP-dependent protein kinase in the phosphorylation of chromosomal proteins is well known. Perhaps the best examples of nuclear proteins phosphorylated by this enzyme are histone H 1 and certain non-histone proteins, each of which is phosphorylated in vivo in response to agents that raise levels of cyclic AMP. Histone H 1 from calf thymus is phosphorylated at serine residue 38, and peptide analogs of this site have been used in studies of catalysis by the C-subunit of the kinase in vitro. Kinetic analyses indicate that phosphorylation proceeds by a random sequential interaction of the enzyme with ATP and peptide substrates. The data do not rule out the presence of a transient phosphoenzyme intermediate in catalysis, but they do indicate the formation of a ternary complex between enzyme, Mg-ATP and peptide which may be significant in the design of active site-directed inhibitors. Studies on the location and translocation of kinase subunits suggest a complex regulatory role for this enzyme in the nucleus. One consequence of histone phosphorylation could be an alteration of nucleosome structure leading to changes in functional activities over broad regions of the chromatin. However, at this point no functional significance can be attributed to any site-specific nuclear protein phosphorylation.

Newly-developed methods should aid in clarifying functional roles of protein kinase substrates. One method involves the isolation of cell mutants deficient in different aspects of phosphorylation. These can be used to assess the importance of phosphorylation in various cellular processes. Another new method involves the use of 5′-[γ-S] ATP as a protein kinase substrate. The thiophosphate group serves as an affinity probe for isolation of newly-phosphorylated proteins. This procedure allows examination of activity of a phosphorylated protein separated from its non-phosphorylated counterparts.

Numerous phosphoproteins have been implicated in reactions related to gene expression both at transcriptional and translational levels. In many cases it is difficult to consider separately cyclic AMP-dependent and -independent phosphorylations with regard to their ultimate roles. For example, translation may involve multiple phosphorylation of ribosomal proteins, not all responsive to cyclic AMP. Phosphorylation occurs on both ribosomal subunit proteins and initiation factors.

Recently, peptides encoded by viral nucleic acids have been shown to possess protein kinase activity. The pp 60src protein specified by avian sarcoma virus is apparently a cyclic AMP-independent protein kinase. It is interesting that this protein is itself a phosphoprotein, and that phosphorylation at one site, a serine residue, is stimulated by cyclic AMP. These results point out the importance of protein phosphorylation to the process of cell transformation and emphasize the necessity for functional identification of protein kinase substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler AJ, Schaffhausen B, Langan TA, Fasman GD (1971) Altered conformational effects of phosphorylated lysine-rich histone (f-1) in f-1-deoxyribonucleic acid complexes: Circular dichroism and immunological studies. Biochemistry 10:909–913

    PubMed  CAS  Google Scholar 

  • Allfrey VG (1980) Molecular aspects of the regulaton of eukaryotic transcription. Nucleosomal proteins and their post-synthetic modifications in the control of DNA conformation and template function. In: Goldstein L, Prescott DM (eds) Cell biology: a comprehensive treatise, vol 3. Academic Press, New York, pp 347–437

    Google Scholar 

  • Allfrey VG, Inoue A, Karn J, Johnson EM, Vidali G (1974) Phoshorylation of DNA-binding nuclear acidic proteins and gene activation in the HeLa cell cycle. Cold Spring Harbor Symp Quant Biol 38:785–801

    PubMed  CAS  Google Scholar 

  • Ashby CD, Walsh DA (1972) Characterization of the interaction of a protein inhibitor with adenosine 3′,5′-monophosphate-dependent protein kinases. J Biol Chem 247:6637–6642

    PubMed  CAS  Google Scholar 

  • Ashby CD, Walsh DA (1973) Characterization of the interaction of a protein inhibitor with cyclic AMP-dependent protein kinases. II. Mechanism of action with the holoenzyme. J Biol Chem 248:1255–1261

    PubMed  CAS  Google Scholar 

  • Atmar VJ, Daniels GR, Kuehn GD (1978) Polyamine stimulation of phosphorylation of nonhistone acidic protein in nuclei and nucleoli from Physarum polycephalum. Eur J Biochem 90:29–37

    PubMed  CAS  Google Scholar 

  • Balhorn R, Chalkley R, Granner D (1972) Lysine-rich histone phosphorylation: A positive correlation with cell replication. Biochemistry 11:1094–1098

    PubMed  CAS  Google Scholar 

  • Bell GI, Valenzuela P, Rutter WJ (1977) Phosphorylation of yeast DNA-dependent RNA polymerases in vivo and in vitro. J Biol Chem 252:3082–3091

    PubMed  CAS  Google Scholar 

  • Benne R, Edman J, Traut RR, Hershey JWB (1978) Phosphorylation of eukaryotic protein synthesis initiation factors. Proc Natl Acad Sci USA 75:108–112

    PubMed  CAS  Google Scholar 

  • Bradbury EM, Inglis RJ, Matthews HR, Sarner N (1973) Phosphorylation of very lysinerich histone in Physarum polycephalum. Eur J Biochem 33:131–139

    PubMed  CAS  Google Scholar 

  • Bradbury EM, Inglis RJ, Matthews HR, Sarner N (1974) Molecular basis of control of mitotic cell division in eukaryotes. Nature 249:553–556

    PubMed  CAS  Google Scholar 

  • Byus CV, Fletcher WH (1979) Intracellular localization of cAMP-dependent protein kinase in cultured Reuber H 35 cells and rat liver. J Cell Biol 83:421 a

    Google Scholar 

  • Campbell GR, Littau VC, Melera PW, Allfrey VG, Johnson EM (1979) Unique sequence arrangement of ribosomal genes in the palindromic rDNA molecule of Physarum polycephalum. Nucleic Acids Res 6:1435–1447

    Google Scholar 

  • Cawthorn ML, Bitte LF, Krystosek A, Kabat D (1974) Effect of cyclic adenosine 3′:5′-monophosphate on ribosomal protein phosphorylation in reticulocytes. J Biol Chem 249:275–278

    Google Scholar 

  • Chambon P (1975) Eukaryotic nuclear RNA polymerases. Ann Rev Biochem 44:613–638

    PubMed  CAS  Google Scholar 

  • Chen L, Walsh DA (1971) Multiple forms of hepatic adenosine 3′:5′-monophosphate-dependent protein kinase. Biochemistry 10:3614–3621

    PubMed  CAS  Google Scholar 

  • Cole RD (1977) Special features ofthe structure of H 1 histones. In: T’so POP (ed) Molecular biology of the mammalian genetic apparatus. North-Holland Publ, Amsterdam, pp 93–103

    Google Scholar 

  • Collett MS, Erikson RL (1978) Protein kinase activity associated with the avian sarcoma virus src gene product. Proc Natl Acad Sci USA 75:2021–2024

    PubMed  CAS  Google Scholar 

  • Collett MS, Erikson E, Erikson RL (1979) Structural analysis of avian sarcoma virus transforming protein: sites of phosphorylation. J Virol 29:770–781

    PubMed  CAS  Google Scholar 

  • Collett MS, Erikson E, Purchio AF, Brugge JS, Erikson RL (1979) A normal cell protein similar in structure and function to the avian sarcoma virus transforming gene product. Proc Natl Acad Sci USA 76:3159–3163

    PubMed  CAS  Google Scholar 

  • Comber HJ, Taylor DM (1974) Changes in histone phosphorylation and adenosine 3′:5′-cyclic monophosphate during the initiation of deoxyribonucleic acid synthesis and mitosis in rat kidney. Biochem Soc Trans 2:74–76

    CAS  Google Scholar 

  • Costa E, Kurosawa A, Guidotti A (1976) Activation and nuclear translocation of protein kinase during transsynaptic induction of tyrosine 3-monooxygenase. Proc Natl Acad Sci USA 73:1058–1062

    PubMed  CAS  Google Scholar 

  • Dahmus ME (1976) Stimulation of ascites tumor RNA polymerase II by protein kinase. Biochemistry 15:1821–1829

    PubMed  CAS  Google Scholar 

  • Danenberg KD, Cleland WW (1975) Use of chromium adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase. Biochemistry 14:28–39

    PubMed  CAS  Google Scholar 

  • D’Anna JA Jr, Gurley LR, Deaven LL (1978) Dephosphorylation of histones H 1 and H 3 during the isolation of metaphase chromosomes. Nucleic Acids Res 5:3195–3207

    PubMed  Google Scholar 

  • Datta A, de Haro C, Sierra JM, Ochoa S (1977) Role of 3′:5′-cyclic-AMP-dependent protein kinase in regulation of protein synthesis in reticulocyte lysates. Proc Natl Acad Sci USA 74:1463–1467

    PubMed  CAS  Google Scholar 

  • De Angelo AB, Lee PC, Jungmann RA (1973) Ovarian cyclic AMP-binding protein and protein kinase activities during postnatal development of the rat. Am Zool 13:1285

    Google Scholar 

  • Dixon GH, Candido EPM, Houda BM, Louie AJ, MacLeod AR, Sung MT (1975) The biological roles of post-synthetic modifications of basic nuclear proteins. In: Fitzsimmons DW, Wolstenholme GEW (eds) The structure and function of chromatin. CIBA Symposium 28. Elsevier, Amsterdam, pp 229–258

    Google Scholar 

  • Dokas L, Rittschof D, Kleinsmith LJ (1978) Effects of cyclic adenosine 3′,5′-monophosphate on phosphoprotein kinase and phosphatase fractions prepared from rat liver nuclei. Arch Biochem Biophys 191:578–589

    PubMed  CAS  Google Scholar 

  • Eckhart W, Hutchinson MA, Hunter T (1979) An activity phosphorylating tyrosine in polyoma T-antigen immunoprecipitates. Cell 18:925–933

    PubMed  CAS  Google Scholar 

  • Edlund B, Zetterqvist O, Ragnarsson U, Engström L (1977) Phosphorylation of synthetic peptides by (32P)ATP and cyclic GMP-stimulated protein kinase. Biochem Biophys Res Commun 79:139–144

    PubMed  CAS  Google Scholar 

  • Erikson RL, Collett MS, Erikson E, Purchio AF (1979) Evidence that the avian sarcoma virus transforming gene product is a cyclic AMP-independent protein kinase. Proc Natl Acad Sci USA 76:6260–6264

    PubMed  CAS  Google Scholar 

  • Farago A, Romhanyi T, Antoni F, Takats A, Fabian F (1975) The phoshorylated site of calf thymus F 2 b histone by the cyclic AMP-dependent protein kinase. Nature 254:88

    PubMed  CAS  Google Scholar 

  • Fasy TM, Inoue A, Johnson EM, Allfrey VG (1979) Phosphorylation of H 1 and H 5 histones by cyclic AMP-dependent protein kinase reduces DNA binding. Biochim Biophys Acta 564:322–334

    PubMed  CAS  Google Scholar 

  • Flockerzi V, Speichermann N, Hofmann F (1978) A guanosine 3′:5′-monophosphate-dependent protein kinase from bovine heart muscle. J Biol Chem 253:3395–3399

    PubMed  CAS  Google Scholar 

  • Garel A, Axel R (1976) Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei. Proc Natl Acad Sci USA 73:3966–3970

    PubMed  CAS  Google Scholar 

  • Garrard WT, Boulikas T, Wiseman JM (1979) Points of contact between histone H 1 and the histone octamer. J Cell Biol 83:146 a

    Google Scholar 

  • Gill GN, Holdy KE, Walton GM, Kanstein CB (1976) Purification and characterization of 3′:5′-cyclic GMP-dependent protein kinase. Proc Natl Acad Sci USA 73:3918–3922

    PubMed  CAS  Google Scholar 

  • Glass DB, Krebs EG (1979) Comparison of the substrate specificity of adenosine 3′:5′-monophosphate-and guanosine 3′:5′-monophoshate-dependent protein kinases. J Biol Chem 254:9728–9738

    PubMed  CAS  Google Scholar 

  • Goodwin GH, Sanders C, Johns EW (1973) A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur J Biochem 38:14–19

    PubMed  CAS  Google Scholar 

  • Goody RS, Eckstein F (1971) Thiophosphate analogs of nucleoside di-and triphosphates. J Am Chem Soc 93:6252–6257

    CAS  Google Scholar 

  • Gratecos D, Fischer EH (1974) Adenosine 5′-O(3-thiotriposphate) in the control of phoshorylase activity. Biochem Biophys Res Commun 58:960–967

    PubMed  CAS  Google Scholar 

  • Greengard P (1978) Cyclic nucleotides, phosphorylated proteins and neuronal function. Raven Press, New York

    Google Scholar 

  • Gressner AM, Wool IG (1976) Influence of glucagon and cyclic adenosine 3′:5′-monophosphate on the phosphorylation of rat liver ribosomal protein S 6. J Biol Chem 251:1500–1504

    PubMed  CAS  Google Scholar 

  • Guidotti A, Chuang DM, Hollenbeck R, Costa E (1978) Nuclear translocation of catalytic subunits of cytosol cAMP-dependent protein kinase in the transsynaptic induction of medullary tyrosine hydroxylase. Adv Cyclic Nucleotide Res 9:185–197

    PubMed  CAS  Google Scholar 

  • Gulbinsky JS, Cleland WW (1968) Kinetic studies of E.coli galactokinase. Biochemistry 7:566–575

    PubMed  CAS  Google Scholar 

  • Gurley LR, D’Anna JA, Barham SS, Deaven LL, Tobey RA (1978) Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur J Biochem 84:1–15

    PubMed  CAS  Google Scholar 

  • Gurley LR, Walters RA (1973) Evidence from triton X-100 polyacrylamide gel electrophor-esis that histone f 2 a 2, not f 2 b, is phosphorylated in Chinese hamster cells. Biochem Biophys Res Comm 55:697–703

    PubMed  CAS  Google Scholar 

  • Gurley LR, Walters RA, Tobey RA (1975) Sequential phosphorylation of histone subfractions in the Chinese hamster cell cycle. J Biol Chem 250:3936–3944

    PubMed  CAS  Google Scholar 

  • Hashimoto E, Takeda M, Nishizuka Y (1975) Phosphorylated sites of calf thymus histone H 2 B by adenosine 3′,5′-monophosphate-dependent protein kinase from silkworm. Biochem Biophys Res Comm 66:547–555

    PubMed  CAS  Google Scholar 

  • Hirsch J, Martelo OJ (1976) Phosphorylation of rat liver ribonucleic acid polymerase I by nuclear protein kinases. J Biol Chem 251:5408–5413

    PubMed  CAS  Google Scholar 

  • Hohmann P, Tobey RA, Gurley LR (1976) Phosphorylation of distinct regions of histone H 1: Relationship to the cell cycle. J Biol Chem 251:3685–3692

    PubMed  CAS  Google Scholar 

  • Hunter T, Sefton BM (1980) Transforming gene product of Rous sarcoma virus phoshorylates tyrosine. Proc Natl Acad Sci USA 77:1311–1315

    PubMed  CAS  Google Scholar 

  • Inglis RJ, Langan TA, Matthews HR, Hardie DG, Bradbury EM (1976) Advance of mitosis by histone phosphokinase. Exp Cell Res 97:418–425

    PubMed  CAS  Google Scholar 

  • Isenberg I (1979) Histones. In: Snell ES, Boyer PD, Meister A, Richardson CC (eds) Ann Rev Biochem, vol 48. Annual Reviews, Inc., Palo Alto, pp 159–191

    Google Scholar 

  • Iynedjian PB, Hanson RW (1977) Increase in level of functional messenger RNA coding for phosphoenolpyruvate carboxykinase (GTP) during induction by cyclic adenosine 3′:5′-monophosphate. J Biol Chem 252:655–662

    PubMed  CAS  Google Scholar 

  • Jackson V, Shires A, Tanphaichitr N, Chalkley R (1976) Modifications to histones immediately after synthesis. J Mol Biol 104:471–483

    PubMed  CAS  Google Scholar 

  • Johnson EM (1977) Cyclic AMP-dependent protein kinase and its nuclear substrate proteins. In: Greengard P, Robison GA (eds) Adv Cyclic Nucleotide Res, vol 8. Raven Press, New York, pp 267–309

    Google Scholar 

  • Johnson EM, Allfrey VG (1972) Differential effects of cyclic adenosine 3′,5′-monophosphate on phosphorylation of rat liver nuclear acidic proteins. Arch Biochem Biophys 152:786–794

    PubMed  CAS  Google Scholar 

  • Johnson EM, Allfrey VG (1978) Biochemical modifications of histone primary structure: phosphorylation and acetylation as related to chromatin conformation and function. In: Litwack G (ed) Biochemical actions of hormones. Academic Press, New York, pp 1–51

    Google Scholar 

  • Johnson EM, Allfrey VG, Bradbury EM, Matthews HR (1978) Altered nucleosome structure containing DNA sequences complementary to 19 S and 26 S ribosomal RNA in Physarum polycephalum. Proc Natl Acad Sci 75:1116–1120

    PubMed  CAS  Google Scholar 

  • Johnson EM, Campbell GR, Allfrey VG (1979) Different nucleosome structures on transcribing and non-transcribing ribosomal gene sequences. Science 206:1192–1194

    PubMed  CAS  Google Scholar 

  • Johnson EM, Hadden JW (1975) Phosphorylation of lymphocyte nuclear acidic proteins: regulation by cyclic nucleotides. Science 187:1198–1200

    PubMed  CAS  Google Scholar 

  • Johnson EM, Hadden JW, Inoue A, Allfrey VG (1975 a) DNA-binding by cyclic adenosine 3′,5′-monophosphate-dependent protein kinase from calf thymus nuclei. Biochemistry 14:3873–3883

    PubMed  CAS  Google Scholar 

  • Johnson EM, Inoue A, Crouse LJ, Allfrey VG, Hadden JW (1975 b) Effects of cyclic GMP upon DNA binding by a calf thymus nuclear protein fraction. Biochem Biophys Res Commun 65:714–721

    PubMed  CAS  Google Scholar 

  • Johnson EM, Karn J, Allfrey VG (1974) Early nuclear events in the induction of lymphocyte proliferation by mitogens: Effects of concanavalin A on the phosphorylation and distribution of non-histone nuclear proteins. J Biol Chem 249:4990–4999

    PubMed  CAS  Google Scholar 

  • Johnson LD, Hadden JW (1975) Cyclic GMP and lymphocyte proliferation: Effects on DNA-dependent RNA polymerase I and II activities. Biochem Biophys Res Commun 66:1498–1505

    PubMed  CAS  Google Scholar 

  • Jungmann RA, Christensen ML, Schweppe JS, Mednieks MI, Spielvogel AM (1976) Cyclic AMP-mediated nuclear translocation of cytoplasmic cAMP-dependent protein kinase: identity of the nuclear and cytoplasmic enzymes. In: Abou Sabe M (ed) Cyclic nucleotides and the regulation of cell growth. Dowden, Hutchinson, Ross, Stroudsberg, Pa., pp 225–252

    Google Scholar 

  • Jungmann RA, Hiestand PC, Schweppe JS (1974) Mechanism of action of gonadotropin. IV. Cyclic AMP-dependent translocation of ovarian cyclic AMP-binding protein and protein kinase to nuclear acceptor sites. Endocrinology 94:168–183

    PubMed  CAS  Google Scholar 

  • Jungmann RA, Lee S, DeAngelo AB (1975) Translocation of cytoplasmic protein kinase and cyclic adenosine monophosphate-binding protein to intracellular acceptor sites. Adv Cyclic Nucleotide Res 5:281–306

    PubMed  CAS  Google Scholar 

  • Kabat D (1970) Phosphorylation of ribosomal proteins in rabbit reticulocytes. Characterization and regulatory aspects. Biochemistry 9:4160–4175

    PubMed  CAS  Google Scholar 

  • Kallos J (1977) Photochemical attachment of cyclic AMP binding protein(s) to the nuclear genome. Nature 265:705–710

    PubMed  CAS  Google Scholar 

  • Kam J, Johnson EM, Vidali G, Allfrey VG (1974) Differential phosphorylation and turnover of nuclear acidic proteins during the cell cycle of synchronized HeLa cells. J Biol Chem 249:667–677

    Google Scholar 

  • Kara J, Vidali G, Boffa LC, Allfrey VG (1977) Characterization of the non-histone nuclear proteins associated with rapidly labeled heterogeneous nuclear RNA. J Biol Chem 252:7307–7322

    Google Scholar 

  • Keely SL, Jr, Corbin, JD, Park CR (1975) On the question of translocation of heart cyclic AMP-dependent protein kinase. Proc Natl Acad Sci USA 72:1501–1504

    PubMed  CAS  Google Scholar 

  • Kemp BE, Benjamini E, Krebs EG (1976) Synthetic hexapeptide substrates and inhibitors of 3′,5′-cyclic AMP-dependent protein kinase. Proc Natl Acad Sci USA 73:1038–1042

    PubMed  CAS  Google Scholar 

  • Kish VM, Kleinsmith LJ (1974) Nuclear protein kinases: Evidence for their heterogeneity tissue specificity, substrate specificity and differential responses to adenosine 3′,5′-monophosphate. J Biol Chem 249:750–760

    PubMed  CAS  Google Scholar 

  • Kleinsmith LJ (1974) Acidic nuclear phosphoproteins. In: Cameron IL, Jeter JR, Jr (eds) Acidic proteins of the nucleus. Academic Press, New York, pp 103–135

    Google Scholar 

  • Kleinsmith LJ, Allfrey VG, Mirsky AE (1966) Phosphoprotein metabolism in isolated lymphocyte nuclei. Proc Natl Acad Sci USA 55:1182–1189

    PubMed  CAS  Google Scholar 

  • Kleinsmith LJ, Stein J, Stein G (1976) Dephosphorylation of non-histone proteins specifically alters the pattern of gene transcription in reconstituted chromatin. Proc Natl Acad Sci USA 73:1174–1178

    PubMed  CAS  Google Scholar 

  • Kornberg R (1977) Structure of chromatin. Ann Rev Biochem 46:931–954

    PubMed  CAS  Google Scholar 

  • Kramer G, Cimadivella M, Hardesty B (1976) Specificity of the protein kinase activity associated with the hemin-controlled repressor of rabbit reticulocyte. Proc Natl Acad Sci USA 73:3078–3082

    PubMed  CAS  Google Scholar 

  • Kranias EG, Schweppe JS, Jungmann RA (1977) Phosphorylative and functional modifications of nucleoplasmic RNA polymerase II by homologous adenosine 3′,5′-monophosphate-dependent protein kinase from calf thymus and by heterologous phosphatase. J Biol Chem 252:6750–6758

    PubMed  CAS  Google Scholar 

  • Kuehn GD (1972) Cell cycle variation in cyclic adenosine 3′,5′-monophosphate-dependent inhibition of a protein kinase from Physarum polycephalum. Biochem Biophys Res Commun 49:414–419

    PubMed  CAS  Google Scholar 

  • Kuehn GD, Affolter H-U, Atmar VJ, Seebeck T, Gubler U, Braun R (1979) Polyamine mediated phosphorylation of a nucleolar protein from Physarum polycephalum that mediates rRNA synthesis. Proc Natl Acad Sci USA 76:2541–2545

    PubMed  CAS  Google Scholar 

  • Kuo JF (1974) Guanosine 3′,5′-monophosphate-dependent protein kinase in mammalian tissues. Proc Natl Acad Sci USA 71:4037–4041

    PubMed  CAS  Google Scholar 

  • Kuroda Y, Hashimoto E, Nishizuka Y, Hamana K, Iwai K (1976) Phosphorylated sites of calf thymus H 2 B histone by adenosine 3′:5′-monophosphate-dependent protein kinase from bovine cerebellum. Biochem Biophys Res Commun 71:629–635

    PubMed  CAS  Google Scholar 

  • Langan TA (1969 a) Action of adenosine 3′,5′-monophosphate-dependent histone kinase in vivo. J Biol Chem 244:5763–5765

    PubMed  CAS  Google Scholar 

  • Langan TA (1969 b) Phosphorylation of liver histone following the administration of glucagon and insulin. Proc Natl Acad Sci USA 64:1276–1283

    PubMed  CAS  Google Scholar 

  • Langan TA (1970) Phosphorylation of histones in vivo under the control of cylcic AMP and hormones. In: Greengard P, Costa E (eds) Role of cyclic AMP in cell function. Raven Press, New York, pp 307–323

    Google Scholar 

  • Langan TA (1971) Phosphorylation of separate sites in lysine-rich histone by cyclic AMP-dependent and independent protein kinases. Fed Proc 30:1089 (abstract)

    Google Scholar 

  • Langan TA (1973) Protein kinases and protein kinase substrates. Adv Cyclic Nucleotide Res 3:99–153

    PubMed  CAS  Google Scholar 

  • Langan TA (1978) Methods for the assessment of site-specific histone phosphorylation. In: Stein G, Stein J, Kleinsmith LJ (eds) Methods in cell biology, vol 19. Academic Press, New York, pp 127–142

    Google Scholar 

  • Langan TA, Hohmann P (1975) Analysis of phosphorylation sites in lysine-rich (H 1) histone: an approach to the determination of structural chromosomal protein functions. In: Stein GS, Kleinsmith LJ (eds) Chromosomal proteins and their role in the regulation of gene expression. Academic Press, New York, pp 113–125

    Google Scholar 

  • Langan TA, Rall SC, Cole RD (1971) Variation in primary structure at a phosphorylation site in lysine-rich histones. J Biol Chem 246:1942–1948

    PubMed  CAS  Google Scholar 

  • Langan TA, Smith LK (1967) Phosphorylation of histones and protamines by a specific protein kinase from liver. Fed Proc 26:603 (abstract)

    Google Scholar 

  • Le Cam A, Singh T, Roth C, Cabrai F, Pastan I, Gottesman I (1979) Use of cyclic AMP-resistant CHO mutants to identify substrates of cyclic AMP-dependent protein kinase. J Cell Biol 83:245 a

    Google Scholar 

  • Levin D, Ernst V, London I (1979) Effects of the catalytic subunit of cyclic AMP-dependent protein kinase (type II) from reticulocytes and bovine heart muscle on protein phosphorylation and protein synthesis in reticulocyte lysates. J Biol Chem 254:7935–7941

    PubMed  CAS  Google Scholar 

  • Levinson AD, Oppermann H, Levintow L, Varmus HE, Bishop JM (1978) Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15:561–572

    PubMed  CAS  Google Scholar 

  • Lincoln TM, Dills WL, Jr, Corbin JD (1977) Purification and subunit composition of guanosine 3′:5′-monophosphate-dependent protein kinase from bovine lung. J Biol Chem 252:4269–4275

    PubMed  CAS  Google Scholar 

  • Lincoln TM, Flockhart DA, Corbin JD (1978) Studies on the structure and mechanism of activation of the guanosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 253:6002–6009

    PubMed  CAS  Google Scholar 

  • Louie AJ, Candido EPM, Dixon GH (1973) Enzymatic modifications and their possible roles in regulating the binding of basic proteins to DNA and in controlling chromosomal structure. Cold Spring Harbor Symp Quant Biol 38:803–819

    Google Scholar 

  • Maeno H, Johnson EM, Greengard P (1971) Subcellular distribution of adenosine 3′,5′-monophosphate-dependent protein kinase in rat cerebrum. J Biol Chem 246:134–142

    PubMed  CAS  Google Scholar 

  • Maness PF, Engeser H, Greenberg ME, O’Farrell M, Gall WE, Edelman GM (1979) Characterizaton of the protein kinase activity of avian sarcoma virus src gene product. Proc Natl Acad Sci USA 76:5028–5032

    PubMed  CAS  Google Scholar 

  • Marushige K, Ling V, Dixon GH (1969) Phosporylation of chromosomal basic proteins in maturing trout testis. J Biol Chem 244:5953–5958

    PubMed  CAS  Google Scholar 

  • Masaracchia RA, Kemp BE, Walsh DA (1977) Histone 4 phosphotransferase activities in proliferating lymphocytes. J Biol Chem 252:7109–7117

    PubMed  CAS  Google Scholar 

  • Matsumura S, Nishizuka Y (1974) Phosphorylation of endogenous hepatic proteins by adenosine 3′,5′-monophosphate-dependent protein kinase. J Biochem (Tokyo) 76:29–38

    CAS  Google Scholar 

  • Mednieks MI, Lawellin D, Kawano-Valuskas L, Jungmann RA (1979) Immunocytochemical localization of cyclic AMP-dependent protein kinase isozymes in normal and leukemic lymphoid cells. J Cell Biol 83:126a

    Google Scholar 

  • Meisler MH, Langan TA (1969) Characterization of a phosphatase specific for phosphorylated histones and protamines. J Biol Chem 244:4961–4968

    PubMed  CAS  Google Scholar 

  • Miyamoto E, Petzold GL, Kuo JF, Greengard P (1973) Dissociation and activation of adenosine 3′,5′-monophosphate-dependent and guanosine 3′,5′-monophosphate-dependent protein kinases by cyclic nucleotides and by substrate proteins. J Biol Chem 248:179–189

    PubMed  CAS  Google Scholar 

  • Morgan M, Perry SV, Ottaway J (1976) Myosin light-chain phosphatase. Biochem J 157:687–697

    PubMed  CAS  Google Scholar 

  • Morrison JF, Heyde E (1972) Enzymic phosphoryl group transfer. Ann Rev Biochem 41:29–54

    PubMed  CAS  Google Scholar 

  • Noguchi T, Diesterhaft M, Granner D (1978) Dibutyryl cyclcic AMP increases the amount of functional messenger RNA coding for tyrosine aminotransferase in rat liver. J Biol Chem 253:1332–1335

    PubMed  CAS  Google Scholar 

  • Noll M, Kornberg RD (1977) Action of micrococcal nuclease on chromatin and the location of histone H 1. J Mol Biol 109:393–404

    PubMed  CAS  Google Scholar 

  • Ochoa S, de Haro C (1979) Regulation of protein synthesis in eukaryotes. Ann Rev Biochem 48:549–580

    PubMed  CAS  Google Scholar 

  • Ord MG, Stocken LA (1966) Metabolic properties of histones from rat liver and thymus gland. Biochem J 98:888–897

    PubMed  CAS  Google Scholar 

  • Palmer WK, Castagna M, Walsh DA (1974) Nuclear protein kinase activity in glucagonstimulated perfused rat livers. Biochem J 143:469–471

    PubMed  CAS  Google Scholar 

  • Pomerantz AH (1979) Studies on the reaction mechanism of the catalytic subunit of calf thymus cyclic AMP-dependent protein kinase using synthetic polypeptide substrates. PhD Thesis, The Rockefeller, University.

    Google Scholar 

  • Pomerantz AH, Allfrey VG, Merrifield RB, Johnson EM (1977) Studies on the mechanism of phosphorylation of synthetic polypeptides by a calf thymus cyclic AMP-dependent protein kinase. Proc Natl Acad Sci USA 74:4261–4265

    PubMed  CAS  Google Scholar 

  • Pumo DE, Kleinsmith LJ (1978) Methods for the assessment of nonhistone phosphorylation (acid-stable, alkali-labile linkages). In: Stein G, Stein J, Kleinsmith LJ (eds) Methods in cell biology, vol 19. Academic Press, New York, pp 119–126

    Google Scholar 

  • Rall SC, Cole RD (1971) Amino acid sequence and sequence variability of the amino terminal regions of lysine-rich histones. J Biol Chem 246:7175–7190

    PubMed  CAS  Google Scholar 

  • Roberts S, Ashby CD (1978) Ribosomal protein phosphorylation in rat cerebral cortex in vitro. J Biol Chem 253:288–296

    PubMed  CAS  Google Scholar 

  • Roos BA (1973) ACTH and cAMP stimulation of adrenal ribosomal protein phosphorylation. Endocrinology 93:1287–1293

    PubMed  CAS  Google Scholar 

  • Royal A, Garapin A, Cami B, Perrin F, Mandel JF, Le Meur M, Brégégègre F, Gannon F, Le Pennee JP, Chambon P, Kourilsky P (1979) The ovalbumin gene region: common features in the organization of three genes expressed in chicken oviduct under hormonal control. Nature 279:125–132

    PubMed  CAS  Google Scholar 

  • Ruiz-Carrillo A, Allfrey VG (1973) A method for the purification of histone fraction F 3 by affinity chromatography. Arch Biochem Biophys 154:185–191

    PubMed  CAS  Google Scholar 

  • Ruiz-Carrillo A, Wangh LJ, Allfrey VG (1975) Processing of newly synthesized histone molecules. Science 190:117–128

    PubMed  CAS  Google Scholar 

  • Ruiz-Carrillo A, Wangh LJ, Allfrey VG (1976) Selective synthesis and modification of nuclear proteins during maturation of avian erythroid cells. Arch Biochem Biophys 174:273–290

    PubMed  CAS  Google Scholar 

  • Salem R, de Vellis J (1976) Protein kinase activity and cyclic AMP-dependent protein phosphorylation in subcellular fractions after norepinephrine treatment of glial cells. Fed Proc 35:296 (abstract)

    Google Scholar 

  • Sen A, Todaro GJ, Blair DG, Robey WG (1979) Thermolabile protein kinase molecules in a temperature-sensitive murine sarcoma virus pseudotype. Proc Natl Acad Sci USA 76:3617–3621

    PubMed  CAS  Google Scholar 

  • Severin ES, Saschenko LP, Kochetkov SN, Kurochkin SN (1978) Structure and function of protein kinase from pig brain. Adv Cyclic Nucleotide Res 9:171–184

    PubMed  CAS  Google Scholar 

  • Shlyapnikov SV, Arutyunyan AA, Kurochkin SN, Memelova LV, Nesterova MV, Saschenko LP, Severin ES (1975) Investigation of the sites phosphorylated in lysine-rich histones by protein kinase from pig brain. FEBS Lett 53:316–319

    PubMed  CAS  Google Scholar 

  • Shoemaker CB, Chalkley R (1978) An H 3 histone-specific kinase isolated from bovine thymus chromatin. J Biol Chem 253:5802–5807

    PubMed  CAS  Google Scholar 

  • Shoji M, Brackett NL, Tse J, Sapira R, Kuo JF (1978) Molecular properties and mode of action of homogeneous preparation of stimulatory modulator of cyclic GMP-dependent protein kinase from the heart. J Biol Chem 253:3427–3434

    PubMed  CAS  Google Scholar 

  • Spruill WA, Hurwitz DR, Lucchesi JC, Steiner AL (1978) Association of cyclic GMP with gene expression of polytene chromosomes of Drosophila melanogaster. Proc Natl Acad Sci USA 75:1480–1484

    PubMed  CAS  Google Scholar 

  • Steinberg RA, Coffino P (1979) Two-dimensional gel analysis of cyclic AMP effects in cultured S 49 mouse lymphoma cells: Protein modifications, inductions, and repressions. Cell 18:719–733

    PubMed  CAS  Google Scholar 

  • Steinberg RA, Wetters TV, Coffino P (1978) Kinase-negative mutants of S 49 mouse lymphoma cells carry a trans-dominant mutation affecting expression of cAMP-dependent protein kinase. Cell 15:1351–1361

    PubMed  CAS  Google Scholar 

  • Steiner AL, Koide Y, Earp HS, Bechtel PJ, Beavo JA (1978) Compartmentalization of cyclic nucleotides and cyclic AMP-dependent protein kinases in rat liver: Immunocytochemical demonstration. Adv Cyclic Nucleotide Res 9:691–705

    PubMed  CAS  Google Scholar 

  • Sun IY-C, Johnson EM, Allfrey VG (1980) Affinity purification of newly-phosphorylated protein molecules. J Biol Chem 255:742–747

    PubMed  CAS  Google Scholar 

  • Sung MT (1977) Phosphorylation and dephosphorylation of histone V (H 5): Controlled condensation of avian erythrocyte chromatin. Biochemistry 16:286–290

    PubMed  CAS  Google Scholar 

  • Sung MT, Dixon GH, Smithies O (1971) Phosphorylation and synthesis of histones in regenerating rat liver. J Biol Chem 246:1358–1364

    PubMed  CAS  Google Scholar 

  • Takeda M, Ohga Y (1973) Adenosine 3′,5′-monoposphate and histone phosphorylation during enzyme induction by glucagon in rat liver. J Biochem (Tokyo) 73:621–629

    CAS  Google Scholar 

  • Takeda M, Yamamura H, Ohga Y (1971) Phosphoprotein kinases associated with rat liver chromatin. Biochem Biophys Res Commun 42:103–110

    PubMed  CAS  Google Scholar 

  • Teng CS, Teng CT, Allfrey VG (1971) Studies of nuclear acidic proteins: Evidence for their phosphorylation, tissue specificity, selective binding to DNA and selective effects on transcription. J Biol Chem 246:3597–3609

    PubMed  CAS  Google Scholar 

  • Thoma F, Koller T, Klug A (1979) Involvement of histone H 1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83:403–427

    PubMed  CAS  Google Scholar 

  • Tihon C, Green M (1973) Cyclic AMP-amplified replication of RNA tumor virus-like particles in Chinese hamster ovary cells. Nature (New Biol) 244:227–231

    CAS  Google Scholar 

  • Traugh JA, Porter GG (1976) A comparison of ribosomal proteins from rabbit reticulocytes phosphorylated in situ and in vitro. Biochemistry 15:610–616

    PubMed  CAS  Google Scholar 

  • Vedeckis WV, Schrader WT, O’Malley BW (1978) The chick oviduct progesterone receptor. In: Litwack G (ed) Biochemical actions of hormones. Academic Press, New York, pp 321–372

    Google Scholar 

  • Vidali G, Boffa LC, Allfrey VG (1977) Selective release of chromosomal proteins during limited DNAse I digestion of avian erythrocyte chromatin. Cell 12:409–415

    PubMed  CAS  Google Scholar 

  • Vokaer A, Iacobelli S, Kram R (1974) Phosphoprotein phosphatase activity associated with estrogen-induced protein in rat uterus. Proc Natl Acad Sci USA 71:4482–4486

    PubMed  CAS  Google Scholar 

  • Watson G, Langan TA (1973) Effects of F 1 histone and phosphorylated F 1 histone on template activity of chromatin. Fed Proc 32:588

    Google Scholar 

  • Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 193:848–856

    PubMed  CAS  Google Scholar 

  • Weisbrod S, Weintraub H (1979) Isolation of a subclass of nuclear proteins responsible for conferring DNase I-sensitive structure on globin chromatin. Proc Natl Acad Sci USA 76:631–635

    Google Scholar 

  • Weisbrod S, Groudine M, Weintraub H (1980) Interaction of HMG 14 and 17 with activelytranscribed genes. Cell 19:289–301

    PubMed  CAS  Google Scholar 

  • Wicks WD, Koontz J, Wagner K (1975) Possible participation of protein kinase in enzyme induction. J Cyclic Nucleotide Res 1:49–58

    CAS  Google Scholar 

  • Zeilig CE, Langan TA, Glass DB (1979) Phosphorylation of histone H 1 by cyclic GMP and cyclic AMP-dependent protein kinases. J Cell Biol 83:244 a

    Google Scholar 

  • Zetterqvist Ö, Ragnarsson U, Humble E, Berglund L, Engström L (1976) The minimum substrate of cyclic AMP-stimulated protein kinase, as studied by synthetic peptides representing the phosphorylatable site of pyruvate kinase (type L) of rat liver. Biochem Biophys Res Commun 70:696–703

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, E.M. (1982). Nuclear Protein Phosphorylation and the Regulation of Gene Expression. In: Nathanson, J.A., Kebabian, J.W. (eds) Cyclic Nucleotides. Handbook of Experimental Pharmacology, vol 58 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68111-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68111-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68113-4

  • Online ISBN: 978-3-642-68111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics