Skip to main content

Amino Acids, Peptides and Proteins

  • Conference paper

Part of the book series: NMR Basic Principles and Progress ((NMR,volume 20))

Abstract

Proteins and peptides are responsible for a wide variety of biological functions. These molecules play a vital role in life processes ranging from biosynthesis to molecular transport. Enzymes are proteins which catalyze biochemical reactions. Certain polypeptides are involved in molecular recognition and information transfer. Hemeproteins are involved in transport of oxygen, and in biological oxidation reactions. Small linear and cyclic peptides are found to act as hormones, antibiotics, ionophores, antitoxins and are involved in a wide range of other biological functions. Several textbooks dealing with the structure and function of peptides and proteins [515–519] are available and may be consulted by readers who are not familiar with the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Section 4.4

  1. Ganapathy, S., Srinivasan, R.: Wide-line NMR studies of organic and biomolecules. Part V. PMR studies of some amino acids and related compounds. Indian J. Biochem. Biophys. 16, 310 (1979)

    CAS  Google Scholar 

  2. Nagaraj, R., Venkatachalapathi, Y. V., Balaram P.: Rational isomerism about the C. alpha..CO bond in proline derivatives. Proton and carbon-13 NMR studies of benzyloxycarbonyl-pro-Nmethylamide and privaloyl-pro-N-methylamide. Int. J. Pept. Protein Res. 16, 291 (1980)

    Article  CAS  Google Scholar 

  3. Mossoyan, J., Asso, M., Berlain, D.: Ligand conformation in lanthanide complexes by NMR paramagnetic shifts: L-proline and L-valine. Org. Magn. Reson. 13, 287 (1980)

    Article  CAS  Google Scholar 

  4. Cung, M. T., et al.: Angular dependence of vicinal coupling constants J (13CH3-N-C. alpha.-1, alpha.) in N-methylated peptides. C. R. Seances Acad. Sci., Ser. C 290, 291 (1980)

    CAS  Google Scholar 

Section 4.5

  1. Madison, V., Kopple, K. D.: Solvent-dependent conformational distributions of some peptides. J. Am. Chem. Soc. 102, 4855 (1980)

    Article  CAS  Google Scholar 

  2. Krishna, N. R., Huang, D. H., Goldstein, G.: Solution conformation of peptide through proton nuclear magnetic double resonance measurement of amide hydrogen exchange rates: study of the active pentapeptide fragment of thymopoietin. Appl. Spectrosc. 34, 460 (1980)

    Article  CAS  Google Scholar 

  3. Kobayashi, J., et al.: Conformational analysis of the side-chains of aromatic amino acid residues in Met5enkephalin. Pept. Chem. 16th, 125 (1979)

    Google Scholar 

  4. Marchal, J. P., et al.: Nitrogen-15 chemical shifts and 1J15N1H of some tripeptides measured at the natural abundance level. Biochemistry 19, 1301 (1980)

    Article  CAS  Google Scholar 

  5. Piriou, F., et al.: Amino acid side chain conformation in angiotensin II and analogs: Correlated results of circular dischroism and proton nuclear magnetic resonance. Proc. Natl. Acad. Sci. U.S.A. 77, 82 (1980)

    Article  CAS  Google Scholar 

  6. London, R. E.: Quantitative evaluation of.gamma.-turn conformation in proline-containing peptides using carbon-13 NMR Int. J. Pept. Protein Res. 14, 377 (1979)

    Article  CAS  Google Scholar 

  7. Toma, F., et al.: NMR studies for a type I.beta: turn in (Pro2)-tetrapeptides and interdependence of cis:trans isomerism, ring flexibility, and backbone conformation. Biopolymers 19, 781 (1980)

    Article  CAS  Google Scholar 

  8. Garbay-Jaureguiberry, et al.: Conformational analysis of linear peptides by nitrogen-15 NMR spectroscopy using the enkephalin-related fragment Try-Gly-Phe as a model compound. FEBS Lett. 115, 315 (1980)

    Google Scholar 

  9. Khaled, A. M., Okamoto, K., Urry, D. W.: Nitrogen-15 NMR of repeat peptides of tropoelastin. The tetrapeptide. Biochim. Biophys. Acta 623, 229 (1980)

    CAS  Google Scholar 

  10. Premilat, S., Maigret, B.: Statistical molecular models for angiotensin II and enkephal in related to NMR coupling constants. J. Phys. Chem. 84, 293 (1980)

    Article  CAS  Google Scholar 

  11. Fermandjian, S., et al.: Arrangement of the amino acid side chains in angiotensin II Pept., Struct. Biol. Funct., Proc. Am. Pept. Symp., 6th 205 (1979)

    Google Scholar 

  12. Hallenga, K., et al.: The conformational properties of the peptide hormone somatostatin. III. Assignment and analysis of the proton and carbon-13 high resolution NMR spectra of somatostatin in aqueous solution. FEBS Lett. 119, 47 (1980)

    Article  CAS  Google Scholar 

  13. Toniolo, C., et al.: Proton magnetic resonance study of linear sarcosine oligomers. Macromolecules 13, 1381 (1980)

    Article  CAS  Google Scholar 

  14. Stevens, E. S., et al.: Conformational analysis of linear peptides. 3. Temperature dependence of NH chemical shifts in chloroform. J. Am. Chem. Soc. 102, 7048 (1980)

    Article  CAS  Google Scholar 

  15. Deslauriers, R., Smith, I.C.P.: The multinuclear NMR approach to peptides. Structures. con-conformations, and dynamics. Biol. Magn. Reson. 2, 243 (1980)

    CAS  Google Scholar 

  16. Higuchi, N., Kyogoku, Y., Yajima, H.: Nuclear magnetic resonance studies of pentapeptides with weak ACTH activity and their solution conformations. Pept. Chem. 17th, 159 (1980)

    Google Scholar 

  17. Kobayashi, J.: Conformational analysis of physiologically active peptides by the use of deuterium. A window of NMR analysis. Kagaku to Seibutsu 18, 106 (1980)

    Article  CAS  Google Scholar 

  18. Hull, W. E., Kricheldorf, H. R.: Nitrogen-15 NMR spectroscopy, 20. The cis/trans isomerism and neighbouring residue effects of proline-containing peptides. Biopolymers 19, 1103 (1980)

    Article  CAS  Google Scholar 

  19. Premilat, S., Maigret, B.: Conformations of angiotensin II and enkephalin related to NMR. Biochem. Biophys. Res. Commun. 91, 534 (1979)

    Article  CAS  Google Scholar 

  20. Bleich, H. E., et al.: Study of the rotational diffusion properties of peptides in solution. Bio-polymers 18, 2849 (1979)

    CAS  Google Scholar 

Section 4.6

  1. Kobayashi, J.: Conformational analysis of physiologically active peptides by the use of deuterium. A window of NMR analysis. Kagaku to Seibutsu 18, 106 (1980)

    Article  CAS  Google Scholar 

  2. Hindenlang, D. M., et at: The carbon-13 NMR spectra of cyclopeptide alkaloids. Liebigs Ann. Chem. 447 (1980)

    Google Scholar 

  3. Higashijima, T., et al.: NMR studies on the conformations of gramicidin S analogs. Pept. Chem. 15th, 97 (1978)

    Google Scholar 

  4. Kobayashi, J., et al.: Nuclear magnetic resonance study of side-chain conformation of tyrosyl residue in (Met 5).enkephalin. Solvent and temperature dependenc. Biochim. Biophys. Acta. 621, 190 (1980)

    CAS  Google Scholar 

  5. Anteunis, M. J. O., et al.: Solution conformation by proton NMR of the diastereometric cyclopeptides cyclo-4-thiapipecolic acid-phenylalanine. Bull. Soc. Chim. Belg. 88, 683 (1979)

    Article  CAS  Google Scholar 

  6. Kobayashi, Y., et al.: Structures of oxytocin analogs without disulfide bond in solution, II. Pept. Chem. 16th, 109 (1979)

    Google Scholar 

  7. Vicar, J., et al.: Carbon-13 nuclear magnetic resonance study of cyclodipeptides containing carbon-13 enriched hydrophobic amino acids. Collect. Czech. Chem. Commun. 45, 482 (1980)

    CAS  Google Scholar 

  8. Wyssbroad, H. R., et al.: A comparison of the conformations of arginine vasopressin, arginine vasotocin, oxytocin, and oxypressin in aqueous solution by proton nuclear magnetic resonance spectroscopy. Pept., struct. Biol. Funct., Proc. Am. Pept. Symp., 6th, 213 (1979)

    Google Scholar 

  9. Philson, S. B., Bothner-By, A. A.: NMR studies of 1H–2H exchange in gramcidin S. Pept., S.ruct. Biol. Funct., Proc. Am. Pept. Symp., 6th, 209 (1979)

    Google Scholar 

  10. Prasad, K. U., Trapane, T. L., Urry, D. W.: Conformation studies on cyclic peptide analogs of the repeat tetrapeptide of tropoelastin. Pept., Struct. Biol. Funct., Proc. Am. Pept. Symp., 6th, 193 (1979)

    Google Scholar 

  11. Fischman, A. J., et al.: Torsion angles in the cystine bridge of oxytocin in aqueous solution. Measurements of circumjacent vicinal couplings between proton, carbon-13, and nitrogen-15. J. Am. Chem. Soc. 102, 2533 (1980)

    Article  CAS  Google Scholar 

  12. Khaled, Md. A., Sugano, H., Urry, D. W.: Conformational study of the cyclic hexapeptide cyclo (L-Ala-L-Pro-Gly-L-Val-Gly-L-Val), by nuclear magnetic resonance spectroscopy. J. Chem. Soc. Perkin Trans. 2, 206 (1980)

    Google Scholar 

  13. Kricheldrof, H. R., Hull, W. E.: Nitrogen-15 NMR spectroscopy. 12. Steric effects in diastereomeric oligopeptides of alanine, phenylalanine, and valine. Org. Magn. Reson. 12, 607 (1979)

    Article  Google Scholar 

  14. Haslinger, E., Robien, K.: Proton-spin-lattice relaxation and internal movement of molecules. Studies on the conformation of frangulanine, a cyclic peptide alkaloid. Monatsh. Chem. 110, 1011 (1979)

    Article  CAS  Google Scholar 

  15. Antenuis, M. J. O., et al.: Structure assignments and conformations of the four diastereometric cyclic dipeptides of phenylalanine, S-methyl-4-thiazolidinium-2carboxylic acid. Bull. Soc. Chim. Belg. 88, 817 (1979)

    Article  Google Scholar 

  16. Tori, K., et al.: Proton NMR spectral evidence for the structure and conformation of peptide antibiotic siomycin-A. J. Antibiot. 32, 1072 (1979)

    CAS  Google Scholar 

  17. Khaled, M. A., et al.: Nuclear magnetic resonance and conformational energy calculations of repeat peptides of tropoelastin: conformational characterization of the cyclododecapaptide. J. Chem. Soc. Perkin Trans 2, 1119 (1980)

    Google Scholar 

  18. Kondor, P., Kessler, H.: Conformation of cyclic 5-peptides. Pept., Struct. Biol. Funct., Proc. Am. Pept. Symp., 6th, 181 (1979)

    Google Scholar 

  19. Smolders, R. R., et al.: Carbon-13 nuclear magnetic resonance conformational study of peptides with analgesic activity. Can. J. Biochem. 58, 1241 (1980)

    Article  CAS  Google Scholar 

  20. Pease, L. G.: Preferred hydrogen-bond conformations of cyclic pentapeptides. Pept., Struct. Biol. Funct., Proc. Am. Pept., Symp., 6th, 197 (1979)

    Google Scholar 

  21. Kessler, H., et al.: Peptide conformations. VI. Determination of intramolecular hydrogen bonds in cyclo(-Phe-Gly-Xxx-Val-Ala-) by proton NMR spectroscopy. Chem.Ber. 112, 3528 (1979)

    Article  Google Scholar 

  22. Kopple, K. D., Sarkar, S. K.: Solvent and structural effects on cyclic hexapeptide conformation. Pept., Struct. Biol. Funct., Proc. Am. Pept. Symp., 6th, 201 (1979)

    Google Scholar 

  23. Fonia, L. A., et al.: Structure-activity relation for cyclodepsipeptides of the valinomycin series, VIII. Isoleucinomycin and its cyclopolymeric homologs. Bioorg. Khim. 6, 1285 (1980)

    Google Scholar 

  24. Rich, D. H., Jasensky, R. D.: Observation of 3.fwdraw. 1 intramolecular hydrogen bonds (.gamma. turns) in the cyclic tetrapetides, (Ala4)-desimethylchlamydocin and cylco-(D-PhePro-D-Phe-Pro), by by NMR spectrometry. Effect of solvent on solution conformation. J. Am. Chem. Soc. 102, 1112 (1980)

    Article  CAS  Google Scholar 

Section 4.7

  1. Suzuki, Y., Inoue, Y., Chujo, R.: Induced carbon-13 shifts by coil-supporting solvents observed in oligopeptides as model compounds of polypeptides Makromol. Chem. 181, 177 (1980)

    CAS  Google Scholar 

  2. Ribeiro, A. A., Goodman, M., Naider, F.: The preferred conformations of protected homodito homoheptamethionine peptides. A proton NMR study in deuterochloroform medium. Int. J. Pept. Protein Res. 14, 414 (1979)

    Article  CAS  Google Scholar 

  3. Wittebort, R. J., Szabo, A., Gurd, F. R. N.: Rotational motions of side chains of poly-L-lysine. J. Am. Chem. Soc. 102, 5723 (1980)

    Article  CAS  Google Scholar 

  4. Toniolo, C., et al.: Nitrogen-15 magnetic resonance spectroscopy. Natural-abundance spectra of isomeric homooligopeptides of L-norvaline and L-valine to the tetramers. J. Org. Chem. 45, 288 (1980)

    Article  CAS  Google Scholar 

  5. Kricheldorf, H. R.: Nitrogen-15 NMR spectroscopy, 26, Coil-helix transition of poly-L-ornithine. Polym. Bull. 2, 177 (1980)

    Article  CAS  Google Scholar 

  6. Ribeiro, A., Saltman, R. P., Goodman, M.: Preferred conformations of protected homo-oligo-Lglutamate peptides in CDC13 and CDC13/TFA mixtures. Biopolymers 19, 1771 (1980)

    Article  CAS  Google Scholar 

  7. Naider, F., Ribeiro, A. A., Goodman, M.: Proton NMR study of protected methionine homooligopeptides in helix-supporting environment. Biopolymers 19, 1791 (1980)

    Article  CAS  Google Scholar 

  8. Zambelli, A., et al.: Correlation between carbon-13 NMR chemical shifts and conformational of polymers. 3. Hexad sequence assignments of methylene spectra of polypropylene. Macromolecules 13, 267 (1980)

    Article  CAS  Google Scholar 

  9. Perly, B., Chachaty, C., Tsutsumi, A.: A nuclear magnetic resonance study of the local conformation and molecular motions of poly(N5–3-hydroxypropyl)-L-glutamine) in aqueous solution. J. Am. Chem. Soc. 102, 1521 (1980)

    Article  CAS  Google Scholar 

  10. Suzuki, Y., Inoue, Y, Chujo, R.: Helix-coil transition in polypeptides having linear alkyl side-chain and ester group, and some conformational aspects observed by carbon-13 NMR. Makro= mol. Chem. 181, 165 (1980)

    CAS  Google Scholar 

  11. Khaled, M. A., Urry, D. W., Bradley, R. J.: pH and solvent titrations of enkephalins by carbon-13 nuclear magnetic resonance spectroscopy: complete assignments of resonances. J. Chem. Soc. Perkin Trans. 1693 (1979)

    Google Scholar 

  12. Lader, H.J., Mandelkern, L.: Origin of multipeak behaviour in the NMR spectra of poly (L-glutamic acid). Biopolymers 18, 2607 (1979)

    Article  CAS  Google Scholar 

Section 4.8

  1. Niccolai, N., Garsky, V., Gibbons, W. A.: Proton spin-lattice relaxation studies of (D-Ala2-MetS) enkephalin. J. Am. Chem. Soc. 102, 1517 (1980)

    Article  CAS  Google Scholar 

  2. Morishima, L, Ogawa, S., Yamada, H.: High-pressure proton nuclear magnetic resonance studies of hemoproteins. Pressure-induced structural change in heme environments of myoglobin, hemoglobin and horseradish peroxidase. Biochemistry 19, 1569 (1980)

    Article  CAS  Google Scholar 

  3. Sekacis, I., et al.: Carbon-13 NMR studies of the three-dimensional structure of tuftsin. Biorg. Khim. 5, 1617 (1979)

    Google Scholar 

  4. Levine, B., A., et al.: Nuclear magnetic resonance studies of the solution structure of proteins. Int. Rev. Biochim. (Chem. Macromol. 2A — Simple Macromol.) 24, 77 (1979)

    CAS  Google Scholar 

  5. Houghten, R. A., Yamashiro, D., Li, C. H.: Beta-Endorphin and Analogs: 360 MHz proton NMR spectroscopy Pept., Struct. Biol. Funct., Proc. Am. Pept. Symp., 6th, 869 (1979)

    Google Scholar 

  6. Wuethrich, K.: Complementation of protein crystal structures by NMR studies in solutions. Front Bioorg. Chem. Mol. Biol. Pengamon Press 1980, p. 161

    Google Scholar 

  7. Tonelli, A. E.: Carbon-13 nuclear magnetic resonance chemical chifts and polypeptide structure. J. Am. Chem. Soc. 102, 7635 (1980)

    Article  CAS  Google Scholar 

  8. Llinas, M., De Marco, A., Lecomte, J. T. J.: Proton magnetic resonance study of Canambin, a hyperstable hydrophobic protein, at 250 and 600 MHz. Biochemistry 19, 1140 (1980)

    Article  CAS  Google Scholar 

  9. Wuethrich, K., et al.: Correlations between internal mobility and stability of globular proteins. J. Biophys. 32, 549 (1980)

    Article  Google Scholar 

  10. Ribeiro, A. A., et al.: An approach to the mapping of internal motions in proteins. Analysis of carbon-13 NMR relaxation in the bovine pancreatic trypsin inhibitor. J. Am. Chem. Soc. 102, 4040 (1980)

    Article  CAS  Google Scholar 

  11. Calvert, R., Unge Wickel, E., Gratzer, W.: A conformational study of human spectrin. Eur. J. Biochem. 107, 363 (1980)

    Article  CAS  Google Scholar 

  12. Higashijima, T., Tsumi, M., Miyazawa, T.: Proton NMR studies on molecular conformations of synthetic substrates of collagenase in solution. Pept. Chem. 14th, 89 (1977)

    Google Scholar 

  13. Okhanov, V. V., et al.: Three-dimensional structure of apamin in solution. Conformational NMR analysis. Bioorg. Khim. 6, 840 (1980)

    CAS  Google Scholar 

  14. Jelinski, L. W., Torchia, D. A.: Investigation of labeled amino acid side-chain motion in collagen using carbon-13 nuclear magnetic resonance. J. Mol. Biol. 138, 255 (1980)

    Article  CAS  Google Scholar 

  15. Littlechild, J.: Proton magnetic resonance studies of Escherichia coliribosomal proteins S16. FEBS Lett. 111, 51 (1980)

    Article  CAS  Google Scholar 

  16. Morishima, I., Neya, S., Yone Zawa, T.: Proton NMR study of hemoproteins. Ionization and orientation of iron-bound imidazole in methemoglobin and metmyoglobin. Biochim. Biophys. Acta 621, 218 (1980)

    CAS  Google Scholar 

  17. Sederel W. L., et al.: Solid-state conformation of copolymers of.beta: benzyl-L-aspartate with L-alanine, L-leucine, L-valine,.gamma: benzyl-L-glutamate,.epsilon: carbobenzoxy-L-lysine. Biopolymers 19, 1603 (1980)

    Article  CAS  Google Scholar 

  18. De Marco A., Manegatti, E., Guarneri, M.: Proton nuclear magnetic resonance studies of the procine pancreatic secretary trypsin inhibitor at 270 MHz. Eur. J. Biochem. 102, 185 (1979)

    Article  Google Scholar 

  19. Buttlaire, D. H.: Magnetic resonance and optical spectroscopic studies of substrate-and anion-induced conformational changes of arginine kinase. NMR Biochem. Symp., Published by Dekkar, N.Y. 1979, p. 389

    Google Scholar 

  20. Brnjas-Kraljevic, J., Pífat, G., Maricic, S.: Quaternary structure, hydration, and self-associatiion of hemoglobin. A proton magnetic relaxation study. Physiol. Chem. Phys. 11, 371 (1979)

    CAS  Google Scholar 

  21. Konishi, Y., Scheraga, H. A.: Regeneration of ribonuclease A from the reduced protein. 2. Conformational analysis of the intermediates by nuclear magnetic resonance spectroscopy. Biochemistry 19, 1316 (1980)

    Article  CAS  Google Scholar 

  22. Hill, H. A. O., et al.: Investigation of the structure of the blue copper protein from Rhus vernicifera stellacyanin by proton nuclear magnetic resonance spectroscopy. J. Inorg. Biochem. 11, 101 (1979)

    Article  CAS  Google Scholar 

  23. Morishima, I., Ogawa, S., Yamada, H.: Nuclear magnetic resonance studies of the effects of pressure on the heme environmental structure of hemoproteins. J. Am. Chem. Soc. 101, 7074 (1979)

    Article  CAS  Google Scholar 

  24. Perkins, S. J., Wuethrich, K.: Conformational transition from trypsinogen to trypsin. Proton nuclear magnetic resonance at 360 MHz and ring current calculations. J. Mol. Biol. 138, 43 (1980)

    Article  CAS  Google Scholar 

  25. Jardetzky, O.: NMR relaxation studies of protein dynamics. NMR Biochem., Symp. Dekker 1979, p. 141

    Google Scholar 

  26. Garbay-Jaureguiberry, C., et al.: X-ray and NMR studies of L-4-hydroxyproline conformation in oligopeptides related to collagen. J. Am. Chem. Soc. 102, 1827 (1980)

    Article  CAS  Google Scholar 

  27. Higuchi, N,. Kyogoku, Y., Yajima, H.: Nitrogen-15 nuclear magnetic resonance of (Met5)enkephalin: signal assignments and the effect of pH on the chemical shifts. Chem. Lett. 171 (1980)

    Google Scholar 

  28. Harada, K., Ito, S., Suzukii, M.: Structural investigation of an antibiotic sporaviridin. II. Application of carbon-13 NMR to the structural elucidation of viridopentaose B. Tetrahedron Lett. 3965 (1980)

    Google Scholar 

  29. Lee, A. G.: The study of protein structure and conformation using magnetic resonance. Tech. Life Sci. Sect. Biochem. B107, 1 (1978)

    Google Scholar 

  30. James, T. L., et al.: Unfolding of ribonuclease A by guanidinium chloride. Protein internal motions studied by nuclear magnetic resonance spin-lattice relaxation in an off-resonance rotating frame. J. Am. Chem. Soc. 101, 7050 (1979)

    Article  CAS  Google Scholar 

  31. Jansen, E. H. J. M., et al.: A 360-MHz photo-CIDNP study of bovine pancreatic phospholipase A2. Observation of a pH-dependent conformational change. J. Am. Chem. Soc. 101, 7397 (1979)

    Article  CAS  Google Scholar 

  32. Jardetzky, O., Wade-Jardetzky, N. G.: Comparison of protein structures by high resolution solid state and solution NMR. FEBS Lett. 110, 133 (1980)

    Article  CAS  Google Scholar 

  33. Miyazawa, T.: Structures of neurotoxic proteins and their nmr spectra. Kagaku (Kyoto) 34, 920 (1979)

    CAS  Google Scholar 

  34. La Mar, G. N., Budd, D. L.: Proton NMR study of model substrate binding in hemoproteins. Intercalation of mecuric triiodide in sperm whale met-aquo myoglobin. Biochim. Biophys. Acta 581, 201 (1979)

    Google Scholar 

  35. Neya, S., Morishima, F.: Proton magnetic resonance study of p-mercuribenzoate binding and structural changes in methemoglobin. Biochemistry 19, 258 (1980)

    Article  CAS  Google Scholar 

  36. Bolton, P. H., James, T. L.: Fast and slow conformational fluctuations of RNA & DNA. Sub-nanosecond internal motion correlation times determined by phosphrus-31 NMR. J. Am. Chem. Soc. 102, 25 (1980)

    Article  CAS  Google Scholar 

  37. Evans, J. S., et al.: Proton magnetic resonance studies on proteolytic fragments of troponin C. Structural homology with the native molecule. Biochim. Biophys. Acta 623, 10 (1980)

    CAS  Google Scholar 

  38. Feeney, J., et al.: Proton nuclear magnetic resonance studies of the effects of ligand binding on tryptophan residues of selectively deuterated dihydrofolate reductase from Lactobacillus easel. Biochemistry 19, 2316 (1980)

    Article  CAS  Google Scholar 

  39. Stollery, J. G., et al.: Direct observation by carbon-13 nuclear magnetic resonance of membrane-bound human myelin basic protein. Biochemistry 19, 2391 (1980)

    Article  CAS  Google Scholar 

  40. Hershberger, M. V., et al.: Phosphrescence and optically detected magnetic resonance studies of a class of anomalous tryptophan residues in globular proteins. Biochemistry 19, 2204 (1980)

    Article  CAS  Google Scholar 

  41. Edwards, B. F. P., Sykes, B. D.: Nuclear magnetic resonance evidence for the coexistence of several conformational states of rabbit cardiac and skeletal tropomyosins. Biochemistry 19, 2577 (1980)

    Article  CAS  Google Scholar 

  42. Moore, G. R., Williams, R. J. P.: Nuclear magnetic resonance studies of ferrocytochrome c. pH and temperature dependence. Eur. J. Biochem. 103, 513 (1980)

    Article  CAS  Google Scholar 

Section 4.9

  1. Granot, J., et al.: NMR studies of the nucleotides conformation and the arrangement of substrates and activators on phosphoribosylpyrophosphate synthetase. J. Biol. Chem. 255, 10931 (1980)

    CAS  Google Scholar 

  2. Ishikawa, T., et al.: Functional monomers and polymers. LXXI. Conformation and interaction studies of poly-L-lysine derivatives with pendant nuclei acid bases. J. Polym. Sci., Polym. Chem. Ed. 18, 1847 (1980)

    Google Scholar 

  3. Davanloo, P., et al.: Nuclear magnetic resonance investigation of lysine oligopeptides and a complex with d(pA) 3 pGpC(pT)3. Biopolymers 18, 2213 (1979)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Govil, G., Hosur, R.V. (1982). Amino Acids, Peptides and Proteins. In: Conformation of Biological Molecules. NMR Basic Principles and Progress, vol 20. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68097-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68097-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68099-1

  • Online ISBN: 978-3-642-68097-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics