Ecological Significance of Resistance to High Temperature

  • L. Kappen
Part of the Encyclopedia of Plant Physiology book series (PLANT, volume 12 / A)


Heat as a stress factor limiting the survival of plants has been recognized for some time, and reports about plants in hot environments were already critically discussed by Sachs (1864). At first plant response to heat was treated as a physiological problem (Bělehrádek 1935, and cf. Chap. 12, this Vol.). The studies of Huber (1935) and Sapper (1935) were among the first in which ecological evidence for the heat resistance of plants received primary consideration. More recently this topic has been treated in several comprehensive books and reviews (Precht et al. 1955, 1973; Levitt 1956, 1958, 1972, 1980; Biebl 1962a; Alexandrov 1977).


Heat Stress Heat Resistance Heat Tolerance Leaf Temperature Crassulacean Acid Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelusi SA, Lawanson AO (1978) Heat-induced changes in dry weight, leaf size and number of chloroplasts per cell in maize and cowpea shoots. J Agr Sci 91: 349–358Google Scholar
  2. Ahlgren CE (1974) Effects of fires on temperate forests: North Central United States. In: Kozlowski TT, Ahlgren CE (eds) Fire and ecosystems. Academic Press, New York, pp 195–223Google Scholar
  3. Aist JR, Israel HW (1977) Effects of heat-shock inhibition of papilla formation on compatible host penetration by two obligate parasites. Physiol Plant Pathol 10: 13–20Google Scholar
  4. Alexandrov VYa (1964) Cytophysiological and cytoecological investigations of resistance of plant cells toward the action of high and low temperature. Rev Biol 39: 35–77Google Scholar
  5. Alexandrov VYa (1977) Cells, molecules and temperature. Conformational flexibility of macromolecules and ecological adaptation. Ecological Studies Vol 21. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  6. Ansari AQ, Loomis WE (1959) Leaf temperatures. Am J Bot 46: 713–717Google Scholar
  7. Antropova TA (1974) Temperature adaptation studies on the cells of some bryophyte species. Tsitologiya 16: 38–32Google Scholar
  8. Bakanova LV (1970) Relative heat resistance of leaves and spikelet glumes of certain cereal plants. Sov Plant Physiol 17: 109–113Google Scholar
  9. Baker FS (1929) Effect of excessively high temperatures on coniferous reproduction. J For 27: 949–975Google Scholar
  10. Bannister P (1970) The annual course of drought and heat resistance in heath plants from an oceanic environment. Flora 159: 105–123Google Scholar
  11. Barabalchuk KA (1970) Effects of calcium, manganese, magnesium and sodium ions on resistance of plant cells. Tsitologiya 12: 609–621Google Scholar
  12. Barber HN, Sharpe PJH (1971) Genetics and physiology of sunscald of fruits. Agric Meteorol 8: 175–191Google Scholar
  13. Basnizki J, Evenari M (1975) The influence of a reflectant on leaf temperature and development of the globe artichoke (Cynara scolymus L.). J Am Soc Hortic Sci 100: 109–112Google Scholar
  14. Bauer H (1972) CO2-Gaswechsel nach Hitzestress bei Abies alba Mill, und Acer pseudoplatnus L. Photosynthetica 6: 424–434Google Scholar
  15. Bauer H (1978) Photosynthesis of ivy leaves (Hedera helix) after heat stress. I. CO2-gas exchange and diffusion resistances. Physiol Plant 44: 400–406Google Scholar
  16. Bauer H, Larcher W, Walker RB (1975) Influence of temperature stress on CO2-gas exchange. In: Cooper IBP (ed) Photosynthesis and productivity in different environments. Int Biol Prog, Vol 3, pp 557–586Google Scholar
  17. Belehrädek J (1935) Temperature and living matter. Protoplasma Monogr 8, Bornträger, BerlinGoogle Scholar
  18. Berner T (1974) Studies on the ecophysiology of the hypolithic algae from the flint stones of the Meshash formation in the northern Negev, Israel. Thesis, JerusalemGoogle Scholar
  19. Bernstam VA (1974) Effects of supraoptimal temperatures on the myxomycete Physarum polycephalum. II. Effects on rate of protein and ribonucleic acid synthesis. Arch Mikrobiol 95: 347–356PubMedGoogle Scholar
  20. Biebl R (1939) Über Temperaturresistenz von Meeresalgen verschiedener Klimazonen und verschieden tiefer Standorte. Jahrb Wiss Bot 88: 389–320Google Scholar
  21. Biebl R (1962a) Protoplasmatische Ökologie der Pflanzen. Wasser und Temperatur. In: Protoplasmatologia, Handbuch der Protoplasmaforschung 12. 1, Springer, WienGoogle Scholar
  22. Biebl R (1962 b) Temperaturresistenz tropischer Meeresalgen. Bot Mar 4:241–254Google Scholar
  23. Biebl R (1964) Temperaturresistenz tropischer Pflanzen auf Puerto Rico. Protoplasma 59: 133–156Google Scholar
  24. Biebl R (1967a) Temperaturresistenz einiger Grünalgen warmer Bäche auf Island. Le Botaniste Ser L: 34–41Google Scholar
  25. Biebl R (1967 b) Kurztag-Einflüsse auf arktische Pflanzen während der arktischen Langtage. Planta 75:77–84Google Scholar
  26. Biebl R (1967 c) Temperaturresistenz tropischer Urwaldmoose. Flora 157:25–30Google Scholar
  27. Biebl R (1976d) Protoplasmatische Ökologie. Naturwiss Rundsch 20: 248–252Google Scholar
  28. Biebl (1968) Über Wärmehaushalt und Temperaturresistenz arktischer Pflanzen in Westgrönland. Flora 157 B: 327–354Google Scholar
  29. Biebl R (1969 a) Untersuchungen zur Temperaturresistenz arktischer Süßwasseralgen im Raum von Barrow, Alaska. Mikroskopie 25: 3–6PubMedGoogle Scholar
  30. Biebl R (1969 b) Studien zur Hitzeresistenz der Gezeitenalge Chaetomorpha cannabina (Aresch.) Kjellm. Protoplasma 67:451–472Google Scholar
  31. Biebl R (1970) Vergleichende Untersuchungen zur Temperaturresistenz von Meeresalgen entlang der pazifischen Küste Nordamerikas. Protoplasma 69: 61–83Google Scholar
  32. Biebl R, Maier R (1969) Tageslänge und Temperaturresistenz. Oesterr Bot Z 117: 176–194Google Scholar
  33. Biebl R, McRoy CP (1971) Plasmatic resistance and rate of respiration and photosynthesis of Zostera marina at different salinities and temperatures. Mar Biol 8: 48–56Google Scholar
  34. Bogen HJ (1948) Untersuchungen über Hitzetod und Hitzeresistenz pflanzlicher Protoplaste. Planta 36: 298–340Google Scholar
  35. Brawerman G, Chargaff E (1960) A self-reproducing system concerned with the formation of chloroplasts in Euglena gracilis. Biochim Biophys Acta 37: 221–229PubMedGoogle Scholar
  36. Bregetova LG, Popova AI ( 1962 a) Twentyfour hour rhythmics of changes of warm resistance in protoplasms of plants. Nekot Wopr Fotosynthesa i Bodonovo Regima Rast, Tematicheski Sornik 1: 41–46Google Scholar
  37. Bregetova LG, Popova AI ( 1962 b) Heat resistance of the protoplasm of various types of the grass vegetation of Tadjikistan. Isdatel Akad Nauk Tadjik SSSR, Douchambe, Trudy I IGoogle Scholar
  38. Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, New York, Heidelberg, BerlinGoogle Scholar
  39. Bünning E, Herdtie H (1946) Physiologische Untersuchungen an thermophilen Blaualgen. Z Naturforsch 1: 93–99Google Scholar
  40. Bullock JG, Coakley WT (1978) Investigation into the mechanisms and repair of heat damage to Schizosaccharomyces pombe growing in synchronous cultures. J Therm Biol 3: 159–162Google Scholar
  41. Buxton PA (1925) The temperature of the surface of deserts. J Ecol 12: 127–134Google Scholar
  42. Carroll JC (1943) Effects of drought, temperature and nitrogen on turf grasses. Plant Physiol 18: 19–36PubMedGoogle Scholar
  43. Cernusca A (1972) Energiebilanz natürlicher und künstlicher Ökosysteme. Umschau 72:628– 630Google Scholar
  44. Cernjavsky P (1928) Anabiosis of the Ramondia nathaliae Pane. Petr. J Soc Bot Russe 13: 27–38Google Scholar
  45. Chandhoke KR, Sharma K (1972) Adaptations of bryophytes against drought. 1: Effect of temperature on Riccia billardieri. Indian Sci Cong Ass Proc 59: 313Google Scholar
  46. Chawan DD (1971) Role of high temperature pre-treatments on seed-germination of desert species of Sida (Malvaceae). Oecologia 6: 343–349Google Scholar
  47. Christophersen J (1955) Microorganismen. In: Precht H, Christophersen J, Hensel H (eds) Temperatur und Leben. Springer, Berlin, Göttingen, Heidelberg, pp 178–328Google Scholar
  48. Christophersen J (1973) Basic aspects of temperature action on microorganisms. In: Precht Christophersen J, Hensel H, Larcher W (eds) Temperature and life, Springer, Berlin, Heidelberg, New York, pp 3–86Google Scholar
  49. Clausen E (1964) The tolerance of hepatics to desiccation and temperature. Bryologist 67: 411–417Google Scholar
  50. Collander R (1924) Beobachtungen über die quantitativen Beziehungen zwischen Tötungsgeschwindigkeit und Temperatur beim Wärmetod pflanzlicher Zellen. Commentât Biol 1: 1–12Google Scholar
  51. Corry JEL (1976) The effect of sugars and polyols on the heat resistance and morphology of osmophilic yeasts. J Appl Bacteriol 40: 269–276PubMedGoogle Scholar
  52. Coutinho LM (1969) Novas observaçôes sobre a ocorrênia do “efeito de De Saussure” e suas relaçôes com a suculência a temperatura folhear e os movimentos estomáticos. Bol Fac Fil Cien Letras Univ Sao Paulo Bot 24: 77–102Google Scholar
  53. Curtis OF (1938) Wallace and Clum, “leaf temperatures”: A critical analysis with additional data. Am J Bot 25: 761–771Google Scholar
  54. Dahl E (1963) On the heat exchange of a wet vegetation surface and the ecology of Koenigia islandica. Oikos 14: 190–211Google Scholar
  55. Day JM, Roughley RJ, Eaglesham ARJ, Dye M, White SP (1978) Effect of high soil temperatures on nodulation of cowpea Vigna unguiculata. Ann Appl Biol 88: 476–481Google Scholar
  56. Deverall BJ (1965) Temperatures. In: Ainsworth GC, Sussman AS (eds) The Fungi. Vol Academic Press, New York, pp 534–550Google Scholar
  57. Dircksen A (1964) Vergleichende Untersuchungen zur Frost-, Hitze- und Austrocknungsresistenz einheimischer Laub- und Lebermoose unter besonderer Berücksichtigung jahreszeitlicher Veränderungen. Diss GöttingenGoogle Scholar
  58. Doemel WN, Brock TD (1971) The physiological ecology of Cyanidium caldarium. J Gen Microbiol 67: 17–32Google Scholar
  59. Döring H (1933) Beiträge zur Frage der Hitzeresistenz pflanzlicher Zellen. Planta 18: 405–434Google Scholar
  60. Dörr M (1941) Temperaturmessungen an Pflanzen des Frauensteins bei Mödling. Beih Bot Zentr 60: Abt AGoogle Scholar
  61. Dutrochet M (1839) Récherches sur la température propre des végétaux. Ann Sci Nat 12: 77–84Google Scholar
  62. Edlich F (1936) Einwirkungen von Temperatur und Wasser auf aerophile Algen. Arch Mikrobiol 7: 62–109Google Scholar
  63. Egorova LI, Semikhatova OA, Yudina OS (1978) Influence of temperature on the reactivation of photosynthesis after heat injury. Bot Z 63: 356–362Google Scholar
  64. Eller BM (1977) Road dust induced increase of leaf temperature. Environ Pollut 13: 99–107Google Scholar
  65. Eller BM (1979) Die strahlungsökologische Bedeutung der Epidermisauflagen. Flora 168: 146–192Google Scholar
  66. Engelbrecht L, Mothes K (1964) Weitere Untersuchungen zur experimentellen Beeinflussung der Hitzewirkung bei Blättern von Nicotiana rustica. Flora 154: 279–298Google Scholar
  67. Falkova TV (1969) Influence of temperature of medium and water deficiency of leaves on protoplasm heat resistance in some species of Caprifoliaceae family. Byull Gos Nikit Bot Sada (4.II): 83–88Google Scholar
  68. Feldman NL (1962) The influence of sugars on the cell stability of some higher plants to heating and high hydrostatic pressure. Tsitologiya 4: 633–643Google Scholar
  69. Feldman NL (1979) Effect of heat hardening on thermostability of acid phosphatase from wheat leaves. J Therm Biol 4: 41–45Google Scholar
  70. Feldman NL, Lutova MI (1963) Variations de la thermostabilité cellulaire des algues en fonctions des changements de la température du millieu. Cah Biol Mar 4: 435–458Google Scholar
  71. Feldman NL, Artyushenko ZT, Shukhtina HG (1970) Cellular heat resistance in certain species of different genera of Amaryllidaceae. Bot Z 55: 1678–1683Google Scholar
  72. Firbas F (1927) Über die Bedeutung des thermischen Verhaltens der Laubstreu für die Frühjahrsvegetation des sommergrünen Laubwaldes. Beih Bot Zentr 44: 179Google Scholar
  73. Firbas F (1931) Untersuchungen über den Wasserhaushalt der Hochmoorpflanzen. Jahrb Wiss Bot 74: 459–696Google Scholar
  74. Firbas H (1965) Über die Resistenz von Samenarten gegen hohe Temperaturen und Beobachtungen an künstlich getrocknetem Saatgut. Saatgut Wirtsch 17: 279–281Google Scholar
  75. Fogg GE (1969) Survival of algae under adverse conditions. In: Woolhouse HW (ed) Symposia of the society for experimental biology, Nr. 23, Dormancy and survival, Cambridge Univ Press, pp 123–142Google Scholar
  76. Forsyth DJ (1977) Limnology of lake Rotokawa and its outlet steam. N Z J Mar Freshwater Res 11: 524–539Google Scholar
  77. Franco CM (1961) Lesäo do colo do cafeeiro, causada pelo calor. Bragantia 20: 645–652Google Scholar
  78. Freeman CE, Tiffany RS, Ried WH (1977) Germination responses of Agave lecheguilla, A. parry i, and Fouquieria splendens. Southwest Nat 22: 195–204Google Scholar
  79. Friedmann EI, Galun M (1974) Desert algae, lichens and fungi. In: Brown Jr GW (ed) Desert biology. Vol II, Academic Press, New York, pp 166–212Google Scholar
  80. Fries N, Söderström I (1963) Induction of thermosensitivity in cells from various plants. Expt Cell Res 32: 199–202Google Scholar
  81. Frings JFJ (1976) The Rhizobium pea symbiosis as affected by high temperatures. Meded Landbouwhogesch Wageningen 76, 1–76Google Scholar
  82. Gates DM (1963) Leaf temperature and energy exchange. Arch Meteorol Geophys Bioklimatol SerB 12: 321–336Google Scholar
  83. Gates DM (1965) Heat transfer in plants. Sci Am 1965: 76–84Google Scholar
  84. Gates DM (1973) Plant temperatures and energy budget. In: Precht H, Christopherson J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, Heidelberg, New York, pp 87–101Google Scholar
  85. Gates DM, Alderfer R, Taylor E (1968) Leaf temperature of desert plants. Science 159: 994–995PubMedGoogle Scholar
  86. Gibbs JG, Patten DT (1970) Plant temperatures and heat flux in a Sonoran desert ecosystem. Oecologia 5: 165–184Google Scholar
  87. Gibson B (1973) The effect of high sugar concentrations on the heat resistance of vegetative micro-organisms. J Appl Bact 36: 365–376Google Scholar
  88. Gimmler H, Kühnl EM, Carl G (1978) Salinity dependent resistance of Dunaliella parva against extreme temperatures. I. Salinity and thermoresistance. Z Pflanzenphysiol 90: 133–153Google Scholar
  89. Granin AV, Pronina ND, Veselovskii VA (1977) Effect of dehydration and overheating on afterglow of the photosynthesis apparatus in poikilohydrous and homeohydrous plants. Fiziol Rast 24: 1261–1268Google Scholar
  90. Grieve BJ, Hellmuth EO (1970) Eco-physiology of Western Australian plants. Ecol Plant 5: 33–68Google Scholar
  91. Grintal AR (1976) Effect of temperature on rate of respiration in Laminaria saccharina. Bot Z 61: 1608–1615Google Scholar
  92. Hagen PO, Kushner DJ, Gibbons NE (1964) Temperature induced death analysis in a psychrophilic bacterium. Can J Microbiol 10: 813–822PubMedGoogle Scholar
  93. Hammouda M, Lange OL (1962) Zur Hitzeresistenz der Blätter höherer Pflanzen in Abhängigkeit von ihrem Wassergehalt. Naturwissenschaften 21: 500Google Scholar
  94. Hellmuth EO (1971a) Eco-physiological studies on plants in arid and semi-arid regions in Western Australia: III. Comparative studies on photosynthesis, respiration and water relations of 10 arid zone and 2 semi-arid zone plants under winter and late summer climatic conditions. J Ecol 59: 225–259Google Scholar
  95. Hellmuth EO (1971b) Eco-physiological studies on plants in arid and semi-arid regions in Western Australia: V. Heat resistance limits of photosynthetic organs of different seasons, their relation to water deficits and cell sap properties and the regeneration ability. J Ecol 59: 365–374Google Scholar
  96. Henkel PA, Margolina KP (1951) On the viscosity of cytoplasm and the (heat) drought resistance of vegetative and generative organs of plants. Dokl Acad Nauk SSSR 76:587– 590Google Scholar
  97. Henrici M (1955) Temperatures of Karroo plants. S Afr J Sci 51: 245–248Google Scholar
  98. Herzog F (1938) Formgestalt und Wärmehaushalt bei Sukkulenten. Jahrb Wiss Bot 87:211– 243Google Scholar
  99. Hesselbo A (1918) The Bryophyta of Iceland. In: The Botany of Iceland — pt II 4, Kopenhagen, LondonGoogle Scholar
  100. Highkin HR (1959) Effect of vernalization on heat resistance in two varieties of peas. Plant Physiol 34: 643–644PubMedGoogle Scholar
  101. Huber B (1935) Der Wärmehaushalt der Pflanzen. In: Boas F (ed) Huber B 17, MünchenGoogle Scholar
  102. Illert H (1924) Botanische Untersuchungen über Hitzetod und Stoffwechselgifte. Bot Archiv 7: 133–141Google Scholar
  103. Itai C, Benzioni A, Ordin L (1973) Correlative changes in endogenous hormone levels and shoot growth induced by short heat treatments to the root. Physiol Plant 29: 355–360Google Scholar
  104. Jameson DA (1961) Heat and desiccation resistance of tissue of important trees and grasses of the pinyon-juniper type. Bot Gaz 122: 174–179Google Scholar
  105. Jung GA, Larson KL (1972) Cold, drought and heat tolerance. In: Hanson CH (ed) Agronomy 15, Alfalfa science and technology 24, Illus Maps Am Soc Agron, pp 185–209Google Scholar
  106. Just L (1877) Über die Einwirkung höherer Temperaturen auf die Erhaltung der Keimkraft der Samen. Beitr Biol Pflanz 2: 311–348Google Scholar
  107. Kainmüller C (1975) Temperaturresistenz von Hochgebirgspflanzen. Oesterr Akad Wiss, Anz Math-Nat Kl 7: 67–75Google Scholar
  108. Kalckstein B (1976) Gaswechsel, Produktivität und Herbizidempfindlichkeit bei verschiedenen tropischen, subtropischen und europäischen Gramineen. Diss Univ Wien 133: 203–243Google Scholar
  109. Kappen L (1964) Untersuchungen über den Jahreslauf der Frost-, Hitze- und Austrocknungsresistenz von Sporophyten einheimischer Polypodiaceen (Filicinae). Flora 155: 123–166Google Scholar
  110. Kappen L (1965) Untersuchungen über die Widerstandsfähigkeit der Gametophyten einheimischer Polypodiaceen gegenüber Frost, Hitze und Trockenheit. Flora 156: 101–115Google Scholar
  111. Kappen L (1966) Der Einfluß des Wassergehaltes auf die Widerstandsfähigkeit von Pflanzen gegenüber hohen und tiefen Temperaturen, untersucht an Blättern einiger Farne und von Ramonda myconi. Flora 156 B: 427–445Google Scholar
  112. Kappen L (1973) Response to extreme environments. In: Ahmadjian V, Haie ME (eds) The lichens III, 10, Academic Press, New York, pp 311–380Google Scholar
  113. Kappen L, Lange OL (1968) Die Hitzeresistenz angetrockneter Blätter von Commelina africana — ein Vergleich zwischen zwei Untersuchungsmethoden. Protoplasma 65: 119–132Google Scholar
  114. Kappen L, Smith CW (1980) Heat tolerance of two Cladonia species and Campylopus praemorsus in a hot steam vent area of Hawaii. Oecologia 46: 184–189Google Scholar
  115. Kappen L, Zeidler A (1977) Seasonal changes between one- and two-phasic response of plant leaves to heat stress. Oecologia 31: 45–53Google Scholar
  116. Kappen L, Lange OL, Schulze E-D, Evenari M, Buschhorn U (1979) Ecophysiological investigations on lichens of the Negev desert. VI. Annual course of the photosynthetic production of Ramalina maciformis ( Del.) Bory. Flora 168: 85–108Google Scholar
  117. Karshon R, Pinchas L (1971) Variations in heat resistance of ecotypes of Eucalyptus camaldulensis Dehn, and their significance. Aust J Bot 19: 261–272Google Scholar
  118. Kjelvik S (1976) Varmeresistens og varmeveksling for noen planter, vesentlig fra Hardanger- vidda. Blyttia 34: 211–226Google Scholar
  119. Kluge M, Ting IP (1978) Crassulacean acid metabolism, analysis of an ecological adaptation. Ecological Studies 30. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  120. Kreeb K (1964) Zur Methodik der NTC-Temperaturmessung und Tagesgänge der Blattem- peratur bei immergrünen Macchienpflanzen Südfrankreichs. In: Beiträge zur Phytologie. Ulmer, StuttgartGoogle Scholar
  121. Lange B (1973) The Sphagnum flora of hot springs in Iceland Lindbergia 2: 81–93Google Scholar
  122. Lange OL (1953) Hitze- und Trockenresistenz der Flechten in Beziehung zu ihrer Verbreitung. Flora 140: 39–97Google Scholar
  123. Lange OL (1954) Einige Messungen zum Wärmehaushalt poikilohydrer Flechten und Moose. Arch Meteor, Geophysik Bioklimatol, Ser B 5: 182–190Google Scholar
  124. Lange OL (1955) Untersuchungen über die Hitzeresistenz der Moose in Beziehung zu ihrer Verbreitung. 1. Die Resistenz stark ausgetrockneter Moose. Flora 142: 381–399Google Scholar
  125. Lange OL (1959) Untersuchungen über Wärmehaushalt und Hitzeresistenz mauretanischer Wüsten- und Savannenpflanzen. Flora 147: 595–651Google Scholar
  126. Lange OL (1961) Die Hitzeresistenz einheimischer immer- und wintergrüner Pflanzen im Jahresverlauf. Planta 56: 666–683Google Scholar
  127. Lange OL (1962a) Über die Beziehungen zwischen Wasser und Wärmehaushalt von Wüstenpflanzen. Veroeff Geobot Inst Eidg Techn Hochsch Zuerich 37: 155–168Google Scholar
  128. Lange OL (1962b) Versuche zur Hitzeresistenz-Adaption bei höheren Pflanzen. Naturwissenschaften 49: 20–21Google Scholar
  129. Lange OL (1965a) The heat resistance of plants, its determination and variability. In: Methodology of plant eco-physiology: Proc Montpellier SympGoogle Scholar
  130. Lange OL (1965b) Der CO2-Gaswechsel von Flechten nach Erwärmung im feuchten Zustand. Ber Dtsch Bot Ges 78: 444–454Google Scholar
  131. Lange OL (1967) Investigations on the variability of heat-resistance in plants. In: Troshin AS (ed) The cell and environmental temperature. Pergamon Press, Oxford, pp 131–141Google Scholar
  132. Lange OL (1969) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste I. CO2-Gaswwechsel von Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora 158: 324–359Google Scholar
  133. Lange OL, Lange R (1962) Die Hitzeresistenz einiger mediterraner Pflanzen in Abhängigkeit von der Höhenlage ihres Standortes. Flora 152: 707–710Google Scholar
  134. Lange OL, Lange R (1963) Untersuchungen über Blattemperaturen, Transpiration und Hitzeresistenz an Pflanzen mediterraner Standorte ( Costa Brava, Spanien). Flora 153: 387–425Google Scholar
  135. Lange OL, Schwemmle B (1960) Untersuchungen zur Hitzeresistenz vegetativer und blühender Pflanzen von Kalanchoe bloßfeldiana. Planta 55: 208–225Google Scholar
  136. Lange OL, Schulze E-D, Koch W (1970) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. II. CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis ( Del) Bory am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159: 38–62Google Scholar
  137. Lange OL, Schulze E-D, Evenari M, Kappen L, Buschhorn U (1974) The temperature related photosynthetic capacity of plants under desert conditions. I. Seasonal changes of the photosynthetic response to temperature. Oecologia 17: 97–110Google Scholar
  138. Lange OL, Schulze E-D, Evenari M, Kappen L, Buschhorn U (1978) The temperature related photosynthetic capacity of plants under desert conditions. III. Ecological significance of the seasonal changes of the photosynthetic response to temperature. Oecologia 34: 89–100Google Scholar
  139. Larcher W (1961) Jahresgang des Assimilations- und Respirationsvermögens von Olea europea L. ssp. sativa Hoff, et Link., Quercus ilex L. und Quercus pubescens Willd, aus dem nördlichen Gardaseegebiet. Planta 56: 575–606Google Scholar
  140. Larcher W (1973) Limiting temperatures for live functions. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, Heidelberg, New York, pp 195–231Google Scholar
  141. Larcher W (1977) Ergebnisse des IBP-Projekts Zwergstrauchheide Patscherkofel. Sitz Ber Oesterr Akad Wiss, Math Nat Kl, Abt 1, Bd 186, Wien Larcher W (1980) Ökologie der Pflanzen. Ulmer, StuttgartGoogle Scholar
  142. Larcher W, Mair B (1969) Die Temperaturresistenz als ökophysiologisches Konstitutionsmerkmal: 1. Quercus ilex und andere Eichenarten des Mittelmeergebietes. Oecol Plant 4: 347–376Google Scholar
  143. Larcher W, Wagner J (1976) Temperaturgrenzen der CO2-Aufnahme und Temperaturresistenz der Blätter von Gebirgspflanzen im vegetationsaktiven Zustand. Oecol Plant 11: 361–374Google Scholar
  144. Larcher W, Heber U, Santarius KA (1973) Gradual progress of damage due to temperature stress. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, Heidelberg, New York, pp 195–292Google Scholar
  145. Larcher W (1973) Limiting temperatures for live functions. In: Precht H, Christophersen J, Hensel H, Larcher W (eds) Temperature and life. Springer, Berlin, Heidelberg, New York, pp 195–231Google Scholar
  146. Laude HH (1939) Diurnal cycle of heat resistance in plants. Science 89: 556–557PubMedGoogle Scholar
  147. Laude HM, Chaugule BA (1953) Effect of state of seedling development upon heat tolerance in bromegrasses. J Range Manage 6: 320–324Google Scholar
  148. Levitt J (1956) The hardiness of plants. Agronomy 6, Academic Press, New YorkGoogle Scholar
  149. Levitt J (1958) Frost, drought and heat resistance. Protoplasmatologia 6, Springer, WienGoogle Scholar
  150. Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New YorkGoogle Scholar
  151. Levitt J (1980) Responses of plants to environmental stresses. Vol. I. Chilling, freezing, and high temperatures. Academic Press, New YorkGoogle Scholar
  152. Lomagin AG (1961) Changes in the resistance of plant cells after a short action of high temperature. Tsitologiya 3: 426–436Google Scholar
  153. Lomagin AG, Antropova TV (1966) Photodynamic injury to heated leaves. Planta 68:297– 309Google Scholar
  154. Loman AA (1963) The lethal effects of periodic high temperatures on certain lodgepole pine slash decaying Basidiomycetes. Can J Bot 43: 334–338Google Scholar
  155. Lutova MI (1962) The effect of heat hardening on photosynthesis and respiration on leaves. Bot Z 47: 1761–1774Google Scholar
  156. Lutova MI, Feldman NL (1960) A study of the ability of temperature adaptation in some marine algae. Tsitologiya 2: 699–709Google Scholar
  157. Lutova MI, Zavadskaya IG (1966) Effects of exposure of plants to different temperatures on the cell heat resistance. Tsitologiya 8: 484–493Google Scholar
  158. Lutova MI, Feldman NL, Drobyshev VP (1968) Changes in the thermoresistance of marine algae under the influence of environmental temperature. Tsitologiya 10: 1538–1545Google Scholar
  159. Lutova MI, Alexandrov VYa, Feldman NL (1977) Increase in cell thermostability of marine and fresh-water algae under the influence of superoptimal temperature. Tsitologiya 19: 368–374Google Scholar
  160. MacBryde B, Jefferies RL, Alderfer R, Gates DM (1971) Water and energy relations of plant leaves during period of heat stress. Oecol Plant 6: 151–162Google Scholar
  161. MacEntee FJ, Schreckenberg G, Bold HC (1972) Some observations on the distribution of edaphic algae. Soil Sci 114: 171–179Google Scholar
  162. MacFarlane JD, Kershaw KA (1978) Thermal sensivity in lichens. Science 201: 739–741PubMedGoogle Scholar
  163. Magomedov ZG, Tarusov BN, Doskosh YaE (1972) Optimisation of temperature regime for the hardening of plants. Vestn Mosk Univ Ser 6 Biol Pochvoved 27: 113–116Google Scholar
  164. Maier R (1971) Einfluß von Photoperiode und Einstrahlungsstärke auf die Temperaturresistenz einiger Samenpflanzen. Oesterr Bot Z 119: 306–322Google Scholar
  165. Malcolm NL (1969) Enzymatic bases of physiological changes in a mutant of the psychrophile Micrococcus cryophilus. Biochim Biophys Acta 190: 337–346PubMedGoogle Scholar
  166. McLean RJ (1967) Desiccation and heat resistance of the green alga Spongiochloris typica. Can J Bot 45: 1933–1938Google Scholar
  167. Meeks JC, Castenholz RW (1972) Photosynthesis at the upper temperature limit of the extreme thermophile Synechococcus lividus. J Phycol 8: 18Google Scholar
  168. Mellor RS, Salisbury FB, Raschke K (1964) Leaf temperatures in controlled environments. Planta 61: 56–72Google Scholar
  169. Miller EC, Saunders AR (1923) Some observations on the temperature of the leaves of crop plants. J Agr Res 26: 15–43Google Scholar
  170. Montfort C, Ried A, Ried I (1955) Die Wirkung kurzfristiger warmer Bäder auf Atmung und Photosynthese im Vergleich von eurythermen und kalt-stenothermen Meeresalgen. Beitr Biol Pflanz 31: 349–375Google Scholar
  171. Monfort C, Ried A, Ried I (1957) Abstufungen der funktionellen Wärmeresistenz bei Meeresalgen in ihren Beziehungen zu Umwelt und Erbgut. Biol Zentralbl 76: 257–289Google Scholar
  172. Mooney HA, Billings WD (1961) Comparative physiological ecology of arctic and alpine populations of Oxyria digyna. Ecol Monogr 31: 1–29Google Scholar
  173. Mooney HA, Ehleringer J, Björkman O (1977a) The energy balance of leaves of the evergreen desert shrub A triplex hymenelytra. Oecologia 29: 301–310Google Scholar
  174. Mooney HA, Weisser PJ, Gulmon SL (1977 b) Environmental adaptations of the Atacaman desert cactus Copiapoa haseltoniana. Flora 166: 117–124Google Scholar
  175. Mooney HA, Björkman O, Collatz CJ (1978) Photosynthetic acclimation to temperature in the desert shrub, Larrea divaricata. I: CLO2-exchange characteristics of intact leaves. Plant Physiol 61: 406–410PubMedGoogle Scholar
  176. Nelson EE, Fay H (1974) Thermal tolerance of Poria weirii. Can J For Res 4: 288–290Google Scholar
  177. Niethammer A (1947) Technische Mycologie. Enke, StuttgartGoogle Scholar
  178. Noack K (1920) Der Betriebsstoffwechsel der thermophilen Pilze. Jahrb Wiss Bot 59:413– 466Google Scholar
  179. Nörr M (1974) Hitzeresistenz bei Moosen. Flora 163: 388–397Google Scholar
  180. Oechel WC, Strain BR, Odening WR (1972) Photosynthetic rates of a desert shrub, Larrea divaricata Cav. under field conditions. Photosynthetica 6: 183–188Google Scholar
  181. Oleynikova TV (1965) High temperature and light effects on the permeability of cells of spring cereal leaves. Sci Counc Cytol Problems Acad Nauk SSSR, pp 70–81Google Scholar
  182. Oppenheimer HR, Halevy AH (1962) Anabiosis of Ceterach offlcinarum Lam. et D.C. Bull Res Counc Israel Sect D, 11: 127–147Google Scholar
  183. Parkhurst DF, Loucks OL (1972) Optimal leaf size in relation to environment. J Ecol 60: 505–537Google Scholar
  184. Pearcy RW (1976) Acclimation of photosynthesis and respiratory carbon dioxide exchange to growth temperature in A trip lex lentiformis (Torr.) Wats. Plant Physiol 59: 795–799Google Scholar
  185. Pearcy RW, Björkman O, Harrison AT, Mooney HA (1971/72) Photosynthetic performance of two desert species with C4 photosynthesis in Death Valley, California. Carnegie Inst Washington Yearb 71: 540–550Google Scholar
  186. Pearcy RW, Harrison AT, Mooney HA, Björkman O (1974) Seasonal changes in net photosynthesis of A triplex hymenelytra shrubs growing in Death Valley, California. Oecologia 17: 111–121Google Scholar
  187. Peary JA, Castenholz RW (1964) Temperature strains of a thermophilic blue-green alga. Nature 202: 720–721Google Scholar
  188. Pisek A, Larcher W, Pack I, Unterholzner R (1968) Kardinale Temperaturbereiche der Photosynthese und Grenztemperaturen des Lebens der Blätter verschiedener Spermatophyten. II. Temperaturmaximum der Nettophotosynthese und Hitzeresistenz der Blätter. Flora 158B: 110–128Google Scholar
  189. Precht H, Christophersen J, Hensel H (eds) (1955) Temperatur und Leben. Springer, Berlin, Göttingen, HeidelbergGoogle Scholar
  190. Precht H, Christophersen J, Hensel H, Larcher W (eds) (1973) Temperature and life. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  191. Pulgar CE, Laude HM (1974) Regrowth of alfalfa after heat stress. Crop Sci 14: 28–30Google Scholar
  192. Rakhimov GT (1976) After-effects of high temperatures on the Hill reaction as a function of age of some desert plants. UZB Biol Z 1: 77–79Google Scholar
  193. Raschke K (1956) Mikrometeorologisch gemessene Energieumsätze eines Alocasia-Blattes. Arch Meteorol Geophys Bioklimatol B 7: 240–268Google Scholar
  194. Raschke K (1960) Heat transfer between the plant and the environment. Ann Rev Plant Physiol 11: 111–126Google Scholar
  195. Rouschal E (1938) Zum Wärmehaushalt der Macchienpflanzen. Oesterr Bot Z 87: 42–50Google Scholar
  196. Rouschal E (1939) Die kühlende Wirkung des Transpirationsstromes in Bäumen. Ber Dtsch Bot Ges 57: 53–66Google Scholar
  197. Sachs J (1864) Über die obere Temperatur-Grenze der Vegetation. Flora 23:4–12, 24–29, 33–41, 65–75Google Scholar
  198. Santarius KA (1974) Seasonal changes in plant membrane stability as evidenced by the heat sensivity of chloroplast membrane reactions. Z Pflanzenphysiol 73: 448–451Google Scholar
  199. Sapper I (1935) Versuche zur Hitzeresistenz der Pflanzen. Planta 23: 518–556Google Scholar
  200. Scheibmair G (1938) Hitzeresistenzstudien an Mooszellen. Protoplasma 29: 394–324Google Scholar
  201. Schmeidl H (1965) Oberflächentemperaturen in Hochmooren. Wetter Leben 17: 87–97Google Scholar
  202. Schölm HE (1966) Untersuchungen zur Wärmeresistenz von Tiefenalgen. Bot Mar 9: 54–61Google Scholar
  203. Schölm HE (1968) Untersuchungen zur Hitze- und Frostresistenz einheimischer Süßwasseralgen. Protoplasma 65: 97–118Google Scholar
  204. Schramm W (1968) Ökologisch-physiologische Untersuchungen zur Austrocknungs- und Temperaturresistenz an Fucus vesiculosus L. der westlichen Ostsee. Int Rev Ges Hydrobiol 53: 469–510Google Scholar
  205. Schröder CA (1963) Induced temperature tolerance of plant tissue in vitro. Nature 200:1301– 1302Google Scholar
  206. Schwarz W (1969) Der Einfluß der Photoperiode auf das Austreiben, die Frosthärte und die Hitzeresistenz von Zirben und Alpenrosen. Flora 159: 258–285Google Scholar
  207. Schwemmle B, Lange OL (1959) Endogen-tagesperiodische Schwankungen der Hitzeresistenz bei Kalanchoe bloßfeldiana. Planta 53: 134–144Google Scholar
  208. Schwenke H (1959) Untersuchungen zur Temperaturresistenz mariner Algen der westlichen Ostsee. I: Das Resistenzverhalten von Tiefenrotalgen bei ökologischen und nichtökologischen Temperaturen. Kiel Meeresforsch 15: 34–50Google Scholar
  209. Semikhatova OA, Denko EI (1960) Effect of temperature on the respiration of leaves. Exp Bot, Ser 4, 14: 112–136Google Scholar
  210. Semikhatova OA, Sakov WC, Gorbacheva GI (1962) Studies on the after-effect of temperature on the rate and dynamics of photosynthesis of Polygonum sachalinense. Exp Bot Ser 4, 15: 25–42Google Scholar
  211. Seybold A (1929) Die pflanzliche Transpiration. Ergeb Biol 5: 29–165Google Scholar
  212. Sharma P, Yadav AK, Bhardwaja TN (1977) Heat and drought resistance in Actinopteris radiata and Adiantum caudatum. Geobios (Jodhpur) 4: 256–258Google Scholar
  213. Shirley HL (1936) Lethal high temperatures for conifers, and the cooling effect of transpiration. J Agric Res 53: 239–258Google Scholar
  214. Shukhtina HG (1964) The influence of repeated heat-hardening on thermostability of plant cells. In: Collection of works (Sbornik) Cytological aspects of adaptation of plants to the environmental factors, Moscow, Leningrad, Izd Nauka, pp 26–30Google Scholar
  215. Shukhtina GG, Yazkulyev A, Durdyev A (1978) Heat hardening of epidermal cells of Morus alba L. leaves under natural conditions. Bot Z 63: 429–433Google Scholar
  216. Singh SS (1970) Variations and survival of soil fungal flora on temperature treatments. Proc Nat Acad Sci India, Sect B 40: 281–288Google Scholar
  217. Skinner FA (1968) The limits of microbial existance. Proc R Soc London Ser B 171: 77–89Google Scholar
  218. Skogqvist I (1974) Induction of heat sensivity of wheat roots and its effects on mitochondria ATP, triglyceride and total lipid content. Exp Cell Res 86: 285–294PubMedGoogle Scholar
  219. Skogqvist I, Fries N (1970) Induction of thermosensivity and salt sensivity in wheat-roots (Triticum aestivum) and the effect of kinetin. Experientia 26: 1160–1162Google Scholar
  220. Smith WK (1978) Temperatures of desert plants: Another perspective of adaptability of leaf size. Science 211: 614–616Google Scholar
  221. Sorokin C (1971) Calefaction and phytoplankton. Bio Science 21: 1153–1159Google Scholar
  222. Stanley RA, Madewell CE (1976) Thermal tolerance of Lemna minor L. Circular Z 73, Tennessee Valley Authorithy, Musche Shoals, Alabama, USA, pp 1–16Google Scholar
  223. Steinhübel G (1966) Wirkung einer Staubschicht auf die Überwärmung der Blattspreite bei direkter Insolation. Biologia Bratislava 21: 277–294Google Scholar
  224. Stocker O (1954) Der Wasser- und Assimilationshaushalt südalgerischer Wüstenpflanzen. Ber Dtsch Bot Ges 67: 288–299Google Scholar
  225. Stocker O (1956) Die Dürreresistenz. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie. Springer, Berlin, Göttingen, Heidelberg, Vol. III, pp 696–741Google Scholar
  226. Stocker O (1971) Der Wasser- und Photosynthese-Haushalt von Wüstenpflanzen der mauretanischen Sahara. II. Wechselgrüne, Rutenzweig- und stammsukkulente Bäume. Flora 160: 445–494Google Scholar
  227. Strain BR, Chase VC (1966) Effect of past and prevailing temperatures on the carbon dioxide exchange capacities of some woody desert perennials. Ecology 47: 1043–1045Google Scholar
  228. Szabo I, Marton M, Varga L (1964) Untersuchungen über die Hitzeresistenz, Temperatur und Feuchtigkeitsansprüche der Mikroorganismen eines mullartigen Waldrenzinabodens. Pedobiologica 4: 43–64Google Scholar
  229. Tanner CB, Goltz SM (1972) Excessively high temperatures of seed onion umbels. J Am Soc Hortic Sci 97: 5–9Google Scholar
  230. Tansey MR, Brock TD (1978) Microbial life at high temperatures: Ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press London. New YorkGoogle Scholar
  231. Taylor SE, Sexton OJ (1972) Some implications of leaf tearing in Musaceae. Ecology 53: 143–149Google Scholar
  232. Thofelt L (1975) Studies on leaf temperature recorded by direct measurements and by thermography. Acta Univ Upsaliensis 12: 1–143Google Scholar
  233. Tieszen LL (1973) Photosynthesis and respiration in arctic tundra grasses: Field light intensity and temperature responses. Arct Alp Res 5: 239–251Google Scholar
  234. Toprover Y, Glinka Z (1976) Calcium ions protect beet root cell membranes against thermally induced changes. Physiol Plant 37: 131–134Google Scholar
  235. Url W, Fetzmann E (1959) Wärmeresistenz und chemische Resistenz der Grünalge Gloeococcus bavaricus Skuja. Protoplasma 50: 471–482Google Scholar
  236. Veselovskii VA, Leshchinskaya LV, Markarova EN, Veselova TV, Tarusov BN (1976) Effect of illumination of cotton leaves on heat resistance of the photosynthetic apparatus. Fiziol Rast 23: 467–472Google Scholar
  237. Vieweg GH, Ziegler H (1969) Zur Physiologie von Myrothammus flabellifolia. Ber Dtsch Bot Ges 82: 29–36Google Scholar
  238. Volodin AN (1951) The heat resistance of some xerophytes in their natural environment. Bjull Moscov Obsc Ispyt Prir N S Otdel Biol 56: 72–80Google Scholar
  239. Wagenbreth D (1965a) Durch Hitzeschocks induzierte Vitalitätsänderungen bei Laubholzblättern. Flora 156 A: 63–75Google Scholar
  240. Wagenbreth D (1965 b) Das Auftreten von zwei Letalstufen bei Hitzeeinwirkung auf Pappelblätter. Flora 156A: 116–126Google Scholar
  241. Wagenbreth D (1968) Die Wirkung von Hitzeschocks auf die Rostanfälligkeit von Pappelblättern. Phytopathol Z 61: 87–97Google Scholar
  242. Wartenberg H (1933) Kälte und Hitze als Todes- und Krankheitsursache der Pflanzen. In: Sorauer P (ed) Handbuch der Pflanzenkrankheiten, Bd I, 1 Die nichtparasitären und Virus-Krankheiten. 6 Aufl ( Appel O ed) Parey, BerlinGoogle Scholar
  243. Weber F (1926) Hitzeresistenz funktionierender Stomatanebenzellen. Planta 2: 669–677Google Scholar
  244. Wolpert A (1962) Heat transfer analysis of factors affecting plant leaf temperature. Significance of leaf hair. Plant Physiol 37: 113–120PubMedGoogle Scholar
  245. Yarwood CE (1961a) Acquired tolerance of leaves to heat. Science 134: 941PubMedGoogle Scholar
  246. Yarwood CE (1961b) Translocated heat injury. Plant Physiol 36: 712–726Google Scholar
  247. Yarwood CE (1963 a) Heat therapy of bean rust. Phytopathology 53:1313–1316Google Scholar
  248. Yarwood CE (1963 b) Sensitization of leaves to heat. Adv Front Plant Sci (New Dehli) 7:195–204Google Scholar
  249. Yarwood CE (1965) Temperature and plant disease. World Rev Pest Control 4: 53–63Google Scholar
  250. Yarwood CE (1967) Adaptation of plants and plant pathogens to heat. In: Prosser CL (ed) Molecular mechanisms of temperature adaptation. Am Ass Adv Sci, Washington, pp 75–89Google Scholar
  251. Yarwood CE (1977) Heat-induced and cold-induced retention of inoculum by leaves. Phytopathology 67: 1259–1261Google Scholar
  252. Yazkulyev A (1964) The increase in cell thermostability of Aristida karelini (Trin. et Rupr.) Roshev. and Arundo donax L. under the influence of environmental temperature in natural conditions. In: Cytological aspects of adaptation of plants to the environmental factors. Acad. Sci. USSR Moscow Leningrad pp 3–25Google Scholar
  253. Zavadskaya IG (1963) On the rate of increase of thermostability of plant cells after a short preliminary exposure to high temperature. Bot Z 48: 755–758Google Scholar
  254. Zavadskaya IG, Denko EJ (1966) The effect of dehydration on thermostability of plant cells. Bot Z 51: 696–705Google Scholar
  255. Zavadskaya IG, Shukhtina GG (1974) Effects of dehydration and elevated temperature on leaf cell thermo-resistance of a drought sensitive barley cultivar. Tsitologiya 16: 950–955Google Scholar
  256. Zimmermann G, Butin H (1973) Untersuchungen über die Hitze- und Trockenresistenz holzbewohnender Pilze. Flora 162: 393–419Google Scholar
  257. Zobl KH (1944) Untersuchungen über die Widerstandsfähigkeit von Pilzsporen gegen feuchte und trockene Hitze sowie deren chemische Zusammensetzung, verbunden mit Untersuchungen über die Anwendung von sulfonamidehaltigen Pilznährböden. Diss WürzburgGoogle Scholar
  258. Zschokke A (1931) Sonnenbrand-, Hitzetod- und Austrocknungsschäden an Reben. Gartenbauwissenschaft 4: 196–232Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1981

Authors and Affiliations

  • L. Kappen

There are no affiliations available

Personalised recommendations