Skip to main content

Responses of Microorganisms to Temperature

  • Chapter
Book cover Physiological Plant Ecology I

Part of the book series: Encyclopedia of Plant Physiology ((920,volume 12 / A))

Abstract

Temperature is one of the main environmental factors governing microbial life. Growth, as well as other biological events like fruiting, sporulation, spore germination, motility, and survival are tightly related to temperature, or to temperature changes. Thus, no wonder that microorganisms were most often chosen as models for studies on the effects of temperature on biological processes. Some microorganisms can live in saline environments below 0 °C, whereas others not only resist, but also actively develop in boiling springs near 100 °C. The most heat-resisting living things are bacterial endospores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Algranati ID, Gonzales NS, Bade EG (1969) Physiological role of 70S ribosomes in bacteria. Proc Nat Acad Sci USA 62: 574–580

    Article  PubMed  CAS  Google Scholar 

  • Allen MB (1953) The thermophilic aerobic sporeforming bacteria. Bacteriol Rev 17: 125–173

    PubMed  CAS  Google Scholar 

  • Allen MB (1959) Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol 32: 270–277

    Article  PubMed  CAS  Google Scholar 

  • Amelunxen RE, Murdock AL (1978) Microbial life at high temperatures: mechanisms and molecular aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 217–278

    Google Scholar 

  • Anderson JG (1978) Temperature-induced fungal development. In: Smith JE, Berry DR (eds) The filamentous fungi 3: Developmental mycology. Edward Arnold, London, pp 358–375

    Google Scholar 

  • Anderson JG, Smith JE (1971) The production of conidiophores and conidia by newly germinated conidia of Aspergillus niger ( Microcycle conidiation ). J Gen Microbiol 69: 185–197

    PubMed  CAS  Google Scholar 

  • Aragno M (1973) Etude de la germination des pycnidiospores de Coniella diplodiella (Speg.) Pet. et Syd., agent du coitre de la vigne. I. Conditions de la germination. Bull Soc Bot Suisse 83: 223–251

    Google Scholar 

  • Aragno M (1978) Enrichment, isolation and preliminary characterization of a thermophilic, endospore-forming hydrogen bacterium. FEMS Microbiol Letters 3: 13–15

    Article  CAS  Google Scholar 

  • Aragno M, Schlegel HG (1981) The hydrogen-oxidizing bacteria. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The procaryotes: a handbook on habitats, isolation and identification of bacteria. Springer, Berlin, Heidelberg, New York (in press)

    Google Scholar 

  • Aragozzini F, Toppino P, Manachini PL, Craveri R (1976) Fatty acid composition of Bacillus thermoruber. Ann Microbiol Enzimol 26: 9–13

    CAS  Google Scholar 

  • Assche JA van, Carlier AR, Dekeersmaeker HH (1972) Trehalase activity in dormant and activated spores of Phycomyces blakesleeanus. Planta 103: 327–333

    Article  Google Scholar 

  • Baross JA, Morita RY (1978) Microbial life at low temperature: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 9–71

    Google Scholar 

  • Beers RJ (1958) Effect of moisture activity on germination. In: Halvorson HO (ed) Spores. Burgess Publ, Minneapolis, Minn, USA, p 45

    Google Scholar 

  • Belly RT, Bohlool BB, Brock TD (1973) The genus Thermoplasma. Ann NY Acad Sci 225: 94–107

    Article  Google Scholar 

  • Bobier SR, Ferroni GD, Inniss WE (1972) Protein synthesis by the psychrophiles Bacillus psychrophilus and Bacillus insolitus. Can J Microbiol 18: 1837–1843

    Article  PubMed  CAS  Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Brock TD, Freeze H (1969) Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol 98: 289–297

    PubMed  CAS  Google Scholar 

  • Brock TD, Brock ML, Bott TL, Edwards MR (1971) Microbial life at 90° C: the sulfur bacteria of Boulder Spring. J Bacteriol 107: 303–314

    PubMed  CAS  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfuroxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84: 54–68

    Article  Google Scholar 

  • Buchanan RE, Gibbons NE (eds) (1974) Bergey’s manual of determinative bacteriology, 8th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Caldwell DE, Caldwell SJ, Laycock JP (1976) Thermothrix thioparus gen. et sp. no v. a facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature. Can J Microbiol 22: 1509–1517

    Article  PubMed  CAS  Google Scholar 

  • Castenholz RW (1979) Evolution and ecology of thermophilic microorganisms. In: Shilo M (ed) Strategies of microbial life in extreme environments. Chemie, Weinheim, pp 373–392

    Google Scholar 

  • Cronan JE, Gelman EP (1975) Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev 39: 232–256

    PubMed  CAS  Google Scholar 

  • Dallinger WH (1887) The president’s address. JR Microsc Soc Ser 2: 185–199

    Google Scholar 

  • Darland G, Brock TD (1971) Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J Gen Microbiol 67: 9–15

    Google Scholar 

  • Darland G, Brock TD, Samsonoff W, Conti SF (1970) A thermophilic, acidophilic Mycoplasma isolated from a coal refuse pile. Science 170: 1416–1418

    Article  PubMed  CAS  Google Scholar 

  • Das HK, Goldstein A (1968) Limited capacity for protein synthesis at zero degrees centigrade in Escherichia coli. J Mol Biol 31: 209–226

    Article  PubMed  CAS  Google Scholar 

  • Egorova AA, Deryugina Z (1963) The spore-forming thermophile thiobacterium Thiobacillus thermophilica Imschenetskii no v. sp. Mikrobiologija 32: 437–446

    Google Scholar 

  • Esser AF (1979) Physical chemistry of thermostable membranes. In: Shilo M (ed) Strategies of microbial life in extreme environments. Chemie, Weinheim, pp 433–454

    Google Scholar 

  • Foter MJ, Rahn O (1936) Growth and fermentation of bacteria near their minimum temperature. J Bacteriol 32: 485–499

    PubMed  CAS  Google Scholar 

  • Gäumann E (1951) Pflanzliche Infektionslehre. Birkhäuser, Bale

    Google Scholar 

  • Gelman EP, Cronan JE (1972) Mutants of Escherichia coli deficient in the synthesis of cw-vaccinic acid. J Bacteriol 112: 381–387

    Google Scholar 

  • Golovacheva RS, Loginova LG, Salikhov TA, Kolesnikov AA, Zaitseva GN (1975) A new thermophilic species, Bacillus thermocatenulatus nov. sp. Mikrobiologija 44: 265–266

    CAS  Google Scholar 

  • Gould GW, Hitchins AD (1963) Sensitivation of bacterial spores to lysozyme and to hydrogen peroxyde with agent which rupture disulfid bonds. J Gen Microbiol 33: 413

    PubMed  CAS  Google Scholar 

  • Haberstich HV, Zuber H (1974) Thermoadaptation of enzymes in thermophilic and mesophilic cultures of Bacillus stearothermophilus and Bacillus caldotenax. Arch Mikrobiol 98: 275–287

    CAS  Google Scholar 

  • Hawker LE (1957) The physiology of reproduction in fungi. Cambridge Univ Press, London

    Google Scholar 

  • Heinen W (1971) Growth conditions and temperature-dependent substrate specificity of two extremely thermophilic bacteria. Arch Mikrobiol 76: 2–17

    Article  PubMed  CAS  Google Scholar 

  • Heinen UB, Heinen W (1972) Characteristics and properties of a caldo-active bacterium producing extracellular enzymes and two related strains. Arch Mikrobiol 82: 1–23

    Article  PubMed  CAS  Google Scholar 

  • Hennecke H, Shanmugam KT (1979) Temperature control of nitrogen fixation in Klebsiella pneumoniae. Arch Microbiol 123: 259–265

    Article  PubMed  CAS  Google Scholar 

  • Herbert RA, Bhakoo M (1979) Microbial growth at low temperatures. In: Russel AD, Fuller R (eds) Cold-tolerant microbes in spoilage and the environment. The Society for Applied Bacteriology, Technical Series 13, Academic Press, London

    Google Scholar 

  • Hirsch HM (1954) Environmental factors influencing the differentiation of protoperithecia and their relation to tyrosinase and melanin formation in Neurospora crassa. Physiol Plant 7: 72–97

    Article  CAS  Google Scholar 

  • Hoham RW (1975) Optimum temperatures and temperature ranges for growth of snow algae. Arctic Alp Res 7: 13–24

    Article  Google Scholar 

  • Hollaus F, Klaushofer H (1970) Taxonomische Untersuchungen an hochthermophilen Bazillen-Stämmen aus Zuckerfabriksäften. Publ Fac Sci Univ JG Purkyne Brno 47: 99–105

    Google Scholar 

  • Ingraham JL (1958) Growth of psychrophilic bacteria. J Bacteriol 76: 75 - 80

    PubMed  CAS  Google Scholar 

  • Inniss WE, Ingraham JL (1978) Microbial life at low temperatures: mechanisms and molecular aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 73–104

    Google Scholar 

  • Johnson EJ (1979) Thermophile genetics and the genetic determinants of thermophily. In: Shilo M (ed) Strategies of microbial life in extreme environments. Chemie, Weinheim, pp 471–487

    Google Scholar 

  • Jung L, Jost R, Stoll E, Zuber H (1974) Metabolic differences in Bacillus stearothermophilus grown at 55 °C and 37 °C. Arch Microbiol 95: 125–138

    Article  CAS  Google Scholar 

  • Kalakoutskii LV, Agre NS (1976) Comparative aspects of development and differentiation in Actinomycetes. Bacteriol Rev 40: 469–524

    PubMed  CAS  Google Scholar 

  • Kanetsuna F, Carbonell LM, Azuma I, Yamura Y (1972) Biochemical studies on the thermal dimorphism of Paracoccidioides brasiliensis. J Bacteriol 110: 208–218

    PubMed  CAS  Google Scholar 

  • Kaplan RW (1978) Der Ursprung des Lebens. Thieme, Stuttgart.

    Google Scholar 

  • Keynan A, Evenchik Z (1969) Activation. In: Gould GW, Hurst A (eds) The bacterial spore. Academic Press, London, pp 359–396

    Google Scholar 

  • Keynan A, Evenchik Z, Halvorson HO, Hastings JW (1964) Activation of bacterial endospores. J Bacteriol 88: 313

    PubMed  CAS  Google Scholar 

  • Knauth LP, Epstein S (1976) Hydrogen and oxygen ratios in nodular and bedded cherts. Geochim Cosmochim Acta 40: 1095

    Article  CAS  Google Scholar 

  • Langworthy TA, Brock TD, Castenholz RW, Esser AF, Johnson EJ, Oshima T, Tsuboi M, Zeikus JG, Zuber H (1979) Life at high temperatures. Group report. In: Shilo M (ed) Strategies of microbial life in extreme environments. Chemie, Weinheim, pp 489–502

    Google Scholar 

  • Lindsay JA, Creaser EH (1975) Enzyme thermostability is a transformable property between Bacillus spp. Nature 255: 650–652

    Article  PubMed  CAS  Google Scholar 

  • Ljungdahl LG, Sherod D (1976) Proteins from thermophilic microorganisms. In: Heinrich MR (ed) Extreme environments. Academic Press, New York, pp 147–187

    Google Scholar 

  • Marr AG, Ingraham JL (1962) Effect in temperature on the composition of fatty acids in Escherichia coli. J Bacteriol 84: 1260–1267

    PubMed  CAS  Google Scholar 

  • Meylan C (1914) Remarques sur quelques espèces nivales de Myxomycètes. Bull Soc Vaudoise Sci Nat 50: 1–14

    Google Scholar 

  • Meylan C (1931) Les espèces nivales du genre Lamproderma. Bull Soc Vaudoise Sci Nat 57: 147–149

    Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39: 146–167

    Google Scholar 

  • O’Donovan GA, Ingraham JL (1965) Cold-sensitive mutants of Escherichia coli resulting from increased feed-back inhibition. Proc Nat Acad Sci USA 54: 451–457

    Article  PubMed  Google Scholar 

  • Ohta Y (1967) Thermostable protease from thermophilic bacteria. II. Studies on the stability of the protease. J Biol Chem 242: 509–515

    PubMed  CAS  Google Scholar 

  • Ojha MN, Turian G (1968) Thermostimulation of conidiation and succinic oxidative metabolism of Neurospora crassa. Arch Mikrobiol 63: 232–241

    Article  PubMed  CAS  Google Scholar 

  • Oppenheim J, Scheinbuks J, Biava C, Marcus L (1968) Polyribosomes in Azotobacter vinelandii. I. Isolation, characterization and distribution of ribosomes, polyribosomes and subunits in logarithmically growing Azotobacter. Biochim Biophys Acta 161: 386–401

    PubMed  CAS  Google Scholar 

  • Pace B, Campbell LL (1967) Correlation of maximal growth temperature and ribosome heat stability. Proc Nat Acad Sci USA 57: 1109–1116

    Article  Google Scholar 

  • Pfeffer JT (1977) Methane from urban wastes — process requirements. In: Schlegel HG, Barnea J (eds) Microbial energy conversion. Pergamon Press, Oxford, pp 139–155

    Google Scholar 

  • Reid BR (1976) Temperature effects on transfer RNA. In: Heinrich MR (ed) Extreme environments. Academic Press, New York, pp 103–117

    Google Scholar 

  • Schenk A, Aragno M (1979) Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. J Gen Microbiol 115: 333–341

    Google Scholar 

  • Shaw MK, Ingraham JL (1965) Fatty acid composition of Escherichia coli as a possible controlling factor of the minimal growth temperature. J Bacteriol 90: 141–146

    PubMed  CAS  Google Scholar 

  • Stenesh J (1976) Information transfer in thermophilic bacteria. In: Heinrich MR (ed) Extreme environments. Academic Press, New York, pp 85–102

    Google Scholar 

  • Stockner JG (1967) Observation of thermophilic algal communities in Mount Rainier and Yellowstone National Parks. Limnol Oceanogr 12: 13–17

    Article  Google Scholar 

  • Sussman AS (1976) Activators of fungal spore germination. In: Weber DJ, Hess WM (eds) The fungal spore. Wiley and Sons, New York

    Google Scholar 

  • Sussman AS, Halvorson HO (1966) Spores: their dormancy and germination. Harper and Row, New York

    Google Scholar 

  • Tai PC, Wallace BJ, Herzog EL, Davis BD (1973) Properties of initiation-free polysomes of Escherichia coli. Biochemistry 12: 609–615

    Article  PubMed  CAS  Google Scholar 

  • Tansey MR, Brock TD (1978) Microbial life at high temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 159–216

    Google Scholar 

  • Welker NE (1976) Effect of temperature on membrane proteins. In: Heinrich MR (ed) Extreme environments. Academic Press, New York, pp 229–254

    Google Scholar 

  • Williams RAD (1975) Caldoactive and thermophilic bacteria and their thermostable proteins. Sci Prog Oxf 62: 373–393

    CAS  Google Scholar 

  • Wilson JW, Plunkett OA (1965) The fungus diseases of man. Univ California Press, Berkeley

    Google Scholar 

  • Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11: 245–252

    Article  PubMed  CAS  Google Scholar 

  • Zeikus JG, Wolfe RS (1971) Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109: 707–713

    Google Scholar 

  • Zuber H (ed) (1976) Enzymes and proteins from thermophilic microorganisms. Experientia suppl 26, Birkhäuser, Bale

    Google Scholar 

  • Zuber H (1979) Structure and function of enzymes from thermophilic microorganisms. In: Shilo M (ed) Strategies of microbial life in extreme environments. Chemie, Weinheim, pp 393–415

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Aragno, M. (1981). Responses of Microorganisms to Temperature. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (eds) Physiological Plant Ecology I. Encyclopedia of Plant Physiology, vol 12 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68090-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68090-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68092-2

  • Online ISBN: 978-3-642-68090-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics