Skip to main content

Reorganization of Retino-Geniculate Connections After Retinal Lesions in the Adult Cat

  • Conference paper
Lesion-Induced Neuronal Plasticity in Sensorimotor Systems

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Since the descriptions of reorganization in the spinal cord after dorsal root lesions (Liu and Chambers 1958; McCouch et al. 1958) various physiological and anatomical signs of lesion-induced neuronal plasticity have been observed in the central nervous system of the adult cat. (Studies in several subcortical systems are listed in Table 1.)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson LS, Black RG, Abraham J, Ward AA (1971) Neuronal hypersensitivity in experimental trigeminal deafferentation. J Neurosurg 35: 444–452

    Article  PubMed  CAS  Google Scholar 

  • Baisden RH, Polley EH, Goodman DC, Wolf ED (1980) Absence of sprouting by retinogeniculate axons after chronic focal lesions in the adult cat retina. Neurosci Lett 17: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Basbaum AI, Wall PD (1976) Chronic changes in the response of cells in adult cat dorsal horn following partial deafferentation: the appearance of responding cells in a previously non-responsive region. Brain Res 116: 181–204

    Article  PubMed  CAS  Google Scholar 

  • Bird SJ, Aghajanian GK (1975) Denervation supersensitivity in the cholinergic septohippocampal pathway: a microiontophoretic study. Brain Res 100: 355–370

    Article  PubMed  CAS  Google Scholar 

  • Bishop PO, Kozak W, Levick WR, Vakkur GJ (1962a) The determination of the projection of the visual field on to the lateral geniculate nucleus in the cat. J Physiol 163: 503–539

    PubMed  CAS  Google Scholar 

  • Bishop PO, Kozak W, Vakkur GJ (1962b) Some quantitative aspects of the cat’s eye: axis and plane of reference, visual field co-ordinates and optics. J Physiol 163: 466–502

    PubMed  CAS  Google Scholar 

  • Cleland BG, Dubin MW, Levick WR (1971) Simultaneous recording of input and output of lateral geniculate neurons. Nature (London) 231: 191–192

    Article  CAS  Google Scholar 

  • Devor M, Wall PD (1978) Reorganisation of spinal cord sensory map after peripheral nerve injury. Nature (London) 275: 75–76

    Article  Google Scholar 

  • Eysel UT (1976) Quantitative studies of intracellular postsynaptic potentials in the lateral geniculate nucleus of the cat with respect to optic tract stimulus response latencies. Exp Brain Res 25: 469–486

    Article  PubMed  CAS  Google Scholar 

  • Eysel UT (1979) Maintained activity, excitation and inhibition of lateral geniculate neurons after monocular deafferentation in the adult cat. Brain Res 166: 259–271

    Article  PubMed  CAS  Google Scholar 

  • Eysel UT, Grüsser OJ (1978) Increased transneuronal excitation of the cat lateral geniculate nucleus after acute deafferentation. Brain Res 158: 107–128

    Article  PubMed  CAS  Google Scholar 

  • Eysel UT, Gonzalez-Aguilar F, Mayer U (1980) A functional sign of reorganization in the visual system of adult cats: lateral geniculate neurons with displaced receptive fields after lesions of the nasal retina. Brain Res 181: 285–300

    Article  PubMed  CAS  Google Scholar 

  • Eysel UT, Gonzalez-Aguilar F, Mayer U (1981) Late spreading of excitation in the lateral geniculate nucleus following visual deafferentation is independent of the size of retinal lesions. Brain Res 204: 189–193

    Article  PubMed  CAS  Google Scholar 

  • Field PM, Coldham DE, Raisman G (1980) Synapse formation after injury in the adult rat brain: Preferential reinnervation of denervated fimbrial sites by axons of the contralateral fimbria. Brain Res 189: 103–113

    Article  PubMed  CAS  Google Scholar 

  • Gilad GM, Reis DJ (1979) Collateral sprouting in central mesolimbic dopamine neurons: biochemical and immunocytochemical evidence of changes in the activity and distribution of tyrosine hydroxylase in terminal fields and in cell bodies of A10 neurons. Brain Res 160: 17–36

    Article  PubMed  CAS  Google Scholar 

  • Goodman DC, Bogdasarian RS, Horel JA (1973) Axonal sprouting of ipsilateral optic tract following opposite eye removal. Brain Behav Evol 8: 27–50

    Article  PubMed  CAS  Google Scholar 

  • Guillery RW (1972) Experiments to determine whether retino-geniculate axons can form translaminar collateral sprouts in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 146: 407–420

    Article  PubMed  CAS  Google Scholar 

  • Hâmori J (1968) Presynaptic-to-presynaptic axon contacts under experimental conditions giving rise to rearrangement of synaptic structures. In: v Euler C, Skoglund S, Soderberg U (eds) Structure and function of inhibitory neuronal mechanisms. Pergamon Press, Oxford, pp 71–80

    Google Scholar 

  • Hickey TL (1975) Translaminar growth of axons in the kitten dorsal lateral geniculate nucleus following removal of one eye. J Comp Neurol 161: 359–382

    Article  PubMed  CAS  Google Scholar 

  • Hughes A (1976) A supplement to the cat schematic eye. Vision Res 16: 149–154

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH, Guillery RW, Allman JM (1972) Some principles of organization in the dorsal lateral geniculate nucleus. Brain Behav Evol 6: 253–299

    Article  PubMed  CAS  Google Scholar 

  • Kostyuk PG (1963) Functional changes during degeneration of central synapses. In: Gutman E, Hnik P (eds) The effect of use and disuse on neuromuscular function. Elsevier, Amsterdam, pp 291–304

    Google Scholar 

  • Liu CN, Chambers WW (1958) Intraspinal sprouting of dorsal root axons. Arch Neurol Psychiatr 79: 46–61

    CAS  Google Scholar 

  • Lynch G, Stanfield B, Cotman CW (1973) Developmental differences in post-lesion axonal growth in the hippocampus. Brain Res 59: 155–168

    Article  PubMed  CAS  Google Scholar 

  • Madarâsz M, Gerle J, Hajdu F, Somogyi G, Tömböl T (1978) Quantitative histological studies on the lateral geniculate nucleus in the cat. H. Cell numbers and densities in the several layers. J Hirnforsch 19: 159–164

    PubMed  Google Scholar 

  • McCall RB, Aghajanian GK (1979) Denervation supersensitivity to serotonin in the facial nucleus. Neuroscience 4: 1501–1510

    Article  PubMed  CAS  Google Scholar 

  • McCouch GP, Austin GM, Liu CN, Liu CY (1958) Sprouting as a cause of spasticity. J Neurophysiol 21: 205–216

    PubMed  CAS  Google Scholar 

  • Mendell LM, Sassoon EM, Wall PD (1978) Properties of synaptic linkage from long ranging afferents onto dorsal horn neurones in normal and deafferented cats. J Physiol 285: 299–310

    PubMed  CAS  Google Scholar 

  • Millar J, Basbaum AI, Wall PD (1976) Restructuring of the somatotopic map and appearance of abnormal neuronal activity in the gracile nucleus after partial deafferentation. Exp Neurol 50: 658–672

    Article  PubMed  CAS  Google Scholar 

  • Murray M, Goldberger MA (1974) Restitution of function and collateral sprouting in the cat’s spinal cord: the partially hemisected animal. J Comp Neurol 158: 19–36

    Article  PubMed  CAS  Google Scholar 

  • Murray M, Zimmer J, Raisman G (1979) Quantitative electron microscopic evidence for reinnervation in the adult rat interpeduncular nucleus after lesions of the fasciculus retroflexus. J Comp Neurol 187: 447–468

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Nizuno N, Konishi A, Manabu S (1974) Synaptic reorganization of the red nucleus after chronic deafferentation from cerebellorubral fibers: an electron microscope study in the cat. Brain Res 82: 298–301

    Article  PubMed  CAS  Google Scholar 

  • Precht W, Shimazu H, Markham CH (1966) A mechanism of central compensation of vestibular function following hemilabyrinthectomy. J Neurophysiol 29: 996–1010

    PubMed  CAS  Google Scholar 

  • Pubols LM, Goldberger ME (1980) Recovery of function in dorsal horn. J Neurophysiol 43: 102–117

    PubMed  CAS  Google Scholar 

  • Raisman G (1969) Neuronal plasticity in the septal nuclei of the adult rat. Brain Res 14: 25–48

    Article  PubMed  CAS  Google Scholar 

  • Raisman G, Field P (1973) A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res 50: 241–264

    Article  PubMed  CAS  Google Scholar 

  • Rodieck RW (1979) Visual pathways. Annu Rev Neurosci 2: 193–225

    Article  PubMed  CAS  Google Scholar 

  • Sanderson KJ (1971) Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat. Exp Brain Res 13: 159–177

    PubMed  CAS  Google Scholar 

  • Sanderson KJ, Sherman SM (1971) Nasotemporal overlap in visual field projected to lateral geniculate nucleus in the cat. J Neurophysiol 34: 453–466

    PubMed  CAS  Google Scholar 

  • Schneider GE (1977) Growth of abnormal neural connections following focal brain lesions: constraining factors and functional effects. In: William H, Obrador S, Martin-Rodriguez JG (eds) Neurosurgical treatment in psychiatry, pain, and epilepsy. University Park Press, Baltimore, pp 5–26

    Google Scholar 

  • Steward O, Messenheimer JA (1978) Histochemical evidence for a post-lesion reorganization of cholinergic afferents in the hippocampal formation of the mature cat. J Comp Neurol 178: 697–709

    Article  PubMed  CAS  Google Scholar 

  • Szentâgothai J (1973) Neuronal and synaptic architecture of the lateral geniculate nucleus. In: Jung R (ed) Handbook of sensory physiology, vol VII, 3B. Springer, Berlin Heidelberg New York, pp 141–176

    Google Scholar 

  • Tömböl T, Madarâsz M, Hajdu F, Somogyi G, Gerle J (1978a) Quantitative histological studies on the lateral geniculate nucleus in the cat. I. Measurements on golgi material. J Hirnforsch 19: 145–158

    PubMed  Google Scholar 

  • Tömböl T, Madarâsz M, Somogyi G, Hajdu F, Gerle J (1978b) Quantitative histological studies on the lateral geniculate nucleus in the cat. IV. Numerical aspects of the transfer from retinal fibers to cortical relay. J Hirnforsch 19: 203–212

    PubMed  Google Scholar 

  • Tsukahara N, Hultborn H, Murakami F, Fujito Y (1975) Electrophysiological study of formation of new synapses and collateral sprouting in red nucleus neurons after partial denervation. J Neurophysiol 38: 1359–1372

    PubMed  CAS  Google Scholar 

  • Wall PD (1975) Signs of plasticity and reconnection in spinal cord damage. In: Outcome of severe damage to the central nervous system, Ciba foundation symposium 34. Elsevier/North-Holland, Amsterdam, pp 35–63

    Google Scholar 

  • Wall PD (1976) Plasticity in the adult mammalian central nervous system. In: Corner MA, Swaabs DF (eds) Perspectives in brain research. Progress in brain research, vol 45. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 359–379

    Chapter  Google Scholar 

  • Wall PD, Egger MD (1971) Formation of new connections in adult rat brains after partial deafferentation. Nature (London) 232: 542–545

    Article  CAS  Google Scholar 

  • Wässle H, Levick WR, Cleland BG (1975) The distribution of the alpha type of ganglion cells in the cat’s retina. J Comp Neurol 159: 419–438

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eysel, U.T., Gonzalez-Aguilar, F., Mayer, U. (1981). Reorganization of Retino-Geniculate Connections After Retinal Lesions in the Adult Cat. In: Flohr, H., Precht, W. (eds) Lesion-Induced Neuronal Plasticity in Sensorimotor Systems. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68074-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68074-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68076-2

  • Online ISBN: 978-3-642-68074-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics