Skip to main content

Extracellular Marking and Retrograde Labelling of Neurons

  • Chapter
Techniques in Neuroanatomical Research

Abstract

Microelectrodes of different types are used by neurophysiologists to record the electrical activity of single nerve cells or groups of neurons, and it is often desirable to localize the structure producing the physiological response. Ideally the nerve cells whose activity is being monitored should be anatomically characterized. With intracellular recording of a single neuron, a stain can be iontophoretically injected into the neuroplasm, and the cell unambiguously identified. Such recordings, however, are very difficult to achieve in the mammalian brain, and most experimenters still rely on extracellular recordings for their physiological analysis. Although it is not generally possible to identify the recorded structure to the neuronal level using extracellular techniques, the ordered topology of some structures in the brain, such as cerebellum, hippocampus, and retina, may permit cellular identification if the tip position of the microelectrode can be accurately marked.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC, Warr WB (1976) Origins of axons in the cat’s acoustic striae determined by injection of horseradish peroxidase into severed tracts. J Comp Neurol 170:107–122

    PubMed  CAS  Google Scholar 

  • Adams JC (1977) Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience 2:141–145

    PubMed  CAS  Google Scholar 

  • Ainsworth A, Dostrovsky JO, Merrill EG, Millar J (1977) An improved method for insulating tungsten microelectrodes with glass. J Physiol, London 269:4P

    CAS  Google Scholar 

  • Altman J, Tyrer NM (1977) The locust wing hinge receptors. I. Primary sensory neurons with enormous central arborizations. J Comp Neurol 172:409–430

    PubMed  CAS  Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt filled neurons in wholemount preparations. Brain Res 138: 359–363

    PubMed  CAS  Google Scholar 

  • Bentivoglio M, Kuypers HGJM, Catsman-Berrevoets CE, Dann O (1979) Fluorescent retrograde neuronal-labelling in rat by means of substances binding specifically to adenine-thymine rich DNA. Neurosci Lett 12:235–240

    PubMed  CAS  Google Scholar 

  • Bentivoglio M, Kuypers HGJM, Catsman-Berrevoets CE (1980 a) Retrograde neuronal labelling by means of bisbenzimide and nuclear yellow (Hoechst S769121). Measures to prevent diffusion of the tracers out of retrogradely labelled neurons. Neurosci Lett 18:19–24

    PubMed  CAS  Google Scholar 

  • Bentivoglio M, Kuypers HGJM, Catsman-Berrevoets CE, Loewe H, Dann O (1980 b) Two new fluorescent retrograde neuronal tracers which are transported over long distances. Neurosci Lett 18:25–30

    PubMed  CAS  Google Scholar 

  • Björklund A, Skagerberg G (1979) Evidence for a major spinal cord projection from the diencephalic All dopamine cell group in the rat using transmitter-specific fluorescent retrograde tracing. Brain Res 177:170–175

    PubMed  Google Scholar 

  • Bunt AH, Haschke RH, Lund RD, Calcins DF (1976) Factors affecting retrograde axonal transport of horseradish peroxidase in the visual system. Brain Res 102:152–155

    PubMed  CAS  Google Scholar 

  • Burrows M (1973) Physiological and morphological properties of the metathoracic common inhibitory neuron of the locust. J Comp Physiol 82:59–78

    Google Scholar 

  • Butler AB et al. (1977) Cytochemical affinity of pyramidal cell dendrites for divalent cobalt during initiation and calcium-induced blockade of epileptiform discharge. Exp Neurol 56:386–399

    PubMed  CAS  Google Scholar 

  • Coggehall JC (1978) Neurons associated with the dorsal longitudinal flight muscles of Drosophila melanogaster. J Comp Neurol 177:707–720

    Google Scholar 

  • Cullheim S, Kellerth J-O (1976) Combined light and electron microscopic tracing of neurons, including axons and synaptic terminals, after intracellular injection of horseradish peroxidase. Neurosci Lett 2:307–313

    PubMed  CAS  Google Scholar 

  • Curtis DR (1964) Microelectrophoresis. In: Nastuk WL (ed) Physical techniques in biological research, vol 5 A. Academic Press, New York London, pp 144–190

    Google Scholar 

  • Donoghue S, Kidd C (1979) A twin-barrelled tungsten-glass micro-electrode for extracellular recording from neurons. J Physiol (Lond)290:8P

    CAS  Google Scholar 

  • Eckert HE, Boschek CB (1980) The use of horseradish peroxidase as a neuronal marker in the arthropod central nervous system. In: Strausfeld NJ, Miller TA (eds) Neuro-anatomical Techniques. Insect Nervous System. Springer, New York Heidelberg Berlin, pp 326–338

    Google Scholar 

  • Ferris CD (1974) Introduction to bioelectrodes. Plenum Press, New York London

    Google Scholar 

  • Ferster D, Le Vay S (1978) The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J Comp Neurol 182: 923–944

    PubMed  CAS  Google Scholar 

  • Frank K, Becker MC (1964) Microelectrodes for recording and stimulation. In: Nastuk WL (ed) Physical techniques in biological research, vol 5 A. Academic Press, New York London, pp 22–87

    Google Scholar 

  • Fries W, Zieglgänsberger W (1974) A method of discriminating axonal from cell-body activity and to analyze “silent cells”. Exp Brain Res 21:441–445

    PubMed  CAS  Google Scholar 

  • Fukuda Y, Stone J (1975) Direct identification of the cell bodies of Y-, X-, and W-cells in the cat’s retina. Vision Res 15:1034–1036

    PubMed  CAS  Google Scholar 

  • Fuller PM, Prior DJ (1975) Cobalt iontophoresis technique for tracing afferent and efferent connections in the vertebrate CNS. Brain Res 88:211–220

    PubMed  CAS  Google Scholar 

  • Galifret X, Szabo T (1960) Locating capillary microelectrode tips within nervous tissue. Nature 188:1033–1034

    PubMed  CAS  Google Scholar 

  • Gallyas F, Lénárd L, Lazar G (1978) Improvement of cobalt-transport in axons by complexing agents. Neurosci Lett 9:213–216

    PubMed  CAS  Google Scholar 

  • Geisert EE (1976) The use of tritiated horseradish peroxidase for defining neuronal pathways: a new application. Brain Res 117:130–135

    PubMed  Google Scholar 

  • Goodman C (1974) Anatomy of locust ocellar interneurons: Constancy and variability. J Comp Physiol 95:185–201

    Google Scholar 

  • Graham RC, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14: 291–302

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Devor M (1974) A microelectrophoretic delivery technique for use with horseradish peroxidase. Brain Res 68:167–173

    PubMed  CAS  Google Scholar 

  • Green JD (1958) A simple microelectrode for recording from central nervous system. Nature 182:962

    PubMed  CAS  Google Scholar 

  • Griffin G, Watkins LR, Mayer DJ (1979) HRP pellets and slow-release gels: two new techniques for greater localization and sensitivity. Brain Res 168:595–601

    PubMed  CAS  Google Scholar 

  • Guglielmotti V (1979) A thermally-controlled microinjector. Stain Technol 54:151–157

    PubMed  CAS  Google Scholar 

  • Hadley RT, Trachtenberg MC (1978) Poly-l-ornithine enhances the uptake of horseradish peroxidase. Brain Res 158:1–14

    PubMed  CAS  Google Scholar 

  • Hausen K, Strausfeld NJ (1980) Sexually dimorphic interneuron arrangements in the fly visual system. Proc R Soc Lond [Biol] 208:57–71

    Google Scholar 

  • Hausen K, Wolburg-Buchholz K (1980) An improved cobalt sulphide-silver intensification method for electronmicroscopy. Brain Res 187: 462–466

    PubMed  CAS  Google Scholar 

  • Hellon RF (1971) The marking of electrode tip positions in nervous tissue. J Physiol (Lond) 214:12P

    Google Scholar 

  • Herkenham M, Nauta HJW (1977) Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study with a note on the fiber-of-passage problem. J Comp Neurol 173:123–146

    PubMed  CAS  Google Scholar 

  • Hubel DH (1957) Tungsten microelectrode for recording from single units. Science 125: 549–550

    PubMed  CAS  Google Scholar 

  • Hubel DH (1959) Single-unit activity in striate cortex of unrestrained cats. J Physiol London 147:226–238

    PubMed  CAS  Google Scholar 

  • Iles JF, Mulloney B (1971) Procion yellow-staining of cockroach motor neurons without the use of microelectrodes. Brain Res 30: 397–400

    PubMed  CAS  Google Scholar 

  • Illing R-B (1980) Axonal bifurcation of cat retinal ganglion cells as demonstrated by retrograde double labelling with fluorescent dyes. Neurosci Lett 19:125–130

    PubMed  CAS  Google Scholar 

  • Illing R-B, Wässle H (1979) Visualization of the HRP reaction product using the polarization microscope. Neurosci Lett 13:7–11

    PubMed  CAS  Google Scholar 

  • Jankowska E, Rastad J, Westman J (1976) Intracellular application of horseradish peroxidase and its light and electron microscopical appearance in spinocervical tract cells. Brain Res 105:557–562

    PubMed  CAS  Google Scholar 

  • Jones EG, Hartmann BK (1978) Recent advances in neuroanatomical methodology. Annu Rev Neurosci 1:215–296

    PubMed  CAS  Google Scholar 

  • Källström Y, Lindström S (1978) A simple device for pressure-injections of horseradish peroxidase into small central neurons. Brain Res 156:102–105

    PubMed  Google Scholar 

  • Kaneko A, Hashimoto H (1967) Recording site of the single-cone response determined by an electrode-marking technique. Vision Res 7: 847–851

    PubMed  CAS  Google Scholar 

  • Kawamura S, Fukushima N, Hattori S, Tashiro T (1978) A ventral lateral geniculate nucleus projection to the dorsal thalamus and the midbrain in the cat. Exp Brain Res 31:95–106

    PubMed  CAS  Google Scholar 

  • Keefer DA (1978) Horseradish peroxidase as a retrogradely-transported, detailed dendritic marker. Brain Res 140:15–32

    PubMed  CAS  Google Scholar 

  • Keefer DA, Spatz WB, Misgeld U (1976) Golgilike staining of neocortical neurons using retrogradely transported horseradish peroxidase. Neurosci Lett 3:233–237

    PubMed  CAS  Google Scholar 

  • Kim CC, Strick PL (1976) Critical factors involved in the demonstration of horseradish peroxidase retrograde transport. Brain Res 103:356–361

    PubMed  CAS  Google Scholar 

  • Kirkham JB et al. (1975) Identification of cobalt in processes of stained neurons using X-ray energy spectra in the electron microscope. Brain Res 85:33–37

    PubMed  CAS  Google Scholar 

  • Krishan N, Singer M (1973) Penetration of peroxidase into peripheral nerve fibers. Am J Anat 136:1–14

    Google Scholar 

  • Kristensson K (1970) Transport of fluorescent protein tracer in peripheral nerves. Acta Neuropathol (Berl) 16:293–300

    CAS  Google Scholar 

  • Kristensson K, Olsson Y (1971a) Retrograde axonal transport of protein. Brain Res 29: 363–365

    PubMed  CAS  Google Scholar 

  • Kristensson K, Olsson Y (1971 b) Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain Res 32: 399–406

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM, Bentivoglio M, Van der Kooy D, Catsman-Berrevoets CE (1979) Retrograde transport of bisbenzimide and propidium iodide through axons to their parent cell bodies. Neurosci Lett 12:1–7

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM, Catsman-Berrevoets CE, Padt RE (1977) Retrograde axonal transport of fluorescent substances in the rat’s forebrain. Neurosci Lett 6:127–135

    PubMed  CAS  Google Scholar 

  • La Vail JH (1975 a) The retrograde transport method. Fed Proc 34:1618–1624

    Google Scholar 

  • La Vail JH (1975 b) Retrograde cell degeneration and retrograde transport techniques. In: Cowman WM, Cuénod M (eds) The use of axonal transport for studies of neuronal connectivity. Elsevier, Amsterdam Oxford New York, pp 217–248

    Google Scholar 

  • La Vail JH, La Vail MM (1972) Retrograde axonal transport in the central nervous system. Science 176:1416–1417

    Google Scholar 

  • La Vail JH, La Vail MM (1974) The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system: a light and electron microscopic study. J Comp Neurol 157:303–358

    Google Scholar 

  • La Vallée M, Schanne OF, Hebert NC (1969) Glass microelectrodes. Wiley, London

    Google Scholar 

  • Lee BB, Mandl G, Stean JPB (1969) Microelectrode tip position marking in nervous tissue: a new dye method. Electroencephalogr Clin Neurophysiol 27:610–613

    PubMed  CAS  Google Scholar 

  • Levick WR (1972) Another Tungsten microelectrode. Med Biol Eng 10:510–515

    PubMed  CAS  Google Scholar 

  • Lynch G, Deadwyler S, Gall C (1974) Labelling of central nervous system neurons with extracellular recording microelectrodes. Brain Res 66:337–341

    Google Scholar 

  • Macqueen CL (1978) An improved mounting solution for frozen brain sections. Stain Technol 53:243–244

    PubMed  CAS  Google Scholar 

  • Malmgren L, Olsson Y (1978) A sensitive method for histochemical demonstration of horseradish peroxidase in neurons following retrograde axonal transport. Brain Res 148: 279–294

    PubMed  CAS  Google Scholar 

  • Mason CA (1975) Delineation of the rat visual system by the axonal iontophorese — cobalt sulfide precipitation technique. Brain Res 85: 287–293

    PubMed  CAS  Google Scholar 

  • Mason CA et al. (1977) Structural features of the retinohypothalamic projection in the rat during normal development. Brain Res 132

    Google Scholar 

  • McCaman RE, McKenna DG, Ono JK (1977) A pressure system for intracellular and extracellular ejections of picoliter volumes. Brain Res 136:141–147

    PubMed  CAS  Google Scholar 

  • Merill EG, Ainsworth A (1972) Glass-coated platinum-plated tungsten microelectrodes. Med Biol Eng 10:662–672

    Google Scholar 

  • Mesulam M-M (1976) The blue reaction product in horseradish peroxidase neurohisto-chemistry: incubation parameters and visibility. J Histochem Cytochem 24:1273–1280

    PubMed  CAS  Google Scholar 

  • Mesulam M-M (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26:106–117

    PubMed  CAS  Google Scholar 

  • Mesulam M-M, Rosene DI (1979) Sensitivity in horseradish peroxidase neurohistochemistry: a comparative and quantitative study of nine methods. J Histochem Cytochem 27:763–773

    PubMed  CAS  Google Scholar 

  • Mobbs PG (1976) Golgi staining of material containing cobalt-filled profiles in the insect CNS. Brain Res 105:563–566

    PubMed  CAS  Google Scholar 

  • Muller KJ, McMahan UJ (1976) The shapes of sensory and motor neurons and the distribution of their synapses in the ganglia of the leech: a study using intracellular injection of horseradish peroxidase. Proc R Soc Lond [Biol] 194:481–499

    CAS  Google Scholar 

  • Nauta HJW, Pritz ME, Lasek RJ (1974) Afferents to the rat caudoputamen studied with horseradish peroxidase. An evaluation of a retrograde neuroanatomical research method. Brain Res 67:219–234

    PubMed  CAS  Google Scholar 

  • Oldfield BJ, McLachlan EM (1977) Uptake and retrograde transport of HRP by axons of intact and damaged peripheral nerve trunks. Neurosci Lett 6:135–141

    PubMed  CAS  Google Scholar 

  • Olmos J De (1977) An improved HRP-method for the study of central nervous connections. Exp Brain Res 29:541–551

    PubMed  Google Scholar 

  • Olmos J De, Heimer L (1977) Mapping of collateral projections with the HRP-method. Neurosci Lett 6:107–114

    PubMed  Google Scholar 

  • Olmos J De, Heimer L (1980) Double and triple labelling of neurons with fluorescent substances; the study of collateral pathways in the ascending raphe system. Neurosci Lett 19:7–12

    PubMed  Google Scholar 

  • Olmos J De, Hardy H, Heimer L (1978) The afferent connections of the main and the accessory olfactory bulb formations in the rat: an experimental HRP-study. J Comp Neurol 181:213–244

    PubMed  Google Scholar 

  • O’Shea M, Williams JLD (1974) The anatomy and output connection of a locust visual interneuron: the lobular giant movement detector (LGMD) neuron. J Comp Physiol 91:257–266

    Google Scholar 

  • Pabst A (1973) A simple method for use with tungsten microelectrodes for the localization of recording sites. Pflügers Arch 339:355–358

    PubMed  CAS  Google Scholar 

  • Pitman RM, Tweedle CD, Cohen MJ (1972) Branching of central neurons: intracellular cobalt injection for light and electron microscopy. Science 176:412–414

    PubMed  CAS  Google Scholar 

  • Potter DD, Furshpan EJ, Lennox ES (1966) Connections between cells of the developing squid as revealed by electrophysiological methods. Proc Natl Acad Sci USA 55:328–336

    PubMed  CAS  Google Scholar 

  • Rehbein H et al. (1974) Structure and function of acoustic neurons in the thoracic ventral nerve cord of Locusta migratoria (Acrididae). J Comp Physiol 95:263–280

    Google Scholar 

  • Rehbein H (1976) Auditory neurons in the ventral cord of the locust: morphological and functional properties. J Comp Physiol 110:233–250

    Google Scholar 

  • Schubert P, Holländer H (1975) Methods for the delivery of tracers to the central nervous system. In: Cowan WM, Cuénod M (eds) The use of axonal transport for studies of neuronal connectivity. Elsevier, Amsterdam Oxford New York, pp 113–125

    Google Scholar 

  • Siegler MVS, Burrows M (1979) The morphology of local interneurons in the metathoracic ganglion of the locust. J Comp Neurol 183: 121–148

    PubMed  CAS  Google Scholar 

  • Snodderly DM (1973) Extracellular single-unit recording. In: Thompson RF, Patterson MM (eds) Bioelectric recording techniques, part A. Academic Press, New York San Francisco London, pp 137–163

    Google Scholar 

  • Snow PJ, Rose PK, Brown AG (1976) Tracing axons and axon collaterals of spinal neurons using intracellular injection of horseradish peroxidase. Science 191:312–313

    PubMed  CAS  Google Scholar 

  • Spinelli DN (1975) Silver-tipped metal microelectrodes: a new method for recording and staining single neurons. Brain Res 91:271–275

    PubMed  CAS  Google Scholar 

  • Steiner FA (1971) Neurotransmitter und Neuromodulatoren. Thieme, Stuttgart

    Google Scholar 

  • Steward O, Scoville SA (1976) Retrograde-labelling of central nervous pathways with tritiated or Evans-blue-labelled bovine serum albumin. Neurosci Lett 3:191–196

    PubMed  CAS  Google Scholar 

  • Straus W (1964) Factors affecting the cytochemical reaction of peroxidase with benzidine and the stability of the blue reaction-product. J Histochem Cytochem 12:462–469

    PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Hausen K (1977) The resolution of neuronal assemblies after cobalt injection into neuropil. Proc R Soc Lond [Biol] 199: 463–476

    Google Scholar 

  • Strausfeld NJ, Obermayer M (1976) Resolution of intraneuronal and transsynaptic migrations of cobalt in the insect visual and nervous system. J Comp Physiol 11:1–12

    Google Scholar 

  • Streit P, Reubi JC (1977) A new and sensitive staining method for axonally-transported horseradish peroxidase (HRP) in the pigeon visual system. Brain Res 126:530–537

    PubMed  CAS  Google Scholar 

  • Szekely C, Gallyas F (1975) Intensification of cobaltous sulphide-precipitate in frog nervous tissue. Acta Biol Acad Sci Hung 26:175–188

    PubMed  CAS  Google Scholar 

  • Székely C, Kosaras B (1976) Dendro-dendritic contacts between frog motoneurons shown with the cobalt-labelling technique. Brain Res 108:194–198

    PubMed  Google Scholar 

  • Thomas RC, Wilson VJ (1965) Precise localization of Renshaw cells with a new marking technique. Nature 206:211–213

    PubMed  CAS  Google Scholar 

  • Thomas RC, Wilson UJ (1966) Marking single neurons by staining with intracellular recording electrodes. Science 151:1538–1539

    PubMed  CAS  Google Scholar 

  • Timm F (1958) Zur Histochemie der Schwermetalle. Das Sulfid-Silberverfahren. Dtsch Z Gesamte Gerichtl Med 46:706–711

    PubMed  CAS  Google Scholar 

  • Tyrer NM, Bell EM (1974) The intensification of cobalt-filled neuron profiles using a modification of Timm’s sulphide-silver method. Brain Res 73:151–155

    PubMed  CAS  Google Scholar 

  • Vanegas H, Distel H, Holländer H (1978) Early stages of uptake and transport of horseradish peroxidase by cortical structures, and its use for the study of local neurons and their processes. J Comp Neurol 177:193–212

    PubMed  CAS  Google Scholar 

  • Wine JF, Hagiwara C (1977) Crayfish escape behavior. I. The structure of efferent and afferent neurons involved in abdominal extension. J Comp Physiol 121:145–172

    Google Scholar 

  • Wolbarsht ML, Macnichol EF, Wagner HG (1960) Glass-insulated platinum microelectrode. Science 132:1309–1310

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wässle, H., Hausen, K. (1981). Extracellular Marking and Retrograde Labelling of Neurons. In: Heym, C., Forssmann, WG. (eds) Techniques in Neuroanatomical Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68029-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68029-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68031-1

  • Online ISBN: 978-3-642-68029-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics