Somatomedin: Physiological Control and Effects on Cell Proliferation

  • D. R. Clemmons
  • J. J. Van Wyk
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 57)


The pituitary somatotropic hormone has long been believed to be the principal regulator of balanced growth in vivo since growth hormone deficient patients exhibit proportional dwarfism and patients with acromegaly undergo diffuse enlargement of their internal organs and soft tissues. Administration of growth hormone to pituitary dwarfs is followed by dramatic increases in both cell number and cell size (Cheek and Hill, 1974). Attempts to develop in vitro bioassays based on the supposed effects of growth hormone, however, made it apparent that the magnitude of the in vitro effects produced by growth hormone correlated poorly with its in vivo actions. While searching for an in vitro bioassay system, Salmon and Daughaday (1957) observed that growth hormone itself had no direct effect on cartilage metabolism, but that plasma from normal or growth hormone-treated hypophysectomized rats contained a growth hormone-inducible factor which directly stimulated sulfate uptake by this tissue. This serum factor, initially designatedcsul-fation factor,” subsequently was shown to consist of a family of closely related pep-tide growth factors which were given the generic designation “somatomedin” (Daughaday et al., 1972; Hall and Van Wyk, 1974). Although the somatomedins originally were postulated to mediate the anabolic effects of growth hormone only on skeletal tissue, they subsequently have been shown to promote cellular proliferation in a wide variety of cell types (Van Wyk and Underwood, 1978; Zapf et al., 1978 b). These substances now are believed to form a vital link between growth hormone and the stimulation of the metabolic processes leading to cellular proliferation.


Growth Hormone Platelet Poor Plasma Radioreceptor Assay Chick Embryo Fibroblast Multiplication Stimulate Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson, L.F., Anast, C.S.: Amino acid, potassium, and sulfate transport and incorporation by embryonic chick cartilage: the mechanism of the stimulatory effects of serum. Biochim. Biophys. Acta 121, 10–20 (1966).PubMedGoogle Scholar
  2. Almqvist, S., Rune, L: Studies on sulfation factor (SF) activity of human serum: the variation of serum SF with age. Acta Endocrinol. (Kbh.) 36, 566–576 (1961).Google Scholar
  3. Almqvist, S., Ikkos, D., Luft, R.: Studies on sulfation factor (SF) activity of human serum: the effects of oestrogen and X-ray therapy on serum SF activity in acromegaly. Acta Endocrinol. (Kbh.) 37, 138–147 (1961a).Google Scholar
  4. Almqvist, S., Ikkos, D., Luft, R.: Studies on sulfation factor (SF) activity of human serum: serum SF in hypopituitarism and acromegaly. Acta Endocrinol. (Kbh.) 36, 577–595 (1961b).Google Scholar
  5. Antoniades, H.N.: Studies on the state of insulin in blood: The state and transport of insulin in blood. Endocrinology 68, 7–16 (1961).PubMedGoogle Scholar
  6. Antoniades, H.N., Scher, C.D., Stiles, C.D.: Purification of human platelet derived growth factor. Proc. Natl. Acad. Sci. U.S.A. 79, 1809–1813 (1979).Google Scholar
  7. Ash, P., Francis, M.J.O.: Response of isolated rabbit articular and epiphyseal chondrocytes to rat liver somatomedin. J. Endocrinol. 66, 71–78 (1975).PubMedGoogle Scholar
  8. Ashton, T.K., Francis, M.J.O.: Response of chondrocytes isolated from human foetal cartilage to plasma somatomedin activity. J. Endocrinol. 76, 473–477 (1978).PubMedGoogle Scholar
  9. Atkinson, P.R., Weidman, E.R., Bhaumick, B., Bala, R.M.: Release of somatomedin-like activity by cultured WI-38 human fibroblasts. Endocrinology 106, 2006–2012 (1980).Google Scholar
  10. August, G.R., Cheng, R.R., Hung, W., Houck, J.C: Fibroblast proliferative activity in the sera of growth hormone deficient patients. Horm. Metab. Res. 5, 340–341 (1973).PubMedGoogle Scholar
  11. Bala, R.M., Bhaumick, B.: Radioimmunoassay of a basic somatomedin: Comparison of various assay techniques and somatomedin levels in various sera. J. Clin. Endocrinol. Metab. 49, 770–777 (1979).PubMedGoogle Scholar
  12. Bala, R.M., Wright, C, Bardai, A., Smith, G.R.: Somatomedin bioactivity in serum and amniotic fluid during pregnancy. J. Clin. Endocrinol. Metab. 46, 649–652 (1978).PubMedGoogle Scholar
  13. Beaton, G.R., Singh, V.: Age dependent variation in cartilage response to somatomedin. Pediatr. Res. 9, 683 (1975).Google Scholar
  14. Bhaumick, B., Bala, R.M.: Purification of a basic somatomedin from human plasma Cohn Fraction IV-1 with physicochemical and radioimmunoassay similarity to somatomedin-C and insulin-like growth factor. Can. J. Biochem. 57, 1289–1298 (1979).PubMedGoogle Scholar
  15. Blundell, T.L., Bedarkar, S., Rinderknecht, E., Humbel, R.E.: Insulin-like growth factor: A model for tertiary structure accounting for immunoreactivity and receptor binding. Proc. Natl. Acad. Sci. U.S.A. 75, 180–184 (1978).PubMedGoogle Scholar
  16. Bürgi, H., Müller, W.A., Humbel, R.E., Labhart, A., Froesch, E.R.: Non-suppressible insulin-like activity of human serum. I. Physicochemical properties, extraction and partial purification. Biochim. Biophys. Acta 121, 349–359 (1966).PubMedGoogle Scholar
  17. Burstein, P.J., Schalch, D.S., Heinrich, U.E., Johnson, C.J.: The effects of hypothyroidism on somatomedin IGF (insulin-like growth factor). Clin. Res. 26, 411A (1978).Google Scholar
  18. Burstein, P.J., Draznin, B., Johnson, C.J., Schalch, D.S.: The effect of hypothyroidism on growth, serum growth hormone and growth hormone dependent somatomedin, insulin-like growth factor, and its carrier protein in rats. Endocrinology 104, 1107–1111 (1979).PubMedGoogle Scholar
  19. Canalis, E., Raisz, L.G.: Effect of multiplication stimulating activity on bone formation in vitro. Presented to the 61st meeting of the Endocrine Society, Anaheim, California, June 18-21 (1979).Google Scholar
  20. Cheek, D.B., Hill, D.E.: The effect of growth hormone on cell and somatic growth. In: Handbook of physiology, Sect. 7: Endocrinology 4, part 2, pp. 159–186. Baltimore, Maryland: Williams and Wilkins Company 1974.Google Scholar
  21. Chesley, L.C.: Growth hormone activity in human pregnancy. I. Serum sulfation factor. Am. J. Obstet. Gynecol. 84, 1075–1080 (1962).PubMedGoogle Scholar
  22. Clemmons, D.R., Van Wyk, J.J.: Somatomedin-C and platelet derived growth factor stimulate human Fibroblast replication. J. Cell Physiol. 106, 361–367 (1981b).Google Scholar
  23. Clemmons, D.R., Hintz, R.L., Underwood, L.E., Van Wyk, J.J.: Common mechanism of action of somatomedin and insulin on fat cells: Further evidence. Isr. J. Med. Sci. 10, 1254–1262 (1974).PubMedGoogle Scholar
  24. Clemmons, D.R., Van Wyk, J.J., Ridgway, E.C., Kliman, B., Kjellberg, R.N., Underwood, L.E.: Evaluation of acromegaly by radioimmunoassay of somatomedin-C. New Engl. J. Med. 301, 1138–1142(1979).Google Scholar
  25. Clemmons, D.R., Underwood, L.E., Ridgway, E.G., Kliman, B., Kjellberg, R.N., Van Wyk, J.J.: Estradiol treatment of acromegaly: Reduction of immunoreactive somatomedin-C and improvement of metabolic status. Am. J. Med. 69, 571–575 (1980 a).Google Scholar
  26. Clemmons, D.R., Underwood, L.E., Van Wyk, J.J.: Hormonal control of immunoreactive somatomedin production by cultured human fibroblasts. J. Clin. Invest. 67, 10–17 (1981a).PubMedGoogle Scholar
  27. Clemmons, D.R., Van Wyk, J.J., Pledger, W.J.: Sequential addition of platelet factor and plasma to Balb/c 3 T 3 Fibroblast cultures stimulates somatomedin-C binding early in the cell cycle. Proc. Natl. Acad. Sci. U.S.A. 77, 6644–6648 (1980 b).Google Scholar
  28. Clemmons, D.R., Underwood, L.E., Ridgway, E.C., Kliman, B., Van Wyk, J.J.: Hyperpro-lactinemia is associated with increased immunoreative somatomedin-C in hypopituitarism. J. Clin. Endocrinol. Metab. 52, 731–735 (1981 c).Google Scholar
  29. Cohen, K.L., Nissley, S.P.: The serum half-life of somatomedin activity: evidence for growth hormone dependence. Acta Endocrinol. (Kbh.) 83, 243–258 (1976).Google Scholar
  30. Copeland, K.C., Underwood, L.E., Van Wyk, J.J.: Induction of immunoreactive somatomedin-C in human serum by growth hormone: dose response relationships and effect on Chromatographie profiles. J. Clin. Endocrinol. Metab. 50: 690–697 (1980).Google Scholar
  31. Daughaday, W.H., Kapadia, M.: Maintenance of serum somatomedin activity in hypoph-ysectomized pregnant rats. Endocrinology 102, 1317–1320 (1978).PubMedGoogle Scholar
  32. Daughaday, W.H., Kipnis, D.M.: The growth promoting and anti-insulin actions of somatotropin. Recent Prog. Horm. Res. 22, 49–99 (1966).PubMedGoogle Scholar
  33. Daughaday, W.H., Mariz, I.K.: Conversion of proline-C14 to labeled hydroxyproline by rat cartilage in vitro: effects of hypophysectomy, growth hormone, and Cortisol. J. Lab. Clin. Med. 59, 741–752 (1962).PubMedGoogle Scholar
  34. Daughaday, W.H., Reeder, C.: Synchronous activation of DNA synthesis in hypophysec-tomized rat cartilage by growth hormone. J. Lab. Clin. Med. 68, 357–368 (1966).PubMedGoogle Scholar
  35. Daughaday, W.H., Salmon, W.D. Jr., Alexander, F.: Sulfation factor activity of sera from patients with pituitary disorders. J. Clin. Endocrinol. Metab. 19, 743–758 (1959).PubMedGoogle Scholar
  36. Daughaday, W.H., Heins, J.N., Srivastava, L., Hammer, C: Sulfation factor: studies of its removal from plasma and metabolic fate in cartilage. J. Lab. Clin. Med. 72, 803–812 (1968).PubMedGoogle Scholar
  37. Daughaday, W.H., Hall, K., Raben, M.S., Salmon, W.D. Jr., Brande, J.L. van den, Van Wyk, J.J.: Somatomedin: Proposed designation for sulphation factor. Nature 235, 107 (1972).Google Scholar
  38. Daughaday, W.H., Herington, A.C., Phillips, L.S.: The regulation of growth by endocrines. Annu. Rev. Physiol. 37, 211–244 (1975 a).Google Scholar
  39. Daughaday, W.H., Phillips, L.S., Herington, A.C.: Measurement of somatomedin by cartilage in vitro. Methods Enzymol. 37 B, 93–109 (1975 b).Google Scholar
  40. Daughaday, W.H., Phillips, L.S., Mueller, M.C.: The effects of insulin and growth hormone on the release of somatomedin by the isolated rat liver. Endocrinology 98, 1214–1219 (1976).PubMedGoogle Scholar
  41. Daughaday, W.H., Mariz, I.K., Daniels, J.S., Jacobs, J.W., Rubin, J.S., Bradshaw, R.A.: Studies on rat somatomedin. In: Somatomedins and growth. Giordano, G., Van Wyk, J.J., Minuto, F. (eds.) New York: Academic Press 1979.Google Scholar
  42. D’Ercole, A.J., Foushee, D.B., Underwood, L.E.: Somatomedin-C receptor ontogeny and levels in porcine fetal and human cord serum. J. Clin. Endocrinol. Metab. 43, 1069–1077 (1976a).PubMedGoogle Scholar
  43. D’Ercole, A.J., Underwood, L.E., Van Wyk, J.J., Decedue, C.J., Foushee, D.B.: Specificity, topography, and ontogeny of the somatomedin receptor in mammalian tissues. In: Growth Hormone and Related Peptides, pp. 190–201. Amsterdam: Excerpta Medica 1976b.Google Scholar
  44. D’Ercole, A.J., Underwood, L.E., Van Wyk, J.J.: Serum somatomedin-C in hypopituitarism and in other disorders of growth. J. Pediatr. 90, 375–381 (1977).PubMedGoogle Scholar
  45. D’Ercole, A.J., Applewhite, G.T., Underwood, L.E.: Evidence that somatomedin is synthesized by multiple target tissues in the fetus. Dev. Biol. 75, 315–328 (1980).PubMedGoogle Scholar
  46. DeLarco, J.E., Todaro, G.J.: A human fibrosarcoma cell line producing multiplication stimulating activity (MSA)-related peptides. Nature 272, 356–385 (1978).Google Scholar
  47. Draznin, B., Burnstein, DJ., Johnson, C.J., Emier, C.A., Schalch, D.S.: Effect of hypopitui-tarism and hypothyroidism on insulin-like growth factor and its carrier protein. Presented at the 60th meeting of the Endocrine Society, Miami, Florida, June 14-16 (1978).Google Scholar
  48. Dulak, N.C., Temin, H.M.: A partially purified Polypeptide fraction from rat liver cell conditioned medium with multiplication stimulating activity for embryo fibroblasts. J. Cell Physiol. 81, 153–160 (1973 a).Google Scholar
  49. Dulak, N.C., Temin, H.M.: Multiplication stimulating activity for chicken embryo fibroblasts from rat liver cell conditioned medium: a family of small Polypeptides. J. Cell Physiol. 81, 161–170 (1973 b).Google Scholar
  50. Eisenbarth, G.S., Lebovitz, H.E.: Isolation and characterization of a serum inhibitor of cartilage metabolism. Endocrinology 95, 1600–1607 (1974).PubMedGoogle Scholar
  51. Eisenbarth, G.S., Beuttel, S.C., Lebovitz, H.E.: Fatty acid inhibition of somatomedin (serum sulfation factor) stimulated protein and RNA synthesis in embryonic chicken cartilage. Biochim. Biophys. Acta 331, 397–409 (1973).PubMedGoogle Scholar
  52. Elders, M.J., Wingfield, B.S., McNatt, M.L., Clarke, J.S., Hughes, E.R.: Glucocorticoid therapy in children: effect on somatomedin secretion. Am. J. Dis. Child 729, 1393–1396 (1975).Google Scholar
  53. Elders, M.J., McNatt, M.L., Kilgore, B.S., Hughes, E.R.: Glucocorticoid inhibition of gly-cosaminoglycan biosynthesis: Decrease of acceptor protein. Biochem. Biophys. Res. Commun. 77, 557–565 (1977).PubMedGoogle Scholar
  54. Ellis, S., Huble, J., Simpson, M.E.: Influence of hypophysectomy and growth hormone on cartilage sulfate metabolism. Proc. Soc. Exp. Biol. Med. 84, 603–605 (1953).PubMedGoogle Scholar
  55. Florini, J.R., Nicholson, M.L., Dulak, N.C.: Effects of peptide anabolic hormones on growth of myoblasts in culture. Endocrinology 101, 32–41 (1977).PubMedGoogle Scholar
  56. Froesch, E.R., Bürgi, H., Ramseier, E.B., Bally, P., Labhart, A.: Antibody suppressible and non-suppressible insulin-like activities in human serum and their physiologic significance. J. Clin. Invest. 42, 1816–1834 (1963).PubMedGoogle Scholar
  57. Froesch, E.R., Müller, W.A., Bürgi, H., Waldvogel, M., Labhart, A.: Nonsuppressible insulin-like activity of human serum. II. Biological properties of plasma extracts with nonsuppressible insulin-like activity. Biochim. Biophys. Acta 121, 360–374 (1966).PubMedGoogle Scholar
  58. Froesch, E.R., Zapf, J., Audhya, T.K., Ben-Porath, E., Segen, B.J., Gibson, K.D.: Nonsuppressible insulin-like activity and thyroid hormones: major pituitary-dependent sulfation factors for chick embryo cartilage. Proc. Natl. Acad. Sci. U.S.A. 73, 2904–2908 (1976).PubMedGoogle Scholar
  59. Fryklund, L., Uthne, K., Sievertsson, H.: Identification of two somatomedin-A active poly-peptides and in vivo effects of a somatomedin-A concentrate. Biochem. Biophys. Res. Commun. 61, 957–962 (1974).PubMedGoogle Scholar
  60. Fryklund, L., Skottner, A., Forsman, A.: Somatomedin A and B: Chemistry and Biology. In: Giordano, G., Van Wyk, J.J., Minuto, F. (eds.), pp. 7–17. Somatomedins and growth. New York: Academic Press 1979.Google Scholar
  61. Furlanetto, R.W.: Somatomedin-C binding protein: Evidence for a heterologous subunit structure. J. Clin. Endocrinol. Metab. 51, 12–19 (1980).PubMedGoogle Scholar
  62. Furlanetto, R.W., Underwood, L.E., Van Wyk, J.J., D’Ercole, A.J.: Estimation of somatomedin-C levels in normals and patients with pituitary disease by radioim-munoassay. J. Clin. Invest. 60, 648–657 (1977).PubMedGoogle Scholar
  63. Furlanetto, R.W., Underwood, L.E., Van Wyk, J.J., Handwerger, S.: Serum immunoreac-tive somatomedin-C is elevated late in pregnancy. J. Clin. Endocrinol. Metab. 47, 695–697 (1979).Google Scholar
  64. Ginsberg, B.H., Kahn, CR., Roth, J., Megyesi, K., Baumann, G.: Identification and high yield purification of insulin-like growth factors (nonsuppressible insulin-like activities and somatomedins) from human plasma by use of endogenous binding proteins. J. Clin. Endocrinol. Metab. 48, 43–49 (1979).PubMedGoogle Scholar
  65. Gospodarowicz, D., Moran, J.J.: Stimulation of division of sparse and confluent 3T3 cell populations by a fibroblast growth factor, dexamethasone and insulin. Proc. Natl. Acad. Sci. U.S.A. 71, 4584–4588 (1974).PubMedGoogle Scholar
  66. Grant, D.B., Hambley, J., Becker, D., Pimstone, B.L.: Reduced sulphation factor in undernourished children. Arch. Dis. Child. 48, 596–600 (1973).PubMedGoogle Scholar
  67. Guyda, H., Posner, B., Rappaport, R.: Growth hormone (GH) and prolactin (PRL) dependence of somatomedin determined by radioreceptor assay (RRA) and bioassay (SM). Clin. Res. 25, 681A (1977).Google Scholar
  68. Guyda, HJ., Corvol, M.T., Rappaport, R., Posner, B.I.: Radioreceptor assay of insulin-like peptide in human plasma: Growth hormone dependence and correlation with sulfation activity by two bioassays. J. Clin. Endocrinol. Metab. 79, 739–747 (1979).Google Scholar
  69. Hakim, E.: Isolation of a growth stimulating agent from human fibroblast cultures. Experimentia 34, 1515–1517 (1978).Google Scholar
  70. Hall, K.: Quantitative determination of the sulphation factor activity in human serum. Acta Endocrinol. (Kbh.) 63, 338–350 (1970).Google Scholar
  71. Hall, K.: Effect of intravenous administration of human growth hormone on sulphation factor activity in serum of hypopituitary subjects. Acta Endocrinol. (Kbh.) 66, 491–497 (1971).Google Scholar
  72. Hall, K.: Human somatomedin determination, occurence, biological activity, and purification. Acta Endocrinol. Suppl. 163, 1–52 (1972).Google Scholar
  73. Hall, K., Uthne, K.: Some biological properties of purified sulfation factor (SF) from human plasma. Acta Med. Scand. 190, 137–143 (1971).PubMedGoogle Scholar
  74. Hall, K., Uthne, K.: Human growth hormone and sulfation factor. in: Growth and growth hormone. Pecile, A., Mueller, E. (eds.), pp. 192–198. Amsterdam: Excerpta Medica 1972.Google Scholar
  75. Hall, K., Van Wyk, J.J.: Somatomedin. in: Current topics in experimental endocrinology. James, V.H., Martin, L. (eds.), vol.2, pp. 156–178. New York: Academic Press 1974.Google Scholar
  76. Hall, K., Brandt, J., Engerg, G., Fryklund, L.: Immunoreactive somatomedin-A in human serum. J. Clin. Endocrinol. Metab. 48, 271–278 (1979).PubMedGoogle Scholar
  77. Hassalbacher, G.F., Humbel, R.E.: Stimulation of Ornithine decarboxylase activity in chick embryo fibroblasts by nonsuppressible insulin-like activity, insulin and serum. J. Cell. Physiol. 88, 239–245 (1976).Google Scholar
  78. Heaton, J.H., Schilling, E.E., Gelehiter, T.D., Rechler, M.M., Spencer, C.J., Nissley, S.P.: Induction of tyrosine aminotransferase in HTC rat hepatoma cells by insulin and insulin-like growth factor MSA: Mediation by insulin receptors and MSA receptors. BBA 632, 198–203 (1980).Google Scholar
  79. Heinrich, W.E., Schalch, D.R., Koch, J.G., Johnson, C.J.: Nonsuppressible insulin-like activity (NSILA) II. Rgulation of serum concentrations by growth hormone and insulin. J. Clin. Endocrinol. Metab. 46, 672–678 (1978).PubMedGoogle Scholar
  80. Heins, J.N., Garland, J.T., Daughaday, W.H.: Incorporation of 35S-sulfate into rat cartilage expiants in vitro: effects of aging on responsiveness to stimulation by sulfation factor. Endocrinology 87, 688–692 (1970).PubMedGoogle Scholar
  81. Hintz, R.L., Liu, F.: Demonstration of specific plasma protein binding sites for somatomedin. J. Clin. Endocrinol. Metab. 45, 988–995 (1977).PubMedGoogle Scholar
  82. Hintz, R.L., Clemmons, D.R., Underwood, L.E., Van Wyk, J.J.: Competitive binding of somatomedin to the insulin receptors of adipocytes, chondrocytes, and liver membranes. Proc. Natl. Acad. Sci. U.S.A. 69, 2351–2353 (1972a).PubMedGoogle Scholar
  83. Hintz, R.L., Clemmons, D.R., Van Wyk, J.J.: Growth hormone induced somatomedin-like activity from liver. Pediatr. Res. 6, 88 (1972 b).Google Scholar
  84. Hintz, R.L., Seeds, J.M., Johnsonbaugh, R.E.: Somatomedin and growth hormone in the newborn. Am. J. Dis. Child. 131, 1249–1251 (1977).PubMedGoogle Scholar
  85. Hintz, R.L., Suskind, R., Amatayakul, K., Thanangkul, O., Olson, R.: Plasma somatomedin and growth hormone values in children with protein-caloric malnutrition. J. Pediatr. 92, 153–156 (1978).PubMedGoogle Scholar
  86. Hintz, R.L., Liu, F., Marshall, L.B., Chang, L.: Interaction of somatomedin-C with antibody directed against the synthetic C-peptide region of insulin-like growth factor I. J. Clin. Endocrinol. Metab. 50, 405–407 (1980).PubMedGoogle Scholar
  87. Holley, R.W., Kiernan, J.A.: Control of the initiation of DNA synthesis in 3 T 3 cells: serum factors. Proc. Natl. Acad. Sci. U.S.A. 71, 2908–2911 (1974).Google Scholar
  88. Horner, J.M., Hintz, R.L.: Further comparisons of the 125I-somatomedin-A and the 125I-somatomedin-C radioreceptor assays of somatomedin peptide. J. Clin. Endocrinol. Metab. 48, 959–963 (1979).PubMedGoogle Scholar
  89. Horner, J.M., Liu, F., Hintz, R.L.: Comparison of 125I-somatomedin-A and 125I-somatomedin-C radioreceptor assays for somatomedin peptide content in whole and acid-chromatographed plasma. J. Clin. Endocrinol. Metab. 47, 1287–1295 (1978).PubMedGoogle Scholar
  90. Hurley, T.W., D’Ercole, A.J., Handwerger, S., Underwood, L.E., Furlanetto, R.W., Fellows, R.E.: Ovine placental lactogen induces somatomedin: a possible role in fetal growth. Endocrinology 101, 1635–1638 (1977).PubMedGoogle Scholar
  91. Hutchings, S.E., Sato, G.H.: Growth and maintenance of HeLa cells in serum-free medium supplemented with hormones. Proc. Natl. Acad. Sci. U.S.A. 75, 901–904 (1978).PubMedGoogle Scholar
  92. Jacobs, J.W., Rubin, J.S., Hoagli, T.E., Bogardt, R.A., Mariz, I.K., Daniels, J.J., Daugha-day, W.H., Bradshaw, R.A.: Purification, characterization and amino acid sequence of rat anaphylatoxin (C-3a). Biochemistry 17, 5031–5038 (1978).PubMedGoogle Scholar
  93. Jakob, A., Hauri, C.H., Froesch, E.R.: Nonsuppressible insulin-like activity in human serum. III. Differentiation of two distinct molecules with nonsuppressible ILA. J. Clin. Invest. 47, 2678–2688 (1968).PubMedGoogle Scholar
  94. Kaufmann, U., Zapf, J., Torretti, B., Froesch, E.R.: Demonstration of a specific serum carrier protein of nonsuppressible insulin-like activity in vivo. J. Clin. Endocrinol. Metab. 44, 160–166 (1977).PubMedGoogle Scholar
  95. Kaufmann, U., Zapf, J., Froesch, E.R.: Growth hormone dependence of nonsuppressible insulin-like activity (NSILA) and of NSILA-carrier protein in rats. Acta Endocrinol. (Kbh.) 87, 716–727 (1978).Google Scholar
  96. Keret, R., Schimpff, R.M., Girard, F.: The inhibitory effect of hydrocortisone on the chicken embryo cartilage somatomedin assay. Horm. Res. 7, 254–259 (1976).PubMedGoogle Scholar
  97. Kilgore, B.S., McNatt, M.L., Meadors, S., Leex, J.A., Hughes, E.R., Elders, M.J.: Alterations of glycosaminoglycan protein acceptor by somatomedin and inhibition by cor-tisol. Pediatr. Res. 13, 96–99 (1979).PubMedGoogle Scholar
  98. King, G.L., Kahn, CR., Rechler, M.M., Nissley, S.P.: Direct demonstration of separate receptors for growth and metabolic activities of insulin and insulin-like growth factors in rat adipocytes and human fibroblasts. J. Clin. Invest. 66, 130–140 (1980).PubMedGoogle Scholar
  99. Koumans, J., Daughaday, W.H.: Amino acid requirement for activity of partially purified sulfation factor. Trans. Assoc. Am.Physicians 76, 152–172 (1963).Google Scholar
  100. Lebovitz, H.E., Drezner, M.K., Neelon, F.A.: Evidence for a role of adenosine 3′5′-mono-phosphate in growth hormone-dependent serum sulfation factor (somatomedin) action on cartilage. in: Growth hormone and related peptides. Pecile, A., Mueller, E. (eds.), pp. 202–215. Amsterdam: Excerpta Medica 1976.Google Scholar
  101. Liberti, J.P.: Purification of bovine somatomedin. Biochem. Biophys. Res. Commun. 67, 1226–1231 (1975).PubMedGoogle Scholar
  102. Liberti, J.P., Miller, M.S.: The purification and partial characterization of human somatomedin-C. J. Biol. Chem. 255, 1023–1033 (1980).PubMedGoogle Scholar
  103. Marshall, R.N., Underwood, L.E., Voina, S.J., Foushee, D.B., Van Wyk, J.J.: Characterization of the insulin and somatomedin-C receptors in human placental cell membranes. J. Clin. Endocrinol. Metab. 39, 283–292 (1974).PubMedGoogle Scholar
  104. McConaghey, P., Sledge, C.B.: Production of “sulphation factor” by the perfused liver. Nature 225, 1249–1250 (1970).PubMedGoogle Scholar
  105. Megyesi, K., Kahn, CR., Roth, J. et al.: Insulin and nonsuppressible insulin-like activity (NSILA-s): evidence for separate plasma membrane receptor sites. Biochem. Biophys. Res. Commun. 57, 307–315 (1974).PubMedGoogle Scholar
  106. Megyesi, K., Kahn, C.R., Roth, J., Gorden, P.: Circulating NSILA-s in man: Preliminary studies of stimuli in vivo and of binding to plasma components. J. Clin. Endocrinol. Metab. 41, 475–484 (1975).PubMedGoogle Scholar
  107. Megyesi, K., Gordon, P.H., Kahn, CR.: Lack of a simple relationship between endogenous growth hormone and NSILA-s related peptides. J. Clin. Endocrinol. Metab. 45, 330–338 (1977).PubMedGoogle Scholar
  108. Meuli, C., Froesch, E.R.: Effects of insulin and of NSILA-s on the perfused rat heart: glucose uptake, lactate production and efflux of 3-O-methyl glucose. Eur. J. Clin. Invest. 5, 93–99 (1975).Google Scholar
  109. Meuli, C, Froesch, E.R.: Binding of insulin and nonsuppressible insulin-like activity to isolated perfused rat heart muscle: Evidence for two separate binding sites. Arch. Biophys. Biochem. 777, 31–38 (1976).Google Scholar
  110. Meuli, C, Zapf, J., Froesch, E.R.: NSILA-carrier protein abolishes the action of nonsuppressible insulin-like activity (NSILA-s) on perfused rat heart. Diabetologia 14, 255–259 (1978).PubMedGoogle Scholar
  111. Millis, A.J., Hoyle, M., Field, B.: Human fibroblast conditioned media contains growth promoting activities for low density cells. J. Cell Physiol. 93, 17–24 (1978).Google Scholar
  112. Minuto, F., Grimaldi, P., Giusti, M., Baiardi, M., Cocco, R., Giordano, G.: Study of somatomedin-C and growth hormone circadian secretion. in: Somatomedins and growth. Giordano, G., Van Wyk, J.J., Minuto, F. (eds.), pp. 285–288. New York: Academic Press 1979.Google Scholar
  113. Morrell, B., Froesch, E.R.: Fibroblasts as an experimental tool in metabolic and hormone studies. II. Effects of insulin and nonsuppressible insulin-like activity (NSILA-s) on fibroblasts in culture. Eur. J. Clin. Invest. 3, 119–123 (1973).Google Scholar
  114. Moses, A.C., Nissley, S.P., Cohen, K.L., Rechler, M.M.: Specific binding of a somatomedin-like Polypeptide in rat serum depends on growth hormone. Nature 263, 137–140 (1976).PubMedGoogle Scholar
  115. Moses, A.C., Cohen, K.L., Johnsonbaugh, R., Nissley, S.P.: Contribution of human somatomedin activity to the serum growth requirement of human skin fibroblasts and chick embryo fibroblasts in culture. J. Clin. Endocrinol. Metab. 46, 937–946 (1978).PubMedGoogle Scholar
  116. Moses, A.C., Nissley, S.P., Passamani, J., White, R.M.: Further characterization of growth hormone dependent somatomedin binding proteins in rat serum and demonstration of somatomedin binding proteins produced by rat liver cells in culture. Endocrinology 104, 536–546 (1979 a).Google Scholar
  117. Moses, A.C., Nissley, S.P., Rechler, M.M., Short, P.A., Podskalny, J.M.: The purification and characterization of multiplication stimulating activity (MSA) from media conditioned by a rat liver cell line. In: Somatomedins and growth. Giordano, G., Van Wyk, J.J., Minuto, F. (eds.). London: Academic Press 1979 b.Google Scholar
  118. Moses, A.C., Nissley, S.P., Short, P.A., Rechler, M.M.: Purification and characterization of multiplication stimulating activity, insulin-like growth factors purified from rat liver cell conditioned medium. Eur. J. Biochem. 103, 387–400 (1980 a).Google Scholar
  119. Moses, A.C., Nissley, S.P., Short, P.A., Rechler, M.M., White, R.M., Knight, A.B., Higa, O.Z.: Elevated levels of insulin-like growth factor, multiplication stimulating activity in fetal rat serum. Proc. Natl. Acad. Sci. U.S.A. 77, 3649–3653 (1980b).PubMedGoogle Scholar
  120. Nissley S.P., Rechler, M.M.: Multiplication stimulating activity (MSA): A somatomedin-like Polypeptide from cultured rat liver cells. In: Decennial Review Conference in Cell, Tissue and Organ Cultures, NCI Monograph No. 48, pp. 167-178 (1977).Google Scholar
  121. Nissley, S.P., Passamani, J., Short, P.: Stimulation of DNA synthesis, cell multiplication and Ornithine decarboxylase in 3 T 3 cells by multiplication stimulating activity (MSA). J. Cell Physiol. 89, 393–402 (1977a).Google Scholar
  122. Nissley, S.P., Short, P.A., Rechler, M.M., Podskalny, J.M.: Proliferation of buffalo rat liver cells in serum from medium does not depend upon multiplication stimulating activity (MSA). Cell 11, 441–446 (1977b).PubMedGoogle Scholar
  123. Oelz, O., Jakob, A., Froesch, E.R.: Nonsuppressible insulin-like activity (NSILA) of human serum. V. Hypoglycaemia and preferential metabolic stimulation of muscle by NSILA-s. Eur. J. Clin. Invest. 1, 48–53 (1970).PubMedGoogle Scholar
  124. Oelz, O., Froesch, E.R., Bunzli, H.F., Humbel, R.E., Ritschard, W.J.: Antibody-suppress-ible and nonsuppressible insulin-like activities. in: Handbook of physiology. Steiner, D.F., Freinkel, N. (eds.), Sect.7, vol.7, pp.685–702. Baltimore: Williams & Wilkins (1972).Google Scholar
  125. Pantazis, N.J., Blanchard, M.H., Aranson, B.G., Young, M.: Molecular properties of nerve growth factor secreted by L cells. Proc. Natl. Acad. Sci. U.S.A. 74, 1492–1496 (1977).PubMedGoogle Scholar
  126. Parker, M.L., Daughaday, W.H.: Growth retardation: correlation of plasma GH responses to insulin and arginine with subsequent metabolic and skeletal responses to GH treatment. in: Growth hormone and related peptides. Pecile, A., Muller, E.E. (eds.), pp. 398–407. Amsterdam: Excerpta Medica 1968.Google Scholar
  127. Phillips, L.S., Daughaday, W.H.: Bioassay of somatomedin. In: James VHT, ed. Endocrinology: Proceedings of the V International Congress of Endocrinology, vol.2, pp. 150–161. Amsterdam: Excerpta Medica (1977).Google Scholar
  128. Phillips, L.S., Young, H.S.: Nutrition and somatomedin. I. Effects of fasting and refeeding on serum somatomedin activity and cartilage growth activity in rats. Endocrinology 99, 304–314 (1976).PubMedGoogle Scholar
  129. Phillips, L.S., Herington, A.c., Daughaday, W.H.: Somatomedin stimulation of sulfate incorporation in porcine costal cartilage discs. Endocrinology 94, 856–863 (1974).PubMedGoogle Scholar
  130. Phillips, L.S., Herington, A.C., Daughaday, W.H.: Steroid hormone effects on somatomedin. I. Somatomedin action in vitro. Endocrinology 97, 780–786 (1975).Google Scholar
  131. Phillips, L.S., Herington, A.C., Karl, I.E., Daughaday, W.H.: Comparison of somatomedin activity in perfusates of normal and hypophysectomized rat livers with and without added growth hormone. Endocrinology 98, 606–614 (1976).PubMedGoogle Scholar
  132. Phillips, L.S., Orawski, A.T., Belosky, D.C.: Somatomedin and nutrition. IV. Regulation of somatomedin activity and growth cartilage activity by quantity and composition of diet in rats. Endocrinology 103, 121–127 (1978).PubMedGoogle Scholar
  133. Phillips, L.S., Belosky, D.C., Young, H.S., Reichard, L.A.: Nutrition and somatomedin. VI. Somatomedin activity and somatomedin inhibitory activity in serum from normal and diabetic rats. Endocrinology 104, 1519–1524 (1979).PubMedGoogle Scholar
  134. Pierson, R.W. Jr., Temin, H.M.: The partial purification from calf serum of a fraction with multiplication stimulating activity for chicken fibroblasts in cell culture and with nonsuppressible insulin-like activity. J. Cell Physiol. 79, 319–329 (1972).PubMedGoogle Scholar
  135. Pimstone, B., Shapiro, B.: Somatomedin in human and experimental protein energy malnutrition. in: Somatomedins and growth. Giordano, G., Van Wyk, J.J., Minuto, F. (eds.), pp. 325–328. New York: Academic Press 1979.Google Scholar
  136. Pledger, W.J., Stiles, C.D., Antoniades, H.N., Scher, C.D.: Induction of DNA synthesis in Balb/c 3 T 3 cells by serum components: a reevaluation of the commitment process. Proc. Natl. Acad. Sci. U.S.A. 74, 4481–4487 (1977).PubMedGoogle Scholar
  137. Pledger, W.J., Stiles, C.D., Antoniades, H.N., Scher, C.D.: An ordered sequence of events is required before Balb/c 3 T 3 cells become committed to DNA synthesis. Proc. Natl. Acad. Sci. U.S.A. 75, 2839–2843 (1978).PubMedGoogle Scholar
  138. Poggi, C., LeMarchard-Brustel, Y., Zapf, J., Froesch, E.R., Freychet, P.: Effects and binding of insulin-like growth factor I in isolated soleus muscle of lean and obese mice: Comparison with insulin. Endocrinology 105, 723–730 (1979).PubMedGoogle Scholar
  139. Posner, B.I., Guyda, H.J., Corvol, M.T., Rappaport, R., Harley, C., Goldstein, S.: Partial purification, characterization, and assay of a slightly acicid insulin-like peptide (ILAs) from human plasma. J. Clin. Endocrinol. Metab. 47, 1240–1250 (1978).PubMedGoogle Scholar
  140. Postel-Vinay, M.C., Guyda, H., Posner, B., Corvol, M.T.: Production of insulin-like activity (ILAs) by rat hepatocytes in short term culture. in: Somatomedins and growth. Giordano, G., Van Wyk, J.J., Minuto, F. (eds.), pp. 111–118. New York: Academic Press 1979.Google Scholar
  141. Rechler, M.M., Podskalny, J.M., Goldfine, I.D.: DNA synthesis in human fibroblasts: stimulation by insulin and nonsuppressible insulin-like activity (NSILAs). J. Clin. Endocrinol. Metab. 39, 512–521 (1975).Google Scholar
  142. Rechler, M.M., Podskalny, J.M., Nissley, S.P.: Interaction of multiplication stimulating activity with chick embryo fibroblasts demonstrates a growth receptor. Nature 259, 134–136 (1976).PubMedGoogle Scholar
  143. Rechler, M.M., Nissley, S.P., Podskalny, J.M., Moses, A.C., Fryklund, L.: Identification of a receptor for somatomedin-like Polypeptides in human fibroblasts. J. Clin. Endo-crinol. Metab. 44, 820–831 (1977a).Google Scholar
  144. Rechler, M.M., Podskalny, J.M., Nissley, S.P.: Characterization of the binding of multiplication stimulating activity to a receptor for growth Polypeptides in chick embryo fibroblasts. J. Biol. Chem. 252, 3898–3910 (1977b).PubMedGoogle Scholar
  145. Rechler, M.M., Fryklund, L., Nissley, S.P., Hall, K., Podskalny, J.M., Skottner, A., Moses, A.C.: Purified human somatomedin-A and rat multiplication stimulating activity: mito-gens for cultured fibroblasts that crossreact with the same growth peptide receptors. Eur. J. Biochem. 82, 5–12 (1978).PubMedGoogle Scholar
  146. Rechler, M.M., Eisen, HJ., Higa, O.Z., Nissley, S.P., Moses, A.C., Shilling, E.E., Fernoy, I., Bruni, C.B., Phillips, L.S., Baird, K.L.: Characterization of somatomedin (insulin-like growth factor) synthesized by fetal rat organ cultures. J. Biol. Chem. 254, 7942–7950 (1979).PubMedGoogle Scholar
  147. Rendall, J.L., Dechler, H.K., Lebovitz, H.L.: Cyclic 3′5′ Adenosine monophosphate inhibition of sulfation factor activity. Biochem. Biophys. Res. Commun. 46, 1425–1429 (1972).PubMedGoogle Scholar
  148. Renner, R., Hepp, K.D., Humbel, R.F., Froesch, E.R.: Mechanism of antilipolytic action of NSILA-s: Inhibition of adenylate cyclase in lipocyte ghosts. Hormone Metab. Res. 5, 56–57 (1973).Google Scholar
  149. Rinderknecht, E., Humbel, R.E.: Polypeptides with non-suppressible insulin-like and cell growth promoting activities in human serum: Isolation, chemical characterization, and some biological properties of forms I and II. Proc. Natl. Acad. Sci. U.S.A. 73, 2365–2369 (1976 a).Google Scholar
  150. Rinderknecht, E., Humbel, R.E.: Amino terminal sequences of two Polypeptides from human serum with non-suppressible insulin-like and cell growth-promoting activities: Evidence for structural homology with insulin B chain. Proc. Natl. Acad. Sci. U.S.A. 73, 4379–4381 (1976b).PubMedGoogle Scholar
  151. Rinderknecht, E., Humbel, R.E.: The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 253, 2769–2776 (1978 a).Google Scholar
  152. Rinderknecht, E., Humbel, R.E.: Primary structure of human insulinlike growth factor II. FEBS Letters 89, 283–286 (1978 b).Google Scholar
  153. Rothstein, H., Van Wyk, J.J., Hayden, J.H., Gordon, S.R., Weinseider, A.R.: An in vivo study with somatomedin-C: Restoration of cycle traverse in G0/G1 blocked cells of hy-pophysectomized animals. Science 208, 410–412 (1980).PubMedGoogle Scholar
  154. Rutherford, R.B., Ross, R.: Platelet factors stimulate fibroblasts and smooth muscle cells quiescent in plasma serum to proliferate. J. Cell Biol. 69, 196–202 (1976).PubMedGoogle Scholar
  155. Salmon, W.D. Jr.: Effects of somatomedin on cartilage metabolism: further observations on an inhibitory serum factor. In: Raiti, S. (ed.), Advances in human growth hormone research. Washington, D.C.: Government Printing Office, pp. 76–97 [DHEW publication no. (NIH) 74-612] 1974.Google Scholar
  156. Salmon, W.D. Jr.: Interaction of somatomedin and a peptide inhibitor in serum of hypoph-ysectomized and starved, pituitary-intact rats. Adv. Metab. Disord. 8, 183–199 (1975).PubMedGoogle Scholar
  157. Salmon, W.D. Jr., Daughaday, W.H.: A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J. Lab. Clin. Med. 49, 825–836 (1957).PubMedGoogle Scholar
  158. Salmon, W.D. Jr., Du Vall, M.R.: A serum fraction with “sulfation factor activity” stimulates in vitro incorporation of leucine and sulfate into proteinpolysaccharide complexes, uridine into RNA and thymidine into DNA of costal cartilage from hypophysectomized rats. Endocrinology 86, 721–727 (1970 a).Google Scholar
  159. Salmon, W.D. Jr., Du Vall, M.R.: In vitro stimulation of leucine incorporation into muscle and cartilage protein by a serum fraction with sulfation factor activity: differentiation of effects from those of growth hormone and insulin. Endocrinology 87, 1168–1180 (1970 b).Google Scholar
  160. Salmon, W.D. Jr., Hagen, M.J. von, Thompson, E.Y.: Effects of puromycin and actinomy-cin in vitro on sulfate incorporation by cartilage of the rat and its stimulation by serum sulfation factor and insulin. Endocrinology 80, 999–1005 (1967).PubMedGoogle Scholar
  161. Salmon, W.D. Jr., Du Vall, M.R., Thompson, E.Y.: Stimulation by insulin in vitro of incorporation of [35S] sulfate and [14C] leucine into protein-polysaccharide complexes, [3H] uridine into RNA, and [3H] thymidine into DNA of costal cartilage from hypophysec-tomized rats. Endocrinology 82, 493–499 (1968).PubMedGoogle Scholar
  162. Samaan, N.A., Dempster, W.J., Fraser, R., Please, N.W., Stillman, D.: Further immuno-lpgical studies on the form of circulating insulin. J. Endocrinol. 24, 263–277 (1962).PubMedGoogle Scholar
  163. Schalch, D.S., Heinrich, U.E., Koch, J.G., Johnson, C.J., Schlueter, R.J.: Nonsuppressible insulin-like activity (NSILA). I. Development of a new sensitive competitive protein-binding assay for determination of serum levels. J. Clin. Endocrinol. Metab. 46, 664–671 (1978).PubMedGoogle Scholar
  164. Schalch, D.S., Heinrich, U.E., Draznin, B., Johnson, C.J., Miller, L.L.: Role of the liver in regulating somatomedin activity: Hormonal effects on the synthesis and release of insulin-like growth factor and its carrier protein by the isolated perfused rat liver. Endocrinology 104, 1143–1151 (1979).PubMedGoogle Scholar
  165. Schimpff, R.M., Donnadieu, M.: Quantitative determination of somatomedin in human serum (35S uptake by embryonic chick cartilage). Biomedicine 19, 142–147 (1973).Google Scholar
  166. Schimpff, R.M., Donnadieu, M., Gasinovic, J.C., Warnet, J.M., Girard, F.: The liver as source of somatomedin (an in vivo study in the dog). Acta Endocrinol. (Kbh.) 83, 365–372 (1976).Google Scholar
  167. Schimpff, R.M., Lebrec, D., Donnadieu, M.: Somatomedin production in normal adults and cirrhotic patients. Acta Endocrinol. (Kbh.) 86, 355–362 (1977).Google Scholar
  168. Schlumpf, U., Heimann, R., Zapf, J., Froesch, E.R.: Nonsuppressible insulin-like activity and sulphation activity in serum extracts of normal subjects, acromegalics and pituitary dwarfs. Acta Endocrinol. (Kbh.) 81, 28–42 (1976).Google Scholar
  169. Schwartz, E., Echemendia, E., Schiffer, M., Panariello, V.A.: Mechanism of estrogenic action in acromegaly. J. Clin. Invest. 48, 260–270 (1969).PubMedGoogle Scholar
  170. Shapiro, B., Pimstone, B.: Somatomedin Release from isolated perfused livers of protein malnourished normal rats in response to growth hormone and insulin. in: Somatomedins and growth. Giordano, G., Van Wyk, J.J., Minuto, F. (eds.), pp. 329–334. New York: Academic Press 1979.Google Scholar
  171. Smith, G.L., Temin, H.M.: Purified multiplication stimulating activity from rat liver conditioned medium: Comparison of biologic activities with calf serum insulin and somatomedin. J. Cell Physiol. 84, 181–192 (1974).PubMedGoogle Scholar
  172. Spencer, E.M.: Synthesis by cultured hepatocytes of somatomedin and its binding protein. FEBS Letters 99, 157–161 (1979).PubMedGoogle Scholar
  173. Spencer, E.M.: Lack of response of serum somatomedin to hyperprolactinemia in humans. J. Clin. Endocrinol. Metab. 50, 182–185 (1980).PubMedGoogle Scholar
  174. Spencer, G.S.G., Taylor, A.M.: A rapid simplified bioassay for somatomedin. J. Endocrinol. 78, 83–88 (1978).PubMedGoogle Scholar
  175. Solomon, S.S., Poffenburger, P.L., Hepp, D.K., Fenstin, L.F., Ensinck, J.W., Williams, R.H.: Quantitation and partial characterization of nonsuppressible insulin-like activity in serum and tissue extracts of the rat. Endocrinology 81, 213–224 (1967).PubMedGoogle Scholar
  176. Stiles, C.D., Capone, G.T., Scher, C.D., Antoniades, H.N., Van Wyk, J.J., Pledger, W.J.: Dual control of cell growth by somatomedin and platelet derived growth factor. Proc. Natl. Acad. Sci. U.S.A. 76, 1279–1284 (1979).PubMedGoogle Scholar
  177. Svoboda, M.E., Van Wyk, J.J., Klapper, D.G., Fellows, R.E., Grissom, F.E., Schlueter, R.J.: Purification of somatomedin-C from human plasma: chemistry and biologic properties, partial sequence analysis and relationship to other somatomedins. Biochemistry 19, 790–797 (1980).PubMedGoogle Scholar
  178. Takano, K., Hall, K., Fryklund, L., Sievertsson, H.: Binding of somatomedins to plasma membranes prepared from rat and monkey tissues. Horm. Metab. Res. 8, 16–24 (1976a).PubMedGoogle Scholar
  179. Takano, K., Hall, K., Ritzen, M., Iselius, L., Sievertsson, H.: Somatomedin-A in human serum, determined by radioreceptor assay. Acta Endocrinol. (Kbh.) 82, 449–459 (1976b).Google Scholar
  180. Takano, K., Hizuka, N., Shizume, K., Hayashi, N., Motoike, Y., Obata, H.: Serum somatomedin peptides measured by somatomedin-A radioreceptor assay in chronic liver disease. J. Clin. Endocrinol. Metab. 45, 828–832 (1977).PubMedGoogle Scholar
  181. Taylor, J.M., Mitchell, L., Cohen, S.: Characterization of high molecular weight form of epidermal growth factor. J. Biol. Chem. 249, 3198–3206 (1974).PubMedGoogle Scholar
  182. Tell, G.P., Cuatrecasas, P., Van Wyk, J.J., Hintz, R.L.: Somatomedin: inhibition of adenyl-ate cyclase activity in subcellular membranes of various tissues. Science 180, 312–315 (1972).Google Scholar
  183. Termin, H.M.: Studies on carcinogenesis by avian sarcoma viruses. VI. Differential multiplication of uninfected and of converted cells in response to insulin. J. Cell Physiol. 69, 377–384 (1967).Google Scholar
  184. Tessler, R.H., Salmon, W.D. Jr.: Glucocorticoid inhibition of sulfate incorporation by cartilage of normal rats. Endocrinology 96, 898–902 (1975).PubMedGoogle Scholar
  185. Underwood, L.E., Hintz, R.L., Voina, S.J., Van Wyk, J.J.: Human somatomedin, the growth hormone-dependent sulfation factor, is antilipolytic. J. Clin. Endocrinol. Metab. 35, 194–198 (1972).PubMedGoogle Scholar
  186. Uthne, K.: Human somatomedins: Purification and some studies on their biologic actions. Acta Endocrinol. (Kbh.) Suppl. 175, 1–35 (1973).Google Scholar
  187. Uthne, K.: Preliminary studies of somatomedin in vitro and in vivo in rats. Adv. Metab. Disord. 8, 115–127 (1975).PubMedGoogle Scholar
  188. Uthne, K., Reagan, CR., Gimpel, L.P., Kostyo, J.L.: Effects of human somatomedin preparations on membrane transport and protein synthesis in the isolated rat diaphragm. J. Clin. Endocrinol. Metab. 39, 548–554 (1974).PubMedGoogle Scholar
  189. Van Buul-Offers, S., Dumoleijn, L., Hackeng, W., Hoogerbrogge, CM., Kortel, R.M., Klundert, P. van de, Brande, J.L. van den: The Snell dwarf mouse: interrelationship of growth in length and weight, serum somatomedin activity and sulfate incorporation in costal cartilage during growth hormone, thyroxine and somatomedin treatment. in: Somatomedins and Growth. Giordano, G., Van Wyk, J.J., Minuto, F. (eds.), pp. 281–283. New York: Academic Press 1979.Google Scholar
  190. van den Brande, J.L., Du Caju, M.V.L.: An improved technique for measuring somatomedin activity in vitro. Acta Endocrinol. (Kbh.) 75, 233–242 (1974a).Google Scholar
  191. van den Brande, J.L., Du Caju, M.V.L.: Plasma somatomedin activity in children with growth disturbances. In: Raiti, S. (ed.), pp. 98–115. Advances in human growth hormone research. Washington, D.C: Government Printing Office, (DHEW publication no. (NIH 74-612) 1974b.Google Scholar
  192. van den Brande, J.L., Van Buul, S., Heinrich, U., Van Roon, F., Zürcher, T., Van Steirte-gem, A.C.: Further observations on plasma somatomedin activity in children. Adv. Metab. Disord. 8, 171–181 (1975).PubMedGoogle Scholar
  193. Van Wyk, J.J., Underwood, L.E.: The somatomedins and their actions. in: Biochemical Actions of Hormones. Litwack, G. (ed.), vol. V, pp. 101–148. New York: Academic Press 1978.Google Scholar
  194. Van Wyk, J.J., Underwood, L.E., Hintz, R.L., Clemmons, D.R., Voina, S.J., Weaver, R.P.: The somatomedins: a family of insulin-like hormones under growth hormone control. Recent Prog. Horm. Res. 30, 259–318 (1974).PubMedGoogle Scholar
  195. Van Wyk, J.J., Underwood, L.E., Baseman, J.B., Hintz, R.L., Clemmons, D.R., Marshall, R.N.: Explorations of the insulin-like and growth promoting properties of somatomedin by membrane receptor assays. Adv. Metab. Disord. 8, 127–150 (1975).PubMedGoogle Scholar
  196. Van Wyk, J.J., Furlanetto, R.W., Plet, A.S., D’Ercole, A.J., Underwood, L.E.: The somatomedin group of peptide growth factors. In: Decennial Review Conference Cell, Tissue and Organ Culture. Natl. Cancer Inst. Monograph No. 48, pp. 141-148. 1978.Google Scholar
  197. Van Wyk, J.J., Svoboda, M.E., Underwood, L.E.: Evidence from radioligand assays that somatomedin-C and insulin-like growth factor I are similar to each other and different from other somatomedins. J. Clin. Endocrinol. Metab. 50, 206–208 (1980).PubMedGoogle Scholar
  198. Vassilopoulou-Sellin, R., Phillips, L.S., Reichard, L.A.: Nutrition and somatomedin. VII. Regulation of somatomedin activity by the perfused rat liver. Endocrinology 106, 260–267 (1980).PubMedGoogle Scholar
  199. Vogel, A., Raines, E., Kariya, B., Rivest, M.J., Ross, R.: Coordinate control of 3T3 cell proliferation by platelet-derived growth factor and plasma components. Proc. Natl. Acad. Sci. U.S.A. 76, 2810–2814 (1978).Google Scholar
  200. Wasteson, A., Westermark, B., Uthne, K.: Somatomedin-A and B: demonstration of two different somatomedin-like components in human plasma. Adv. Metab. Disord. #,101-114(1975).Google Scholar
  201. Weidman, E.R., Atkinson, P., Bala, R.M.: Production of somatomedin and mitogenic effects on human fibroblasts. Presented at the 61st meeting of the Endocrine Society, Anaheim, California, June 13-15, 1979.Google Scholar
  202. Weidemann, E., Uthne, K., Tang, R.G., Spender, M., Saito, T., Linfoot, J.A.: Serum somatomedin activity by rat cartilage bioassay and human placental membrane radiore-ceptor assay in acromegaly and Cushings disease. in: Somatomedins and Growth. Giordano, G., Van Wyk, J.J., Minuto, F. (eds.), vol.23, pp.289–294. New York: Academic Press 1979.Google Scholar
  203. Weidemann, E., Schwartz, E.: Suppression of growth hormone-dependent human serum sulfation factor by estrogen. J. Clin. Endocrinol. Metab. 34, 51–58 (1972).Google Scholar
  204. Weidemann, E., Schwartz, E., Frantz, A.G.: Acute and chronic estrogen effects upon serum somatomedin activity, growth hormone and prolactin in man. J. Clin. Endocrinol. Metab. 42, 942–952 (1976).Google Scholar
  205. Weidemann, E., Schwartz, E., Reddy, N.: Corticosteroid (CS) effects upon serum somatomedin activity (SMA) and upon in vitro cartilage sulfate uptake. Clin. Res. 25, 131A (1977).Google Scholar
  206. White, R.M., Nissley, S.P., Moses, A.C., Rechler, M.M., Johnsonbaugh, R.E.: Growth hormone dependence of somatomedin binding protein in humans. Presented to the 61st meeting of the Endocrine Society, Anaheim, California, June 13-15, 1979.Google Scholar
  207. Wu, A., Grant, D.B., Hambley, J., Levi, A.J.: Reduced serum somatomedin activity in patients with chronic liver disease. Clin. Sci. Mol. Med. 47, 359–366 (1974).PubMedGoogle Scholar
  208. Young, F.G.: Growth and diabetes in normal animals treated with pituitary (anterior lobe) diabetogenic extract. Biochem. J. 39, 515–536 (1945).Google Scholar
  209. Zapf, J., Mader, M., Waldvogel, M., Froesch, E.R.: Nonsuppressible insulin-like activity: biological activity and receptor bindings. Isr. J. Med. Sei. 11, 664–678 (1975 a).Google Scholar
  210. Zapf, J., Mader, M., Waldvogel, M., Schalen, D.S., Froesch, E.R.: Specific binding of nonsuppressible insulin-like activity to chicken embryo fibroblasts and to a solubilized fi-broblast receptor. Arch. Biochem. Biophys. 168, 630–637 (1975 b).Google Scholar
  211. Zapf, J., Waldvogel, M., Froesch, E.R.: Binding of nonsuppressible insulin-like activity to human serum: evidence for a carrier protein. Arch. Biochem. Biophys. 168, 638–645 (1975c).PubMedGoogle Scholar
  212. Zapf, J., Kaufmann, U., Eigenmann, E.G., Froesch, E.R.: Determination of nonsuppressible insulin-like activity in human serum by a sensitive protein binding assay. Clin. Chem. 23, 677–682 (1977).PubMedGoogle Scholar
  213. Zapf, J., Jagars, G., Sand, I., Froesch, E.R.: Evidence for the existence in human serum of large molecular weight nonsuppressible insulin-like activity (NSILA) different from small molecular weight forms. FEBS Letters 90, 136–140 (1978 a).Google Scholar
  214. Zapf, J., Rinderknecht, E., Humbel, R.E., Froesch, E.R.: Nonsuppressible insulin-like activity (NSILA) from human serum: recent accomplishments and their physiologic implications. Metabolism 27, 1803–1828 (1978 b).Google Scholar
  215. Zapf, J., Schoenle, E., Froesch, E.R.: Insulin-like growth factors I and II: some biological actions and receptor binding characteristics of two purified constituents of nonsuppressible insulin-like activity of human serum. Eur. J. Biochem. 87, 285–296 (1978 c).Google Scholar
  216. Zapf, J., Schoenle, E., Jagars, G., Sand, I., Grunwald, J., Froesch, E.R.: Inhibition of the action of nonsuppressible insulin-like activity on isolated fat cells by binding to its carrier protein. J. Clin. Invest. 63, 1077–1084 (1979).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • D. R. Clemmons
  • J. J. Van Wyk

There are no affiliations available

Personalised recommendations