Advertisement

Genetics of Dinitrogen Fixation

  • W. J. Brill
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

The only organism that has been used for the detailed analysis of the genes involved with dinitrogen fixation (nif genes) is Klebsiella pneumoniae. This organism is closely related to the well-studied Escherichia coli and Salmonella typhimurium. Unlike these latter species, certain K. pneumoniae strains are able to grow in media free of fixed nitrogen Compounds (Mahl et al., 1965). Such strains fix dinitrogen from the air. Dinitrogen fixation by K. pneumoniae only occurs anaerobically because oxygen is a potent inactivator of nitrogenase. Genetic techniques that have been developed for E. coli, such as generalized transduction by phage P1 or gene inactivation by random insertion of phage Mu have been used to develop the genetics of dinitrogen fixation in K. pneumonia (Streicher et al., 1971; Bachhuber et al., 1976; Rao, 1976; Elmerich et al., 1978). This chapter will focus on recent work that has been published from this laboratory. Earlier work and work from other laboratories have been reviewed (Brill, 1975; Elmerich 1979; Beringer, 1980).

Keywords

Glutamine Synthetase Complementation Group Polar Mutation Dinitrogen Fixation nifA Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachhuber M, Brill WJ, Howe MM (1976) J Bacteriol 128: 749–753PubMedGoogle Scholar
  2. Beringer JE (1980) J Gen Microbiol 116:1–7Google Scholar
  3. Bishop PE, Brill WJ (1977) J Bacteriol 130: 954–956PubMedGoogle Scholar
  4. Brill WJ (1975) Annu Rev Microbiol 29: 109–129PubMedCrossRefGoogle Scholar
  5. Cannon FC, Riedel GE, Ausubel FM (1977) Proc Natl Acad Sei USA 74: 2963–2967CrossRefGoogle Scholar
  6. Cannon FC, Riedel GE, Ausubel FM (1979) Mol Gen Genet 174: 59–66PubMedCrossRefGoogle Scholar
  7. Dixon RA, Postgate JR (1972) Nature (London) 237: 102–103CrossRefGoogle Scholar
  8. Elmerich C (1979) Physiol Veg 17: 883–906Google Scholar
  9. Elmerich C, Houmard J, Sibold L, Manheimer I, Charpin N (1978) Mol Gen Genet 165:181 –189Google Scholar
  10. Gordon JK, Brill WJ (1974) Biochem Biophys Res Commun 59: 967–971PubMedCrossRefGoogle Scholar
  11. MacNeil D, Brül WJ (1978) J Bacteriol 136: 247–252PubMedGoogle Scholar
  12. MacNeil D, Howe MM, Brill WJ, J Bacteriol (in press)Google Scholar
  13. MacNeil T, Brill WJ, Howe MM (1978a) J Bacteriol 134: 821–829PubMedGoogle Scholar
  14. MacNeil T, MacNeil D, Roberts GP, Supiano MA, Brill WJ (1978b) J Bacteriol 136: 253–266PubMedGoogle Scholar
  15. Mahl MC, Wilson PW, Fife MA, Ewing WH (1965) J Bacteriol 89: 1482–1487PubMedGoogle Scholar
  16. Mazur BJ, Rice D, Haselkorn R (1980) Proc Natl Acad Sei USA 77:186–190Merrick M, Filser M, Dixon R, Elmerich C, Sibold L, Houmard J (1980) J Gen Microbiol 117: 509–520Google Scholar
  17. Nieva–Gömez D, Roberts GP, Klevieks S, Brill WJ, Proc Natl Acad Sei USA (in press)Google Scholar
  18. Nuti MP, Lepidi AA, Prakash RK, Schilperoort RA, Cannon FC (1979) Nature (London) 282: 533–535CrossRefGoogle Scholar
  19. Page WJ (1978) Can J Microbiol 24: 209–214PubMedCrossRefGoogle Scholar
  20. Page WJ, Sadoff HL (1976) J Bacteriol 125: 1080–1087PubMedGoogle Scholar
  21. Parejko RA, Wilson PW (1970) Can J Microbiol 16:681 –685Google Scholar
  22. Pühler A, Burkardt HJ, Klipp W (1979) Mol Gen Genet 176: 17–24PubMedCrossRefGoogle Scholar
  23. Rao RN (1976) J Bacteriol 128: 356–362PubMedGoogle Scholar
  24. Rawlings J, Shah VK, Chisnell JR, Brill WJ, Zimmermann R, Münck E, Orme-Johnson WH (1978) J Biol Chem 253: 1001–1004PubMedGoogle Scholar
  25. Roberts GP, MacNeil T, MacNeil D, Brill WJ (1978) J Bacteriol 136: 267–279PubMedGoogle Scholar
  26. Ruvkun GB, Ausubel FM (1980) Proc Natl Acad Sei USA 77:191 –195Google Scholar
  27. Shah VK, Brill WJ (1977) Proc Natl Acad Sei USA 74: 3249–3253CrossRefGoogle Scholar
  28. Shah VK, Chisnell JR, Brill WJ (1978) Biochem Biophys Res Commun 81: 232–236PubMedCrossRefGoogle Scholar
  29. Shah VK, Davis LC, Brill WJ (1975) Biochim Biophys Acta 384: 353–359PubMedGoogle Scholar
  30. Shanmugam KT, Chan I, Morandi C (1975) Biochim Biophys Acta 408: 101–111PubMedCrossRefGoogle Scholar
  31. St John RT, Shah VK, Brill WJ (1974) J Bacteriol 119: 266–269Google Scholar
  32. Streicher S, Gurney E, Valentine RC (1971) Proc Natl Acad Sei USA 68: 1174–1177CrossRefGoogle Scholar
  33. Streicher SL, Shanmugam KT, Ausubel F, Morandi C, Goldberg RB (1974) J Bacteriol 120: 815–821PubMedGoogle Scholar
  34. Tubb RS (1974) Nature (London) 251: 481–485CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • W. J. Brill
    • 1
  1. 1.Department of Bacteriology and Center for Studies of Nitrogen FixationUniversity of WisconsinMadisonUSA

Personalised recommendations