Skip to main content

Biogenically Formed Aragonite Concretions in Marine Rivularia

  • Conference paper
Phanerozoic Stromatolites

Abstract

The recognition that many ancient stromatolites are organo-sedimentary structures of microbial origin established the validity of interpreting them by comparison with modern counterparts. The study of modern stromatolites from different environmental settings such as freshwater lakes and creeks (Irion and Müller 1968; Golubic and Fischer 1975), thermal springs (Walter et al. 1972; Doemel and Brock 1974), hypersaline lagoons (Davies 1970; Horodyski and Vonder Haar 1975; Horodyski 1977), and other freshwater and marine coastal environments (Monty 1965, 1967; Gebelein 1969; Golubic 1973, 1976; Golubic and Focke 1978) shows that several different models for ancient stromatolites exist today. Among other things, the characteristic lamination of stromatolites has been shown to result from the periodical binding of detrital particles, the periodical deposition of calcium carbonate, the periodical differentiation of microbial communities, periodical changes in growth pattern of the constitutive algae, etc. Scores of processes have been described to date, but very few have been studied in great detail. Our purpose is to document and discuss a most interesting case, that of the microstromatolites formed by monospecific populations of a filamentous photosynthetic (oxygenic) blue-green alga: Rivularia (Rivulariaceae, Nostocales, Cyanophyta).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bailey A, Bisalputra T (1970) A preliminary account of the application of thin sectioning, freeze-etching, and scanning electron microscopy to the study of coralline algae. Phycologia 9: 83–101

    Article  Google Scholar 

  • Böhm EL (1973) Composition and calcium binding properties of the water soluble polysaccharides in the calcareous alga Halimeda opuntia (L.) (Chlorophyta, Udoteaceae). Int Rev Gesamten Hydrobiol 58: 117–126

    Article  Google Scholar 

  • Böhm EL, Goreau TF (1973) Rates of turnover and net accretion of calcium and the role of calcium binding polysaccharides during calcification in the calcareous alga Halimeda opuntia (L.). Int Rev Gesamten Hydrobiol 58: 723–740

    Article  Google Scholar 

  • Böhm L, Fütterer D, Kaminski E (1978) Algal calcification in some Codiaceae (Chlorphyta): ultra-structure and location of skeletal deposits. J Phycol 14: 486–493

    Article  Google Scholar 

  • Bornet E, Flahault C (1886) Revision des nostocacées hétérocystées. Ann Sci Nat Bot 7: 2, 323–373. Reprinted 1959, HR Engelmann, Weinheim/Bergstraße

    Google Scholar 

  • Borowitzka MA, Larkum AWD (1977) Calcification in the green alga Halimeda. I. An ultrastructure study of thallusdevelopment. J Phycol 13: 6–16

    Google Scholar 

  • Borowitzka MA, Larkum AWD, Nockolds CE (1974) A scanning electron microscope study of the structure and organization of the calcium carbonate deposits in algae. Phycologia 13: 195–203

    Article  Google Scholar 

  • Davies GR (1970) Algal-laminated sediments, Gladstone Embayment, Shark Bay, Western Australia. In: Logan BW (ed) Carbonate sedimentation and environments, Shark Bay, Western Australia. Am Assoc Petr Geol Mem 13: 169–205

    Google Scholar 

  • Degens ET (1976) Molecular mechanisms on carbonate, phosphate, and silica deposition in the living cell. Top Curr Chem 64: 1–112

    Article  Google Scholar 

  • Doemel WN, Brock TD (1974) Bacterial stromatolites: origin of laminations. Science 184: 1083–1085

    Article  Google Scholar 

  • Doolittle WF (1979) The cyanobacterial genome, its expression, and the control of that expression. In: Morris G, Rose JA (eds) Advances in microbial physiology, vol 20. Academic Press, London New York, pp 1–102

    Google Scholar 

  • Edhorn ASt (1973) Further investigations of fossils from the Animikie, Thunder Bay, Ontario. Proc Geol Assoc Can 25: 37–66

    Google Scholar 

  • Edhorn ASt, Anderson MM (1977) Algal remains in the Lower Cambrian Bonavista Formation, Conception Bay, Southeastern Newfoundland. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fay P (1973) The heterocyst. In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell Scientific Publications, Oxford, pp 238–259

    Google Scholar 

  • Flajs G (1977) Skeletal structures of some calcifying algae. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 225–231

    Google Scholar 

  • Frémy P (1934) Cyanophycées des côtes d’Europe. Mem Soc Nat Sci Nat Mat Cherbourg 41: 1–234

    Google Scholar 

  • Freytet P, Plaziat JC (1965) Importance des constructions algaires dues à des Cyanophycées dans les formations continentales du Crétacé supérieur et de l’Éocène du Languedoc. Soc Géol Fr Bull 7: 679–694

    Google Scholar 

  • Gebelein CD (1969) Distribution, morphology, and accretion rate of Recent subtidal algal stromatolites, Bermuda. J Sediment Petrol 39: 49–69

    Google Scholar 

  • Geitler L (1932) Cyanophyceae. Rabenh Kryptogamenfl, vol 14. Akad Verlagsges, Leipzig, pp 1–1196. Reprinted 1971, Johnson Reprint Corp, New York London

    Google Scholar 

  • Geitler L (1960) Schizophyceen. In: Zimmermann W, Ozenda P (eds) Handbuch der Pflanzenanatomie, vol VI/1. Borntraeger, Berlin Stuttgart, pp 1–131

    Google Scholar 

  • Golubic S (1973) The relationship between blue-green algae and carbonate deposits. In: Carr N, Whitton BA (eds) The biology of blue-green algae. Blackwell Scientific Publications, Oxford, pp 434–472

    Google Scholar 

  • Golubic S (1976) Organisms that build stromatolites. In: Walter MR (ed) Stromatolites, developments in sedimentology, vol 20. Elsevier, Amsterdam Oxford New York, pp 113–126

    Google Scholar 

  • Golubic S, Awramik SM (1974) Microbial comparison of stromatolite environments: Shark Bay, Persian Gulf, and the Bahamas. Geol Soc Am Abstr Progr, 1974 Annu Meet 6: 7, 759–760

    Google Scholar 

  • Golubic S, Baghoorn ES (1977) Interpretation of microbial fossils with special reference to the Precambrian. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 1–14

    Google Scholar 

  • Golubic S, Fischer AG (1975) Ecology of calcareous nodules forming in Little Connestoga Creek near Lancaster, Pennsylvania. Verh Int Ver Limnol 19: 2315–2323

    Google Scholar 

  • Golubic S, Focke JW (1978) Phormidium hendersonii Howe: identity and significance of a modern stromatolite building microorganism. J Sediment Petrol 48: 751–764

    Google Scholar 

  • Golubic S, Marcenko E (1965) Ãœber Konvergenzerscheinungen bei Standortsformender Blaualgen unter extremen Lebensbedingungen. Schweiz Z Hydrol 27: 207–217

    Article  Google Scholar 

  • Golubic S, Schneider J (1979) Carbonate dissolution. In: Trudinger PA, Swaine DJ (eds) Biogeo-chemical cycling of mineral-forming elements. Studies in environmental sciences, 3. Elsevier, Amsterdam Oxford New York, pp 107–129

    Chapter  Google Scholar 

  • Golubic S, Krumbein WE, Schneider J (1979) The carbon cycle. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier, Amsterdam Oxford New York, pp 29–45

    Chapter  Google Scholar 

  • Grüninger W (1965) Rezente Kalktuffbildung im Bereich der Uracher Wasserfalle. Abh Karst-Höhlenk,Reihe E 2: 1–113

    Google Scholar 

  • Horodyski RJ (1977) Lyngbya mats at Laguna Mormona, Baja California, Mexico: comparison with Proterozoic stromatolites. J Sediment Petrol 47: 1305–1320

    Google Scholar 

  • Horodyski RJ, Vonder Haar SP (1975) Recent calcareous stromatolites from Laguna Mormona (Baja California) Mexico. J Sediment Petrol 45: 894–906

    Google Scholar 

  • Irion G, Müller G (1968) Mineralogy, petrology, and chemical composition of some calcareous tufa from the Schwäbische Alb, Germany. In: Müller G, Friedman GM (eds) Carbonate sedimentology in central europe. Springer, Berlin Heidelberg New York, pp 157–171

    Google Scholar 

  • Jones FG, Wilkinson BH (1978) Structure and growth of lacustrine pisoliths from Recent Michigan marl lakes. J Sediment Petrol 48: 1103–1110

    Google Scholar 

  • Korde KB (1958) Systematic of fossil cyanophytes. Mater Osnov Paleont SSSR 2: 99–111 (in Russian)

    Google Scholar 

  • Lucas WC, Smith FA (1973) The formation of alkaline and acid regions at the surface of Chora corallina cells. J Exp Bot 24: 1–14

    Article  Google Scholar 

  • Manton I, Sutherland J, McCully M (1976) Fine structural observations on coccolithophorids from South Alaska in the genus Pappisphaera Tangen and Pappomonas Manton & Oates. Br Phycol J 11:225–238

    Article  Google Scholar 

  • Monty CLV (1965) Recent algal stromatolites in the Windward Lagoon, Andros Islands, Bahamas. Ann Soc Geol Belg Bull 88: 269–276

    Google Scholar 

  • Monty CLV (1967) Distribution and structure of Recent stromatolitic algal mats, eastern Andros Island, Bahamas. Ann Soc Geol Belg Bull 90: 55–100

    Google Scholar 

  • Monty CLV (1972) Recent algal stromatolitic deposits, Andros Island, Bahamas. Prelim Rep Geol Rundsch 61: 2, 742–783

    Article  Google Scholar 

  • Monty CLV (1973) Precambrian background and Phanerozoic history of stromatolitic communities, an overview. Ann Soc Geol Belg Bull 96: 585–624

    Google Scholar 

  • Monty CLV (1976) The origin and development of cryptalgal fabrics. In: Walter MR (ed) Stromatolites, development in sedimentology, vol 20. Elsevier, Amsterdam Oxford New York, pp 193–249

    Google Scholar 

  • Monty CLV, Hardie LA (1976) The geological significance of the freshwater blue-green algal calcareous marsh. In: Walter MR (ed) Stromatolites, development in sedimentology, vol 20. Elsevier, Amsterdam Oxford New York, pp 447–477

    Google Scholar 

  • Pentecost A (1978) Calcification and photosynthesis in Corallina officinalis L. using the 14CO2 method. Br Phycol J 13: 383–390

    Article  Google Scholar 

  • Pienaar RN (1969) The fine structure of Hymenomonas (Cricosphaera) cart erne. II. Observations on scale and coccolith production. J Phycol 5: 321–331

    Article  Google Scholar 

  • Riding R (1977) Skeletal stromatolites. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 57–60

    Google Scholar 

  • Schneider J (1977) Carbonate construction and decomposition by epilithic and endolithic microorganisms in salt- and freshwater. In: Flügel E (ed) Fossil algae. Springer, Berlin Heidelberg New York, pp 248–260

    Google Scholar 

  • Schopf JW (1968) Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. J Paleontol 42: 651–688

    Google Scholar 

  • Schopf JW, Black JM (1971) New microorganisms from the Bitter Springs Formation (Late Precambrian) of the North-central Amadeus Basin, Australia. J Paleontol 45: 925–961

    Google Scholar 

  • Stanier RY, Cohen-Baziere G (1977) Phototrophic prokaryotes: the Cyanobacteria. Ann Rev Microbiol 31: 224–274

    Article  Google Scholar 

  • Vologdin AG, Korde KB (1965) Several species of ancient Cyanophyta and their coenoses. Dokl Akad Nauk SSSR 164: 429–432

    Google Scholar 

  • Wallner J (1935) Zur Kenntnis der Kalkbildung in der Gattung Rivularia. Beih Bot Zentralbl B 54: 151–155

    Google Scholar 

  • Walter MR, Bould J, Brock TD (1972) Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of Yellowstone National Park. Science 178: 402–405

    Article  Google Scholar 

  • Weiner S, Hood L (1975) Soluble protein of the organic matrix of mollusc shells: a potential template for shell formation. Science 190: 987–989

    Article  Google Scholar 

  • Wilbur KM, Collinvaux LH, Watabe N (1969) Electron microscope study of calcification in the alga Halimeda (order Siphonales) Phycologia 8: 27–35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Golubic, S., Campbell, S.E. (1981). Biogenically Formed Aragonite Concretions in Marine Rivularia. In: Monty, C. (eds) Phanerozoic Stromatolites. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67913-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67913-1_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67915-5

  • Online ISBN: 978-3-642-67913-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics