Skip to main content

The Rationale of Closed Functional Treatment of Fractures

  • Chapter
Closed Functional Treatment of Fractures

Abstract

Fracture bracing, rather than merely being a technique, constitutes a positive attitude toward fracture healing which challenges many of the basic concepts taught in several current textbooks that emphasize the superiority of internal osteosynthesis over nonsurgical management of fractures of long bones. Fracture bracing is predicated on the belief that bone contact, end to end or otherwise, is not required for bony union; and that rigid immobilization of fracture fragments and immobilization of joints above and below a fracture, as well as prolonged rest, are detrimental to fracture healing. Closed functional bracing of fractures calls for functional activity in order to obtain greater osteogenesis.

Contrary to popular ideas the operative treatment of fractures is much simpler than the nonoperative.

Sir John Charnley

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Akeson WH, et al (1976) Effects of rigidity of internal fixation plates on long bone remodeling. Acta Orthop Scand 47: 241

    Article  PubMed  CAS  Google Scholar 

  • Allgower M (1965) Principles and results of internal fixation in fresh fractures. J Bone Joint Surg 47-B: 583

    Google Scholar 

  • Allgower M (1971) Weichteilproblems and Infektionsrisiko der Osteosynthese. Langenbecks Arch Chir 329: 1127

    Article  PubMed  CAS  Google Scholar 

  • Anderson LD, Hutchins WC (1966) Fractures of the tibia and fibula treated with casts and transfixion pins. South Med J 59: 1026

    Article  PubMed  CAS  Google Scholar 

  • Anderson LD et al (1974) Fractures of the tibia and fibula treated by casts and transfixion pins. Clin Orthop 105: 179

    PubMed  Google Scholar 

  • Bassett CAL, Becker RO (1962) Generation of electrical potentials by bone in response to mechanical stress. Science 137: 1063

    Article  PubMed  CAS  Google Scholar 

  • Bassett CAL (1962) Current concepts of bone formation. J Bone Joint Surg 44-A: 1217

    Google Scholar 

  • Becker RO, Murray BG (1970) The electrical control system regulating fracture healing in amphibians. Clin Orthop 73: 169

    PubMed  CAS  Google Scholar 

  • Bohler J (1974) Percutaneous cerclage of tibial fractures. Clin Orthop 105: 276

    Google Scholar 

  • Brighton CT, Krobs AG (1972) Oxygen tension of healing fractures in the rabbit. J Bone Joint Surg 54-A: 323

    PubMed  CAS  Google Scholar 

  • Brown PW, Urgan JG (1969) Early weight-bearing treatment of open fractures of the tibia. An end-result study of 63 cases. J Bone Joint Surg 51-A: 59

    PubMed  CAS  Google Scholar 

  • Brown PW (1973) The open fracture — cause, effect, and management. Clin Orthop 96: 254

    PubMed  Google Scholar 

  • Brown PW (1974) Early weight-bearing management of tibial shaft fractures. Clin Orthop 105: 167

    PubMed  Google Scholar 

  • Campionniere L (1903) Traitement des fractures sans appariel inamovible par le massage et la mobilisation. In Repert de therap. Paris, pp 213–215

    Google Scholar 

  • Charnley J (1968) The closed treatment of common fractures. Livingstone, Edinburgh

    Google Scholar 

  • Conley JE, Dehne E, LaFollette B (1973) Closed reduction and early cast brace ambulation in the treatment of femoral fractures. J Bone Joint Surg 55-A: 1581

    Google Scholar 

  • Dahl-Iversen E (1928) On the frequency and duration of ostitis after osteosynthesis. Illustrated by 247 cases and re-examining of 66 cases of operatively treated fractures. Acta Chir Scand 63: 41

    Google Scholar 

  • Danis R (1949) Theorie et practique de 1’osteosynthese. Mason and Cie, Paris

    Google Scholar 

  • Dehne E (1961) The natural history of the fractured tibia. Surg Clin North Am 41: 1495

    PubMed  CAS  Google Scholar 

  • Dehne E (1969) Treatment of fractures of the tibial shaft. Clin Orthop 66: 159

    PubMed  CAS  Google Scholar 

  • Dehne E (1972) The weight-bearing principle of treatment of lower extremity fractures, 1885-1972. J Trauma 12: 539

    Article  PubMed  CAS  Google Scholar 

  • Dehne E (1974) Ambulatory treatment of the fractured tibia. Clin Orthop 105: 192

    PubMed  Google Scholar 

  • Dehne E, et al (1961) Nonoperative treatment of the fractured tibia by immediate weight-bearing. J Trauma 1: 514

    PubMed  CAS  Google Scholar 

  • Delbet P An ales de la clinique chirurgicale du professeur Pierre Delbet. Methode de traitment des fractures, no 5. Libraire Felix Alcan, Paris, pp 1–295

    Google Scholar 

  • Eggers GWN (1952) Effect of contact compression on os-teogenesis. Instructional Course Lectures, Chap 18. AAOS Mosby St Louis, Mo

    Google Scholar 

  • Erickson E (1974) Streaming potentials and other water-dependent effects in mineralized tissue. Ann NY Acad Sci 238: 321

    Article  Google Scholar 

  • Friedenberg FB, Brighton CT (1966) Bioelectrical potentials in bone. J Bone Joint Surg 98-A: 915

    Google Scholar 

  • Gains DL, Saunders EA (1968) Tibial shaft fractures: Experiences with closed treatment and early ambulation. J Gen Med Assoc 61: 989

    Google Scholar 

  • Gothman L (1961) Arterial changes in experimental fractures of the monkey’s tibia treated with intramedullary nailing. Acta Chir Scand 121: 56

    PubMed  CAS  Google Scholar 

  • Gothman L (1962) Local arterial changes associated with experimental fractures of the rabbit’s tibia treated with encircling wires (cerclage). Acta Chir Scand 123: 17

    PubMed  CAS  Google Scholar 

  • Hicks JH (1960) External splintage as a cause of movement in fractures. Lancet 1: 667

    Article  PubMed  CAS  Google Scholar 

  • Holden CEA (1972) The role of blood supply to soft tissues in the healing of diaphyseal fractures. J Bone Joint Surg 54-A: 993

    Google Scholar 

  • Karlstrom G, Olerud S (1975) Percutaneous pin fixation of open tibial fractures. Double frame anchorage using the Vidal-Adrey method. J Bone Joint Surg 57-A: 915

    Google Scholar 

  • Kuntscher G (1974) The callus problem. Green, St Louis

    Google Scholar 

  • Laurnen EL, Kelly PJ (1969) Blood flow, oxygen consumption, carbon dioxide roduction in blood calcium and pH changes in tibial fractures in dogs. J Bone Joint Surg 51-A: 298

    Google Scholar 

  • Lottes JL (1952) Intramedullary fixation for fractures of the shaft of the tibia. South Med J 45: 407

    Article  PubMed  CAS  Google Scholar 

  • Macnab I (1974) The role of periosteal blood supply in the healing of fractures of the tibia. Clin Orthop 105: 27

    PubMed  Google Scholar 

  • Manziano CF, Manziano JR (1970) Walking plaster casts for repair of tibial fractures in dogs. J Am Vet Med Assoc 156: 581

    PubMed  CAS  Google Scholar 

  • Mohl JH (1973) The cast brace walking treatment of open and closed femoral fractures. South Med J 66: 345

    Article  Google Scholar 

  • Mooney V, et al (1970) Cast brace treatment for fracture of the femur. J Bone Joint Surg 52-A: 1563

    PubMed  CAS  Google Scholar 

  • Muller ME, Allgower M, Willenegger H (1965) Technique of internal fixation of fractures. Revised for the English edition by G Segmuller. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Muller ME, Allgower M, Willenegger H (1969) Manual del Osteosinthese. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Olerud S (1973) Treatment of fractures by the Vidal-Adrey method. Acta Orthol Scand 44: 516

    Article  CAS  Google Scholar 

  • Olerud S, Karlstrom G (1972) Tibial fractures treated by AO compression osteosynthesis. Experiences from a five-year material. Acta Orthol Scand [Suppl] 140: 1

    Google Scholar 

  • Paradis GR, Kelly PJ (1975) Blood flow and mineral deposition in canine tibial fractures. J Bone Joint Surg 57-A: 220

    Google Scholar 

  • Perkins G (1955) Rest and motion. J Bone Joint Surg 37-A: 101

    Google Scholar 

  • Perren SH, et al (1969) A dynamic compression plate in cortical bone healing. Acta Orthol Scand [Suppl] 125: 29

    Google Scholar 

  • Rankin EA, Metz CW (1970) Management of delayed union in early weight-bearing treatment of the fractured tibia. J Trauma 10: 751

    Article  PubMed  CAS  Google Scholar 

  • Rhinelander FW (1968) The normal micro circulation of diaphyseal cortex and its response to fracture. AAOS Instructional course lecture. J Bone Joint Surg 50-A: 784

    Google Scholar 

  • Schatzker J (1974) Compression in surgical treatment of fractures of the tibia. Clin Orthol 105: 220

    Google Scholar 

  • Scheck M (1965) Treatment of comminuted distal tibial fractures by combined dual pins fixation and limited open reduction. J Bone Joint Surg 47-A: 1537

    Google Scholar 

  • Shaw JL (1972) Application of prosthetic and orthotic principles to the treatment of tibial fractures. Artif Limb 16: 51

    CAS  Google Scholar 

  • Trueta J (1963) The role of vessels in osteogenesis. J Bone Joint Surg 45-B: 402

    Google Scholar 

  • Trueta J, Buhr AJ (1963) The vascular contribution to os-teogenesis. V. The vasculature supplying the epiphyseal cartilage in rachitic rats. J Bone Joint Surg 45-B: 572

    CAS  Google Scholar 

  • Uhthoff HK (1979) Prevention of bone atrophy through an early removal of internal fixation plates: An experimental study in the dog. Howmedica Trauma Workshop, New York

    Google Scholar 

  • Uhthoff HK, Dubuc FL (1971) Bone structure changes in the dog under rigid internal fixation. Clin Orthop 81: 165

    Article  PubMed  CAS  Google Scholar 

  • Watson-Jones R (1934) Inadequate immobilization and nonunion of fractures. Br Med J 936

    Google Scholar 

  • Watson-Jones R (1971) The classic. An orthopaedic view of the treatment of fractures. Clin Orthop 75: 4

    Article  Google Scholar 

  • Watson-Jones R (1974) The classic. Fractures and joint injuries. Clin Orthop 105: 4

    PubMed  Google Scholar 

  • Woo SLY, et al (1976) A comparison of cortical bone atrophy secondary to fixation with plates with large differences in bending stiffness. J Bone Joint Surg 58-A: 190

    PubMed  CAS  Google Scholar 

  • Yablon IG, Cruess RL (1968) The effect of hyperbaric oxygen on fracture healing in rats. J Trauma 8: 186

    Article  PubMed  CAS  Google Scholar 

  • Yamagiski M, Uoshimura Y (1955) The biomechanics of fracture healing. J Bone Joint Surg 37-A: 1035

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarmiento, A., Latta, L.L. (1981). The Rationale of Closed Functional Treatment of Fractures. In: Closed Functional Treatment of Fractures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67832-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67832-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67834-9

  • Online ISBN: 978-3-642-67832-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics