Skip to main content

Epinasty, Hyponasty, and Related Topics

  • Chapter
Hormonal Regulation of Development III

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 11))

Abstract

A nastic response is a growth curvature, where the direction of flexure is determined by the morphology of the organ and is not directly related to an external reference, although the response may be induced by an environmental stimulus (Ball 1969; see Sect. 4). A common, readily recognizable form of nastic curvature is epinasty, where in a lateral organ relative growth of the upper or adaxial side increases so that it becomes convex (De Vries 1872). In many dicotyledonous species, the growing leaf petiole has a well-developed epinastic capability (Crocker et al. 1932) (Fig. 1 A), while the entire leaf shows an epinastic response in some monocotyledons, for example narcissus, tulip, and hyacinth (Hitchcock et al. (1932). Epinasty is also used to describe curvature in an orthotropic organ such as a stem or pedicel, where the side that initiates the curvature by an acceleration in elongation growth becomes uppermost and the tip of the organ is inclined to form an angle with the vertical. The formation of the terminal hook in the etiolated seedling shoot and in the flower pedicel during its elongation phase are good examples (Kaldewey 1962, Kohji et al. 1979, 1981). The complimentary response, hyponasty, where the abaxial side grows most strongly, often occurs in leaf petioles as a sequel to epinasty, when it serves to straighten and restore the petiole’s original shape and orientation (Fig. 1C).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB (1973) Ethylene in plant biology. Academic Press, London New York

    Google Scholar 

  • Abeles FB, Rubinstein B (1964) Regulation of ethylene evolution and leaf abscission by auxin. Plant Physiol 39: 963–969

    PubMed  CAS  Google Scholar 

  • Amrhein N, Schneebeck D (1980) Prevention of auxin-induced epinasty by a-aminooxy- acetic acid. Physiol Plant 49: 62–64

    CAS  Google Scholar 

  • Balâzs E, Gâborjânyi R, Toth A, Kirâly Z (1969) Ethylene production in Xanthi tobacco after systemic and local virus infections. Acta Phytopathol 4: 355–358

    Google Scholar 

  • Ball NG (1969) Tropic, nastic and tactic responses. In: Steward FC (ed) Plant physiology: a treatise, vol VA Academic Press, London New York, pp 119–228

    Google Scholar 

  • Bangerth F (1974) Interaktionen von Auxin und Äthylen bei der thigmotropen Bewegung der Ranken von Cucumis sativus. Planta 117: 329–338

    CAS  Google Scholar 

  • Barber HN, Halsall DM, Palmer JH (1968) Genetic, environmental and physiological control of leaf orientation in Plantago lanceolata. Aust J Biol Sei 21: 641–648

    Google Scholar 

  • Baumgartner N, Fondeville J (1980) Obtention d’épinastie des cotylédons de Sinapis alba en éclairement rouge lointain continu. Relations avec le développement de 1’hypocotyle et des cotyledons. Physiol Plant 50: 153–157

    Google Scholar 

  • Beevers L, Loveys B, Pearson JA, Wareing PF (1970) Phytochrome and hormonal control of expansion and greening of etiolated wheat leaves. Planta 90: 284–294

    Google Scholar 

  • Bendixen LE, Peterson ML (1962) Physiological nature of gene-controlled growth form in Trifolium fragiferum L. II. Auxin-gibberellin relationships to growth form. Plant Physiol 37: 245–250

    Google Scholar 

  • Bennet-Clark TA, Ball NG (1959) The diageotropic behavior of rhizomes. J Exp Bot 10: 69–86

    CAS  Google Scholar 

  • Blake TJ, Pharis RP, Reid DM (1980) Ethylene, gibberellins, auxins, and the apical control of branch angle in a conifer, Cupressus arizonica. Planta 148: 64–68

    Google Scholar 

  • Booth A (1959) Some factors concerned in the growth of stolons in potato. J Linnol Soc 56: 166–169

    Google Scholar 

  • Borgström G (1939) Theoretical suggestions regarding the ethylene responses of plants and observations on the influence of apple emanations. Kgl Fysiograf Sällskap Lund Förh 9: 135–174

    Google Scholar 

  • Bradford KJ, Dilley DR (1978) Effects of root anaerobiosis on ethylene production, epinasty, and growth of tomato plants. Plant Physiol 61: 506–509

    PubMed  CAS  Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane 1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65: 322–326

    PubMed  CAS  Google Scholar 

  • Brown AH, Chapman DK, Liu SWW (1974) A comparison of leaf epinasty induced by weightlessness or by clinostat rotation. Bioscience 24: 518–520

    Google Scholar 

  • Brown AH, Dahl AO, Chapmen DK (1976) Limitation on the use of the horizontal clinostat as a gravity compensator. Plant Physiol 58: 127–130

    PubMed  CAS  Google Scholar 

  • Burg SP, Burg EA (1968) Auxin-stimulated ethylene formation: Its relationship to auxin- inhibited growth, root geotropism and other plant processes. In: Wightman F, Settlefield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1275–1294

    Google Scholar 

  • Burrows WJ, Carr DJ (1969) Effects of flooding the root system of sunflower plants on the cytokinin content of the xylem sap. Physiol Plant 22: 1105–1112

    PubMed  CAS  Google Scholar 

  • Burström H (1942) Über Entfaltung und Einrollen eines mesophilen Grasblattes. Bot Not 7: 351–361

    Google Scholar 

  • Caubergs R, De Greef JA (1975) Studies on hook opening in Phaseolus vulgaris L. by selective R/FR pretreatments of embryonic axis and primary leaves. Photochem Photobiol 22: 139–144

    PubMed  CAS  Google Scholar 

  • Champagnat P (1961) Dominance apicale, tropisms, epinastie. In: Ruhland W (ed) Encyclopedia of plant physiology vol XIV. Springer, Berlin Göttingen Heidelberg, pp 872–908

    Google Scholar 

  • Clemens J, Pearson CJ (1977) The effect of waterlogging on the growth and ethylene content of Eucalyptus robusta Sm ( Swamp Mahogany ). Oecologia 29: 249–255

    Google Scholar 

  • Crane JC, Marei N, Nelson MM (1970) Growth and maturation of fig fruits stimulated by 2-chloroethylphosphonic acid. J Am Soc Hortic Sci 95: 367–370

    CAS  Google Scholar 

  • Crocker W, Zimmerman PW, Hitchcock AE (1932) Ethylene-induced epinasty of leaves and the relation of gravity to it. Contrib Boyce Thompson Inst 4: 177–218

    CAS  Google Scholar 

  • Curtis RW (1968) Mediation of a plant response to malformin by ethylene. Plant Physiol 43: 76–80

    PubMed  CAS  Google Scholar 

  • Curtis RW, John WW (1975) Effect of malformin on phytochrome and ethrel-mediated responses. Plant Cell Physiol 16: 719–728

    CAS  Google Scholar 

  • Denny FE (1936) Gravity-position of tomato stems and their production of the emanation causing leaf epinasty. Contrib Boyce Thompson Inst 8: 99–104

    CAS  Google Scholar 

  • Denny FE, Midler LP (1935) Production of ethylene by plant tissue as indicated by the epinastic response of leaves. Contrib Boyce Thompson Inst 7: 97–102

    CAS  Google Scholar 

  • Deutch B (1976) Barley leaf unfolding under mixtures of red and blue light. Physiol Plant 38: 57–60

    Google Scholar 

  • Deutch B, Deutch BI (1975) Blue light induction of barley leaf unfolding. A phytochrome reaction? Physiol Plant 35: 322–327

    CAS  Google Scholar 

  • Dimond AE, Waggoner PE (1953) The cause of epinastic symptoms in Fusarium wilt of tomatoes. Phytopathology 43: 663–669

    CAS  Google Scholar 

  • Dolk HE (1936) Geotropism and the growth substance. Ree Trav Bot Neerl 33: 509–585

    Google Scholar 

  • Eckerson SH (1931) Influence of phosphorus deficiency on metabolism of the tomato (Lycopersicum esculentum). Contrib Boyce Thompson Inst 3: 197–217

    CAS  Google Scholar 

  • Edgerton LJ, Blanfield GD (1968) Regulation of growth and fruit maturation with 2-chloroethanephosphonic acid. Nature 219: 1064–1065

    PubMed  CAS  Google Scholar 

  • Eisinger WR, Morre DJ (1971) Growth-regulating properties of picloram, 4-amino-2, 5, 6-trichloropicolinic acid. Can J Bot 49: 889–897

    CAS  Google Scholar 

  • El-Beltagy AS, Hall MA (1974) Effect of water stress upon endogenous ethylene levels in Viciafaba. New Phytol 73: 47–60

    CAS  Google Scholar 

  • Fischnich O (1935) Über den Einfluß von Indolylessigsäure auf die Blattbewegungen und die Adventivwurzelbildung von Coleus. Planta 24: 552–583

    CAS  Google Scholar 

  • Freytag H (1930) Untersuchungen über die Plagiotropie der Blätter von Tropaeolum maius. Planta 12: 267–292

    Google Scholar 

  • Fuchs Y, Lieberman M (1968) Effects of kinetin, IAA and gibberellin on ethylene production, and their interactions in growth of seedlings. Plant Physiol 43: 2029–2036

    Google Scholar 

  • Gäborjänyi R, Baläzs E, Kiräly Z (1971) Ethylene production, tissue senescence and local virus infections. Acta Phytopathol Hung 6: 51–55

    Google Scholar 

  • Gane R (1934) Production of ethylene by some ripening fruits. Nature 134: 1008

    CAS  Google Scholar 

  • Gee HM (1977) The control of hypocotyl hook angle in Phaseolus mungo L. The role of growth substances. J Exp Bot 28: 367–376

    CAS  Google Scholar 

  • Gee HM, Vince-Prue D (1976) Control of the hypocotyl hook angle in Phaseolus mungo L.: The role of parts of the seedling. J Exp Bot 27: 314–323

    Google Scholar 

  • Goeschl JD, Kays SJ (1975) Concentration dependencies of some effects of ethylene on etiolated pea, peanut bean and cotton seedlings. Plant Physiol 55: 670–677

    PubMed  CAS  Google Scholar 

  • Goeschl JD, Pratt HK, Bonner B (1967) An effect of light on the production of ethylene and the growth of the plumular portion of the etiolated pea seedling. Plant Physiol 42: 1077–1080

    PubMed  CAS  Google Scholar 

  • Gray RA (1957) Alteration of leaf size and shape and other changes caused by gibberellins in plants. Am J Bot 44: 674–682

    CAS  Google Scholar 

  • Greef de JA, Hoof van R, Caubergs R (1977) Light-induced changes in auxin metabolism during hook opening of etiolated bean seedlings. Biochem Soc Trans 5: 1049–1051

    Google Scholar 

  • Grieve BJ (1939) Epinastic response induced in plants by Bacterium solanacearum EFS Ann Bot NS 3: 587–601

    Google Scholar 

  • Grove MD, Spencer GF, Rodwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant-growth-promoting steroid isolated from Brassica napus pollen. Nature 281: 216–217

    CAS  Google Scholar 

  • Hansen DJ, Bendixen LE (1974) Ethylene-induced tropism of Trifolium fragiferum L. stolons. Plant Physiol 53: 80–82

    PubMed  CAS  Google Scholar 

  • Harvey EM (1913) The castor bean plant and laboratory air. Bot Gaz 56: 439–442

    Google Scholar 

  • Hayes AB (1981) The interaction of auxin and ethylene in the maintenance of leaf blade form in Phaseolus vulgaris L. var. Pinto. Am J Bot 68: 733–740

    CAS  Google Scholar 

  • Hayes AB, Lippincott JA (1976) Growth and gravitational response in the development of leaf blade hyponasty. Am J Bot 63: 383–387

    CAS  Google Scholar 

  • Hayes AB, Lippincott JA (1981) The timing of an effect of temperature on auxin-induced hyponastic curvature of the bean primary leaf blade. Am J Bot 68: 305–311

    CAS  Google Scholar 

  • Hitchcock AE (1935) Indole-3-n-propionic acid as a growth hormone and the quantitative measurement of plant response. Contrib Boyce Thompson Inst 7: 87–95

    CAS  Google Scholar 

  • Hitchcock AE, Crocker W, Zimmerman PW (1932) Effect of illuminating gas on the lily, narcissus, tulip and hyacinth. Contrib Boyce Thompson Inst 4: 155–176

    CAS  Google Scholar 

  • Horsfall JG, Dimond AE (1959) The diseased plant. Plant pathology 1. Academic Press, London New York, pp 1–17

    Google Scholar 

  • Jackson MB (1979) Is the diageotropic tomato ethylene deficient? Physiol Plant 46: 347–351

    CAS  Google Scholar 

  • Jackson MB, Campbell DJ (1975a) Ethylene and waterlogging effects in tomato. Ann Appl Biol 81: 102–105

    Google Scholar 

  • Jackson MB, Campbell DJ (1975b) Movement of ethylene from roots to shoots, a factor in the response of tomato plants to waterlogged soil conditions. New Phytol 74: 397–406

    CAS  Google Scholar 

  • Jackson MB, Campbell DJ (1976) Waterlogging and petiole epinasty in tomato: the role of ethylene and low oxygen. New Phytol 76: 21–29

    CAS  Google Scholar 

  • Jackson MB, Campbell DJ (1979) Effects of benzyladenine and gibberellic acid on the responses of tomato plants to anaerobic root environments and to ethylene. New Phytol 82: 331–340

    CAS  Google Scholar 

  • Jackson MB, Gales K, Campbell DJ (1978) Effect of waterlogged soil conditions on the production of ethylene and on water relationships in tomato plants. J Exp Bot 29: 183–193

    CAS  Google Scholar 

  • Janes HW, Loerchet L (1976) Effects of red light and ethylene on growth of etiolated lettuce seedlings. Plant Physiol 57: 420–423

    PubMed  CAS  Google Scholar 

  • Junker S (1976) Auxin transport in tendril segments of Passiflora caerulea. Physiol Plant 37: 258–262

    CAS  Google Scholar 

  • Junker S (1977) Thigmonastic coiling of tendrils of Passiflora quadrangularis is not caused by lateral redistribution of auxin. Physiol Plant 41: 51–54

    CAS  Google Scholar 

  • Kaldewey H (1962) Plagio- und Diageotropismus der Sprosse und Blätter, einschließlich Epinastie, Hyponastie, Entfaltungsbewegungen. In: Ruhland W (ed) Encyclopedia of plant physiology vol XVII. Springer, Berlin Göttingen Heidelberg, pp 200–321

    Google Scholar 

  • Kaldewey H (1971) Geoepinasty, an example of gravimorphism. In: Gordon SA, Cohen M (eds) Gravity and the organism. Univ Chicago Press, Chicago, pp 363–339

    Google Scholar 

  • Kang BG (1979) Epinasty. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology, vol VII, Springer, Berlin Heidelberg New York, pp 647–667

    Google Scholar 

  • Kang BG, Burg SP (1972) Ethylene as a natural agent inducing plumular hook formation in pea seedlings. Planta 104: 275–281

    CAS  Google Scholar 

  • Kang BG, Ray PM (1969 a) Role of growth regulators in the bean hypocotyl hook-opening response. Planta 87: 193–205

    Google Scholar 

  • Kang BG, Ray PM (1969 b) Ethylene and carbon dioxide as mediators in the response of the bean hypocotyl hook to light and auxins. Planta 87: 206–216

    Google Scholar 

  • Kang BG, Yocum CS, Burg SP, Ray PM (1967) Ethylene and carbon dioxide; mediation of hypocotyl hook-opening response. Science 156: 958–959

    PubMed  CAS  Google Scholar 

  • Kang BG, Newcomb W, Burg SP (1971) Mechanism of auxin-induced ethylene production. Plant Physiol 47: 504–509

    PubMed  CAS  Google Scholar 

  • Kawase M (1972) Effect of flooding on ethylene concentration in horticultural plants. J Am Soc Hortic Sci 97: 584–588

    Google Scholar 

  • Kawase M (1974) Role of ethylene in induction of flooding damage in sunflower. Physiol Plant 31: 29–38

    CAS  Google Scholar 

  • Kazemi S, Kefford NP (1974) Apical correlative effects in leaf epinasty of tomato. Plant Physiol 54: 512–519

    PubMed  CAS  Google Scholar 

  • Kender WJ, Hall IV, Aalders LE, Forsyth FR (1969) Stimulation of rhizome and shoot growth of the lowbush blueberry by 2-chloroethanephosphonic acid. Can J Plant Sci 49: 95–96

    CAS  Google Scholar 

  • Klein RM (1965) Photomorphogenesis of the bean plumular hook. Physiol Plant 18: 1026–1033

    CAS  Google Scholar 

  • Klein WH, Withrow RB, Elstad V, Price L (1957) Photocontrol of growth and pigment synthesis in the bean seedling as related to irradiance and wavelength. Am J Bot 44: 15–19

    CAS  Google Scholar 

  • Klein WH, Edwards JL, Shropshire W jr (1967) Spectrophotometric measurements of phytochrome in vivo and their correlation with photomorphogenic responses of Phaseolus. Plant Physiol 42: 264–270

    PubMed  CAS  Google Scholar 

  • Klein WH, Withrow RB, Elstad VB (1956) Response of the hypocotyl hook of bean seedlings to radiant energy and other factors. Plant Physiol 31: 289–294

    PubMed  CAS  Google Scholar 

  • Kniep H (1910) Über den Einfluß der Schwerkraft auf die Bewegung der Laubblätter und der Frage der Epinastie. Jahrb Wiss Bot 48: 1–72

    Google Scholar 

  • Kohji J, Hagimoto H, Masuda Y (1979) Georeaction and elongation of the flower stalk in a poppy, Papaver rhoeas L. Plant Cell Physiol 20: 375–396

    Google Scholar 

  • Kohji J, Nishitani K, Masuda Y (1981) A study on the mechanism of nodding initiation of the flower stalk in a poppy, Papaver rhoeas L. Plant Cell Physiol 22: 413–422

    Google Scholar 

  • Kohji J, Hagimoto H, Yamamoto R, Masuda Y (1982) IAA transport and georeaction in the flower stalk of a poppy, Papaver rhoeas L. Plant Cell Physiol 23: 1329–1336

    Google Scholar 

  • Kramer PJ (1951) Causes of injury to plants resulting from flooding of the soil. Plant Physiol 26: 722–736

    PubMed  CAS  Google Scholar 

  • Kujawski RF, Truscott FH (1974) Photocontrol of hook opening in Cuscuta gronovii Wild. Plant Physiol 53: 610–614

    PubMed  CAS  Google Scholar 

  • Kumar D, Wareing PF (1972) Factors controlling stolon development in the potato plant. New Phytol 71: 639–648

    CAS  Google Scholar 

  • Kunkel LO (1926) Studies on aster yellows. Am J Bot 13: 646–705

    Google Scholar 

  • Kuo GG, Chen BW (1980) Physiological responses of tomato cultivars to flooding. J Am Soc Hortic Sei 105: 751–755

    CAS  Google Scholar 

  • Laan van der PA (1934) Der Einfluß von Aethylen auf die Wuchsstoffbildung bei Avena und Vicia. Ree Trav Bot Neerl 31: 691–742

    Google Scholar 

  • Larsen P (1962) Geotropism. An introduction. In: Ruhland W (ed) Encyclopedia of plant physiology, vol VII/2. Springer, Berlin Göttingen Heidelberg, pp 34–73

    Google Scholar 

  • Lau OL, Yang SF (1976) Inhibition of ethylene production by cobaltous ion. Plant Physiol 58: 114–117

    PubMed  CAS  Google Scholar 

  • Leather GR, Forrence LE, Abeles FB (1972) Increased ethylene production during clino-stat experiments may cause leaf epinasty. Plant Physiol 49: 183–186

    PubMed  CAS  Google Scholar 

  • Leike H, Guttenberg H (1962) Die Rolle des Auxins bei der epinastischen Krümmung plagiotroper Seitensprosse von Coleus blumei Benth. Planta 58: 453–470

    Google Scholar 

  • Leopold AC, Brown KM, Emerson FH (1972) Ethylene in the wood of stressed trees. Hortscience 7: 715

    Google Scholar 

  • Levy D, Marco S (1976) Involvement of ethylene in epinasty of CMV-infected cucumber cotyledons which exhibit increased resistance to gaseous diffusion. Physiol Plant Pathol 9: 121–126

    CAS  Google Scholar 

  • Lippincott BB, Lippincott JA (1971) Auxin-induced hyponasty of the leaf blade of Phaseolus vulgaris. Am J Bot 58: 817–826

    CAS  Google Scholar 

  • Lloyd FE (1914) Abscission. Ottawa Nat 28: 41–43

    Google Scholar 

  • Locker SB, Riker AJ, Duggar BM (1938) Growth substances and the development of crown gall. J Agric Res 57: 21–39

    Google Scholar 

  • Loveys BR, Wareing PF (1971) The hormonal control of wheat leaf unrolling. Planta 98: 117–127

    CAS  Google Scholar 

  • Lundegärdh H (1966) Plant physiology. Oliver & Boyd, Edinburgh Lyon CJ (1963 a) Auxin factor in branch epinasty. Plant Physiol 38: 145–152

    Google Scholar 

  • Lyon CJ (1963 b) Auxin transport in leaf epinasty. Plant Physiol 38:567–574

    Google Scholar 

  • Lyon CJ (1970) Ethylene inhibition of auxin transport by gravity in leaves. Plant Physiol 45: 644–646

    PubMed  CAS  Google Scholar 

  • MacDonald IR, Gordon DC, Hart JW, Mäher EP (1983) The positive hook: the role of gravity in the formation and opening of the apical hook. Planta 158: 76–81

    Google Scholar 

  • Maeda E (1965) Rate of lamina inclination in excised rice leaves. Physiol Plant 18: 813–827

    CAS  Google Scholar 

  • Maige MA (1901) Recherches biologiques sur les plantes rampantes. Ann Sei Nat Bot Biol Ser 8: 11: 249–364

    Google Scholar 

  • Mapson LW (1969) Biogenesis of ethylene. Biol Rev 44: 155–187

    PubMed  CAS  Google Scholar 

  • Meijer B (1957) The influence of light quality on the flowering response of Salvia occidental. Acta Bot Neerl 6: 395–406

    Google Scholar 

  • Mohr H, Noble A (1960) Die Steuerung der Schließung und Öffnung des Plumula-Hakens bei den Keimlingen von Lactuca sativa durch sichtbare Strahlung. Planta 55: 327–342

    Google Scholar 

  • Molisch H (1911) Über den Einfluß des Tabakrauches auf die Pflanze. II. Sitzungsber Kaiserl Akad Wiss Wien 120: 813–838

    Google Scholar 

  • Morgan PW (1976) Effects on ethylene physiology. In: Audus LJ (ed) Herbicides hysiology, biochemistry, ecology, 2nd edn. Academic Press, London New York, pp 255–280

    Google Scholar 

  • Morgan PW, Baur JR (1970) Involvement of ethylene in picloram-induced movement. Plant Physiol 46: 655–659

    PubMed  CAS  Google Scholar 

  • Morgan PW, Hall WC (1962) Effect of 2,4-dichlorophenoxy-acetic acid on the production of ethylene by cotton and grain sorghum. Physiol Plant 15: 420–427

    CAS  Google Scholar 

  • Morgan PW, Hall WC (1964) Accelerated release of ethylene by cotton following application of indolyl-3-acetic acid. Nature 201: 99

    CAS  Google Scholar 

  • Münch E (1938) Untersuchungen über die Harmonie der Baumgestalt. Jahrb Wiss Bot 86: 581–673

    Google Scholar 

  • Nakamura T, Yamada T, Takahashi J (1966) Effect of gibberellic acid on the growth of the plumular hook section of etiolated pea seedling. Bot Mag Tokyo 70: 404–413

    Google Scholar 

  • Neljubow (1901) Über die horizontale Nutation der Stengel von Pisum sativum und einiger anderer Pflanzen. Beih Bot Centralbl 10: 128–138

    Google Scholar 

  • Palmer JH (1956) The nature of the growth response to sunlight shown by certain stoloni-ferous and prostrate tropical plants. New Phytol 55: 346–355

    Google Scholar 

  • Palmer JH (1958) Studies in the behaviour of the rhizome of Agropyron repens (L.) Beauv. I. The seasonal development and growth of the parent plant and rhizome. New Phytol 57: 145–159

    Google Scholar 

  • Palmer JH (1964) Comparative study of the effect of horizontal orientation and the application of indoleacetic acid upon internode extension and petiole orientation in Helianthus annuus and the modifying effect of gibberellic acid. Planta 61: 282–297

    Google Scholar 

  • Palmer JH (1972) Roles of ethylene and indole-3-yl-acetic acid in petiole epinasty in Helianthus annuus and the modifying influence of gibberellic acid. J Exp Bot 23: 733–743

    CAS  Google Scholar 

  • Palmer JH (1973) Ethylene as a cause of transient petiole epinasty in Helianthus annuus during clinostat experiments. Physiol Plant 28: 188–193

    CAS  Google Scholar 

  • Palmer JH (1976) Failure of ethylene to change the distribution of indoleacetic acid in the petiole of Coleus blumei x frederici during epinasty. Plant Physiol 58: 513–515

    PubMed  CAS  Google Scholar 

  • Palmer JH (1979) Endogenous ethylene the active principle in IAA and NAA-induced petiole epinasty. 10th Int Conf Plant Growth Substances, Madison, p 54

    Google Scholar 

  • Palmer JH, Phillips ID J (1963) The effect of the terminal bud, indoleacetic acid and nitrogen supply on the growth and orientation of the petiole of Helianthus annuus. Physiol Plant 16: 572–584

    CAS  Google Scholar 

  • Parups EV (1973) Control of ethylene-induced responses in plants by a substituted ben-zothiadiazole. Physiol Plant 29: 365–370

    CAS  Google Scholar 

  • Pegg GF (1976) The involvement of ethylene in plant pathogenesis. In: Heitefuss R, Williams PH (eds) Physiological plant pathology. Encyclopedia of plant physiology, new ser vol 4. Springer, Berlin Heidelberg New York, pp 582–591

    Google Scholar 

  • Pegg GF, Cronshaw DK (1976) The relationship of in vitro to in vivo ethylene production in Pseudomonas solanacearum infection of tomato. Physiol Plant Pathol 9: 145–154

    CAS  Google Scholar 

  • Pfeffer W (1905) The physiology of plants, vol III. Translated into English by Ewart AJ. Clarendon Press, Oxford Pharis RP, Kuo CG (1976) Physiology of gibberellins in conifers. Can J For Res 7: 299–325

    Google Scholar 

  • Phillips IDJ (1964) Root-shoot hormone relations. I. The importance of an aerated root system in the regulation of growth hormone levels in the shoot of Helianthus annuus. Ann Bot NS 28: 572–584

    Google Scholar 

  • Poovaiah BW, Leopold AC (1974) Hormone-solute interactions in the lettuce hypocotyl hook. Plant Physiol 55: 289–293

    Google Scholar 

  • Porath D (1977) Hook opening in cucumber seedlings by narrow band red and far-red light. Plant Sei Lett 8: 217–222

    Google Scholar 

  • Powell RD, Morgan PW (1970) Factors involved in the opening of the hypocotyl hook of cotton and beans. Plant Physiol 45: 548–552

    PubMed  CAS  Google Scholar 

  • Railton ID, Reid DM (1973) Effects of benzyladenine on the growth of waterlogged tomato plants. Planta 111: 261–266

    CAS  Google Scholar 

  • Rawitscher FL (1923) Epinastie und Geotropismus. Z Bot 15: 65–100

    Google Scholar 

  • Rawitscher FL (1932) Der Geotropismus der Pflanzen. Fischer, Jena Berlin

    Google Scholar 

  • Reches S, Leshem Y, Wurzburge J (1974) On hormones and weeping: asymmetric hormone distribution and the pendulous growth habit of the weeping mulberry, Morus alba var. pendula. New Phytol 73: 841–846

    Google Scholar 

  • Reid DM, Crozier A (1971) Effects of waterlogging on the gibberellin content and growth of tomato plants. J Exp Bot 22: 39–48

    CAS  Google Scholar 

  • Reid DM, Clements JB, Carr DJ (1968) Red light induction of gibberellin synthesis in leaves. Nature 217: 580–582

    CAS  Google Scholar 

  • Reid DM, Crozier A, Harvey BMR (1969) The effects of flooding on the export of gibberellins from the root to the shoot. Planta 89: 376–379

    CAS  Google Scholar 

  • Robitaille HA, Leopold AC (1974) Ethylene and the regulation of apple stem growth under stress. Physiol Plant 32: 301–304

    CAS  Google Scholar 

  • Ross AF, Williamson CE (1951) Physiologically active emanations from virus-infected plants. Phytopathology 41: 431–438

    CAS  Google Scholar 

  • Rubinstein B (1971) The role of various regions of the bean hypocotyl on red light-induced hook opening. Plant Physiol 48: 183–186

    PubMed  CAS  Google Scholar 

  • Rubinstein B, Abeles FB (1965) Relationship between ethylene evolution and leaf abscission. Bot Gaz 126: 255–259

    CAS  Google Scholar 

  • Rufelt H (1962) Plagiogeotropism in roots. In: Ruhland W (ed) Encyclopedia of plant physiology vol XVII/2. Springer, Berlin Göttingen Heidelberg, pp 322–343

    Google Scholar 

  • Salisbury FG, Wheeler RM (1981) Interpreting plant responses to clinostating. I. Mechanical stresses and ethylene. Plant Physiol 67: 667–685

    Google Scholar 

  • Schneider G (1964) Eine neue Gruppe von synthetischen Pflanzen Wachstumsregulatoren. Naturwissenschaften 51: 416–417

    CAS  Google Scholar 

  • Shell GSG, Lang ARG, Sale PJM (1974) Quantitative measures in leaf orientation and heliotropic response in sunflower, bean, pepper and cucumber. Agric Meteorol 13: 25–37

    Google Scholar 

  • Silk WK, Erickson RO (1978) Kinematics of hypocotyl curvature. Am J Bot 65:310–319 Smith KA, Restall SWF (1971) Occurrence of ethylene in anaerobic soil. J Soil Sci 22: 430–443

    Google Scholar 

  • Smith KA, Russell RS (1969) Occurrence of ethylene and its significance in anaerobic soil. Nature 222: 765–771

    Google Scholar 

  • Snow R (1945) Plagiotropism and correlative inhibition. New Phytol 44: 110–117

    Google Scholar 

  • Soekarjo R (1965) On the formation of adventitious roots in cuttings of Coleus in relation to the effect of indoleacetic acid on the epinastie curvature of isolated petioles. Acta Bot Neerl 14: 373–399

    CAS  Google Scholar 

  • Stahl E (1884) Einfluß des Lichtes auf den Geotropismus einiger Pflanzenorgane. Ber Dtsch Bot Ges 2: 383–397

    Google Scholar 

  • Starbuck CJ, Roberts AN (1982) Movement and distribution of 14C-indole-3-acetic acid in branches and rooted cuttings of Douglas-fir. Physiol Plant 55: 389–394

    CAS  Google Scholar 

  • Stewart ER, Freebairn HT (1969) Ethylene, seed germination and epinasty. Plant Physiol 44: 955–958

    PubMed  CAS  Google Scholar 

  • Stewart RN, Lieberman MV, Kunishi AT (1974) Effects of ethylene and gibberellic acid on cellular growth and development in apical and subapical regions of etiolated pea seedling. Plant Physiol 54: 1–5

    PubMed  CAS  Google Scholar 

  • Takeno K, Pharis RP (1982) Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: an auxin mediated phenomenon. Plant Cell Physiol 23: 1275–1281

    CAS  Google Scholar 

  • Tibbitts W, Hertzberg WM (1978) Growth and epinasty of marigold plants maintained from emergence on horizontal clinostats. Plant Physiol 61: 199–293

    PubMed  CAS  Google Scholar 

  • Trewavas AJ (1982) Growth substance sensitivity: The limiting factor in plant develop¬ment. Physiol Plant 55: 60–72

    CAS  Google Scholar 

  • Trewavas AJ, Jones AM (1981) Consequences of hormone-binding studies for plant

    Google Scholar 

  • growth substance research. New Plant Physiol 12:5–8

    Google Scholar 

  • Turkova NS (1964) Growth reactions in plants under excessive watering. Akad Nauk USSR Leningrad C 42: 87–90

    Google Scholar 

  • Vardar Y (1953) A study of the auxin factor in epinastic and hyponastic movements. Rev Fac Sei Univ Istanbul Ser B 18: 317–352

    Google Scholar 

  • Veen van der R, Meijer G (1959) Light and plant growth. Macmillan, New York Virgin HI (1962) Light-induced unfolding of the grass leaf. Physiol Plant 15: 380–389

    Google Scholar 

  • Vries de H (1872) Über einige Ursachen der Richtung bilateral symmetrischer Pflanzen-theile. Arb Bot Inst Würzburg 1: 223–277

    Google Scholar 

  • Wada K, Marumo S, Ikekawa N, Morisaki M, Mori K (1981) Brassinolide and homo- brassinolide promotion of lamina inclination of rice seedlings. Plant Cell Physiol 22: 323–325

    CAS  Google Scholar 

  • Wain RL, Taylor HF (1965) Phenols as plant growth regulators. Nature 207: 167–169

    CAS  Google Scholar 

  • Wallenstein A, Albert LS (1963) Plant morphology: its control in Proserpinaca by photo-period, temperature and gibberellic acid. Science 140: 998–1000

    PubMed  CAS  Google Scholar 

  • Wample RL, Reid DML (1975) Effect of aeration on the flood-induced formation of adventitious roots and other changes in sunflower (.Helianthus annuus L.). Planta 127: 263–270

    Google Scholar 

  • Wample RL, Reid DM (1978) Control of adventitious root production and hypocotyl hypertrophy of sunflower (Helianthus annuus L.) in response to flooding. Physiol Plant 44: 351–358

    Google Scholar 

  • Wample RL, Reid DM (1979) The role of endogenous auxins and ethylene in the forma¬tion of adventitious roots and hypocotyl hypertrophy in flooded sunflower plants (.Helianthus annuus). Physiol Plant 45: 219–226

    CAS  Google Scholar 

  • Weaver RJ (1972) Plant growth substances in agriculture. Freeman, San Francisco Wellman FL (1941) Epinasty of tomato, one of the earliest symptoms of Fusarium wilt. Phytopathology 31: 281–283

    Google Scholar 

  • Went FW (1938) Specific factors other than auxin affecting growth and root formation. Plant Physiol 13: 55–80

    PubMed  CAS  Google Scholar 

  • Went FW (1943) Effect of the root system on tomato stem growth. Plant Physiol 8: 51–65

    Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. MacMillan, New York

    Google Scholar 

  • Wiese MV, Vay De JE (1970) Growth-regulator changes in cotton associated with defoliation caused by Verticillum albo-atrum. Plant Physiol 45: 304–309

    PubMed  CAS  Google Scholar 

  • Wilkins MB (1979) Growth-control mechanisms in gravitropism. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology, new ser vol 7. Springer, Berlin Heidelberg New York, pp 601–626

    Google Scholar 

  • Williamson CE (1950) Ethylene, a metabolic product of disease of injured plants. Phytopathology 40: 205–208

    CAS  Google Scholar 

  • Wilson BF (1973) White pine shoots: Roles of gravity and epinasty in movements and compression wood location. Am J Bot 60: 597–601

    Google Scholar 

  • Wilson BF, Archer RR (1977) Reaction wood: Induction and mechanical action. Annu Rev Plant Physiol 28: 23–43

    Google Scholar 

  • Wilson BF, Archer RR (1981) Apical control of branch movements in white pine: biological aspects. Plant Physiol 68: 1285–1288

    PubMed  CAS  Google Scholar 

  • Withrow RB, Klein WH, Elstad VB (1957) Action spectra of photo-morphogenic induction and its photoinactivation. Plant Physiol 32: 453–462

    PubMed  CAS  Google Scholar 

  • Yamane G (1941) Untersuchungen über die vertikalen phototropischen Bewegungen der Laubblätter von Fatsia japónica vom Standpunkt der Wuchsstofflehre. Jpn J Bot 11: 305–326

    Google Scholar 

  • Yin HC (1941) Studies on the nyctinastic movement of the leaves of Carica papaya. Am J Bot 28: 250–261

    Google Scholar 

  • Yopp JH (1973) The role of light and growth regulators in the opening of the Dentaria petiolar hook. Plant Physiol 51: 714–715

    PubMed  CAS  Google Scholar 

  • Zeroni M, Jerie PH, Hall MA (1977) Studies on the movement and distribution of ethylene in Viciafaba L. Planta 134: 119–125

    CAS  Google Scholar 

  • Zimmerman PW, Hitchcock AE (1938) Tropic responses of leafy plants induced by application of growth substances. Contrib Boyce Thompson Inst 9: 299–328

    CAS  Google Scholar 

  • Zimmerman PW, Wilcoxon F (1935) Several chemical growth substances which cause initiation of roots and other responses in plants. Contrib Boyce Thomson Inst 7: 209–229

    CAS  Google Scholar 

  • Zimmermann W (1927) Die Georeaktionen der Pflanzen. Ergebn Biol 2: 116–256

    Google Scholar 

  • Ziv M, Koller D, Halevy AH (1976) Ethylene and the geotropic response of lateral branches in peanuts ( Arachis hypogaea L. ). Plant Cell Physiol 17: 333–339

    Google Scholar 

  • Zobel RW (1973) Some physiological characteristics of the ethylene-requiring tomato mutant diageotropica. Plant Physiol 52: 385–389

    PubMed  CAS  Google Scholar 

  • Zobel RW (1974) Control of morphogenesis in the ethylene-requiring tomato mutant, diageotropica. Can J Bot 52: 735–743

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Palmer, J.H. (1985). Epinasty, Hyponasty, and Related Topics. In: Pharis, R.P., Reid, D.M. (eds) Hormonal Regulation of Development III. Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67734-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67734-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67736-6

  • Online ISBN: 978-3-642-67734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics