Skip to main content

Electrical and Magnetic Stimuli

  • Chapter
Hormonal Regulation of Development III

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 11))

Abstract

A current part of our thinking is that matter is comprised of particles or waves which have electromagnetic properties. Therefore it is to be expected that externally applied electrical and magnetic fields will cause perturbations in atoms or subatomic particles. Bonding, enzyme action to associate or dissociate molecules, or to alter their configuration, must all be influenced, however slightly, by electromagnetic stimuli. This is taken for granted, but the major question which concerns us in this chapter is whether electromagnetic stimuli applied externally (usually artificially) can cause changes in plant hormone location, concentration, or action, which will in turn affect growth. Pure magnetic effects may also occur, but are more difficult to demonstrate experimentally, and discussion of them will be reserved until later, but it is quite easy to show that electrical effects cause reactions in plants and conversely, that hormonal effects can cause detectable changes in bioelectricity. Therefore it seems desirable to discuss the interaction of electrical fields and hormone activity, in as far as we can presently detect them with readily available apparatus. As noted above, there will be some response at deeper levels to every electrical change in the environment; but this response may be subatomic and will not be considered if we cannot detect it. Rather, we will first review the present state of knowledge; then, we will consider when electrical stimuli may lead to detectable changes in hormones or responses which may be suspected of having a hormonal basis. In the last part we will briefly discuss what little is known about magnetic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allen NS (1980) Cytoplasmic streaming and transport in the characean algae Nitella. Can J Bot 58: 786–796

    Article  Google Scholar 

  • Anderson WP (1976) Transport through roots. In: Lüttge U, Pittman MG (eds) Transport in plants. Encyclopedia of plant physiology., new ser Vol 2/A. Springer, Berlin Heidelberg New York, p 146

    Google Scholar 

  • Audus LJ (1972) Plant growth substances, vol I. Chemistry and physiology. Harper & Row, New York

    Google Scholar 

  • Baker D (1980) Solute loading and the control of phloem turgor in Ricinus communis L. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 543–544

    Google Scholar 

  • Barry PH, Hope AB (1969) Electroosmosis in Char a and Nitella cells. Biochim Biophys Acta 193: 124

    Article  PubMed  CAS  Google Scholar 

  • Beilby MJ, Coster HGL (1980) Electromechanical effects in membranes: their role in the dependence of punch-through on temperature. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North- Holland Biomedical Press, Amsterdam New York, pp 611–612

    Google Scholar 

  • Bennett AB, Spanswick RM (1984) H+ -ATP stoichiometry of an ion sensitive H+-ATPase from red beet. Plant Membr Transp Symp, Prague

    Google Scholar 

  • Bentrup FW, Gratz HJ, Unbehauen H (1973) Membrane potentials in leaf cells. In: Anderson W (ed) Ion transport in plants. Academic Press, London New York

    Google Scholar 

  • Bentrup FW, Gutknecht W, Pfrüner H (1977) Auxin effects on the ionic relations of Petroselinum cell structure. In: Marre E, Ciferri O (eds) Regulation of cell membrane activities in plants. Elsevier/North Holland Biomedical Press, Amsterdam New York, p 203

    Google Scholar 

  • Bidgood PT (1982) A determination of water potential using dielectric/capacitance measurements of plants in situ. Honours Thes, Mount Allison Univ

    Google Scholar 

  • Black JD, Forsyth FR, Fensom DS, Ross RB (1971) Electrical stimulation and its effects on growth and ion accumulation in tomato plants. Can J Bot 49: 1809–1815

    Article  Google Scholar 

  • Blanchard RO, Shortle WC, Davis W (1983) Mechanism relating cambial electrical resistance to periodic growth rate of balsam fir. Can J For Res 13: 472–480

    Article  Google Scholar 

  • Bose JC (1907) Comparative electro-physiology. Longmans, Green & Co, London New York

    Google Scholar 

  • Bowling DJF (1980) An electrogenic phosphate pump in sunflower roots. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 405–406

    Google Scholar 

  • Burr HS (1947) Field theory in biology. Sci Mon 64 (3): 217–225

    PubMed  CAS  Google Scholar 

  • Cheeseman JM, Pickard BG (1977) Depolarization of cell membranes in leaves of Lycopersicon by extract containing Ricca’s factor. Can J Bot 55: 511

    Article  CAS  Google Scholar 

  • Cleland RE, Lomax T (1977) Hormonal control of H+-excretion from oat cells. In: Marré E, Ciferri O (eds) Regulation of cell membrane activities in plants. Elsevier/ North-Holland Biomedical Press, Amsterdam New York, pp 161–172

    Google Scholar 

  • Clifford PE, Fensom DS, Munt BI, McDowell WD (1982) Lateral stress initiates bending responses in dandelion peduncles: a clue to geotropism? Can J Bot 60: 2671–2673

    Article  Google Scholar 

  • Cocucci M, Ballarin-Denti A, Marré MT (1980) Effects of orthovanadate on H+ and K+ transport, transmembrane potential and plasmalemma ATPase activity in plant tissues. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 505–506

    Google Scholar 

  • Coster HGL, Steudle E, Zimmermann U (1976) Turgor pressure sensing in plant cell membranes. Plant Physiol 58: 636–643

    Article  PubMed  CAS  Google Scholar 

  • Cram WJ (1975) Systems analysis of ion transport in plant cells. Proc Xllth Int Bot Congr. Nauka, Leningrad (1979)

    Google Scholar 

  • Cram WJ (1976) Negative feedback regulation of transport in cells. The maintenance of turgor, volume and nutrient supply. Lüttge U, Pitman MG (eds) Transport in plants II. Encyclopedia of plant physiology, new ser Vol 2 A. Springer, Berlin Heidelberg New York, p 284–316

    Google Scholar 

  • Dixon MA, Thompson RG, Fensom DS (1978) Electrical resistance measurements of water potential in avocado and Picea. Can J For Res 8: 73–80

    Article  Google Scholar 

  • Eisenberg M, Kleinberg ME, Shaper JH (1977) Channels across black lipid membranes. In: Takashima S, Fishman HM (eds) Ann NY Acad Sci 303: 201–291

    Google Scholar 

  • Farquahar GD, Field CD (1971) Transpiration-linked short-circuit currents in the xylem of a liana. J Exp Bot 22: 818–829

    Article  Google Scholar 

  • Felle H, Bentrup FW (1974) Light-dependent changes of membrane potential and conductance in Rieda fluitans. In: Zimmermann MH, Dainty J (eds) Membrane transport in plants. Springer, Berlin Heidelberg New York, pp 120–125

    Google Scholar 

  • Felle H, Bentrup FW (1980) Electrogenic hexose transport in Riccia fluitans. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 549–550

    Google Scholar 

  • Fensom DS (1960) The bio-electric potentials of plants and their functional significance. III. The production of continuous potentials across membranes in plant tissue by the circulation of the hydrogen ion. Can J Bot 37: 1003–1026

    Article  Google Scholar 

  • Fensom DS (1963) The bio-electric potentials of plants and their functional significance. V. Some daily and seasonal changes in the electric potential and resistance of living trees. Can J Bot 41: 831

    Article  CAS  Google Scholar 

  • Fensom DS (1966) On measuring electrical resistance in situ in higher plants. Can J Plant Sci 46: 169–175

    Article  Google Scholar 

  • Fensom DS (1977) A role of electrogenic pumps in producing turgor in Nitella. In: Marré E, Ciferri (eds) Regulation of cell membrane activities in plants. Elsevier/North- Holland Biomedical Press, Amsterdam New York, p 91

    Google Scholar 

  • Fensom DS, Dainty J (1963) Electro-osmosis in Nitella. Can J Bot 41: 685–691

    Article  CAS  Google Scholar 

  • Fensom DS, Ross SM (1977) Note on lack of effect of ethylene on water permeability, electroosmotic efficiency or transcellular water flow of the plasma membranes in Nitella. Can J Bot 55: 615–616

    Article  CAS  Google Scholar 

  • Fensom DS, Wanless IR (1967) Further studies of electro-osmosis in Nitella in relation to pores in membranes. J Exp Bot 18: 563–577

    Article  Google Scholar 

  • Fensom DS, Barclay SL, Law S, Thompson RG (1973) A transcellular water flux induced by light in Nitella. Can J Bot 51 (5): 1045–1053

    Article  Google Scholar 

  • Fensom DS, Thompson RG, Alexander K (1983) Proceedings of C ANUS A workshop on bud-worm damage and control Serv Environ Can Bangor (Maine )

    Google Scholar 

  • Findlay GP, Hope AB (1976) Electrical properties of plant cells: methods and findings. In: Lüttge U, Pitman MG (eds) Transport in plants II. Encyclopedia of plant physiology, new ser Vol 2 A, Springer, Berlin Heidelberg New York, pp 53–92

    Google Scholar 

  • Giaquinta R (1980) Sucrose/proton cotransport during phloem loading and its possible control by internal sucrose concentration. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 273–282

    Google Scholar 

  • Gillet C, Fensom DS, Lefèbre J (1971) Effects immédiats de quelques antibiotiques surl’éléctroosmose chez Nitella flexilis. Experientia 27: 853–854

    Article  PubMed  CAS  Google Scholar 

  • Gradmann D, Mummert H (1980) Plant action potentials. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/ North-Holland Biomedical Press, Amsterdam New York, pp 333–344

    Google Scholar 

  • Graham L (1964) Measurements of geoelectric and auxin-induced potentials in coleoptiles with the refined vibrating electrode technique. Physiol Plant 17: 231

    Article  Google Scholar 

  • Graham L, Hertz CH (1964) Measurement of the geoelectric effect in coleoptiles. Physiol Plant 17: 186

    Article  Google Scholar 

  • Greenham CG (1966 a) The stages at which frost injury occurs in alfalfa. Can J Bot 44:1471–1483

    Google Scholar 

  • Greenham CG (1966 b) Bruise and pressure injury in apple fruits. J Exp Bot 17:404–409 Greenham CG, Randall PJ, Ward MM (1972) Impedance parameters in relation to phosphorus and calcium deficiencies in subterranean clover ( Trifolium subterraneum L. ). J Exp Bot 23: 197–209

    Google Scholar 

  • Greenham CG, Helms K, Muller WJ (1978) Influence of virus infections on impedance parameters. J Exp Bot 29: 867–877

    Article  Google Scholar 

  • Greenham CG, Groves RH, Muller WJ (1980) Variation between populations of one form of Skeleton Weed ( Chondrilla juncea L.) shown by electrical parameters. J Exp Bot 31: 967–974

    Google Scholar 

  • Greenleaf CRJ, Ferrier JM (1980) Electrical consequences of acid/alkaline banding in Chara corallina. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 593–594

    Google Scholar 

  • Gunn RF, Craig DL, Fensom DS (1972) Induction of early ripening by electricity on Vitis vinifera: Rep Can Soc Hortic, Charlottetown, PEI

    Google Scholar 

  • Hayden RI, Moyse CA, Calder FW, Crawford DP, Fensom DS (1969) Electrical impedance studies on potato and alfalfa tissue. J Exp Bot 20: 177–200

    Article  Google Scholar 

  • Haydon DA, Hladky SB (1972) Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys 5: 187–282

    Article  PubMed  CAS  Google Scholar 

  • Hertz CH (1960) Electrostatic measurement of the geoelectric effect. Nature 187: 320

    Article  Google Scholar 

  • Higinbotham N (1973) Electropotentials of plant cells. Annu Rev Plant Physiol 24: 25–46

    Article  CAS  Google Scholar 

  • Jaffe L (1980) Control of plant development by steady ionic currents. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam, New York, pp 381–388

    Google Scholar 

  • Jaffe M J (1970) Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohormone, acetylcholine. Plant Physiol 46: 768–777

    Article  PubMed  CAS  Google Scholar 

  • Jeffs RA, Northcote DH (1966) Experimental induction of vascular tissue in an undifferentiated plant callus. Biochem J 101: 146–152

    PubMed  CAS  Google Scholar 

  • Jenkinson IS (1962) Bioelectric oscillations of bean roots: further evidence for a feedback oscillator. III. Excitation and inhibition of oscillation by osmotic pressure, auxins, and antiauxins. Aust J Biol Sci 15: 115–125

    CAS  Google Scholar 

  • Jenkinson IS, Scott BH (1961) Bioelectric oscillations of bean roots: further evidence for a feedback oscillator. Aust J Biol Sci 14: 231–243

    CAS  Google Scholar 

  • Jeschke WD (1976) Ionic relations of leaf cell. In: Lüttge U, Pitman MG (eds) Transport in plants II. Encyclopedia of plant physiology, new ser Vol 2B. Springer, Berlin Heidelberg New York, pp 160 - 194

    Google Scholar 

  • Johnsson A (1965 a) Photoinduced lateral potentials in Zea mays. Physiol Plant 18: 574

    Google Scholar 

  • Johnsson A (1965 b) Investigations of the reciprocity rule by means of geotropic and geoelectric measurements. Physiol Plant 18:945

    Google Scholar 

  • Johnsson A (1967) Relationships between photoinduced and gravity-induced electrical potentials in Zea mays. Physiol Plant 20: 562

    Article  Google Scholar 

  • Kalinin VA, Opritov VA, Khudyakov VA (1970) Formation of free radicals in the spread of an excitation wave in the vascular system of higher plants. Fiziol Rast 17 (2): 309–313

    CAS  Google Scholar 

  • Kamiya N (1981) Physical and chemical basis of cytoplasmic streaming. Annu Rev Plant Physiol 32: 205–236

    Article  CAS  Google Scholar 

  • Kleimenov EY (1975) Effect of a magnetic field on the correlation of some physiological properties of plants. Fiziol Rast 22 (4): 852–853

    Google Scholar 

  • Komor E, Tanner W (1980) Proton-cotransport of sugars in plants. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 247–257

    Google Scholar 

  • Krasavina MS, Ktitorova IN (1975) Effects of adenine and imidazole derivatives and IAA on membrane potential of root hair cells in Trianea bogotensis. Fiziol Rast 22 (6): 1156–1161

    CAS  Google Scholar 

  • Kunkel AJ (1878) Ãœber elektromotorische Wirkungen an unverletzten lebenden Pflanzentheilen. Arb Bot Inst Würzburg 2: 1

    Google Scholar 

  • Lebedev SI, Baranskii PI, Litvinenko LG, Shiyan LT (1975) Physiological and biochemical characteristics of plants after pre-sowing treatment with a constant magnetic field. Fiziol Rast 22 (1): 103–109

    CAS  Google Scholar 

  • Lelkes PI, Bach D, Miller IR (1980) Interactions of auxin (IAA) with lipid membranes. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 539–540

    Google Scholar 

  • Levengood WC (1970) Redox currents associated with ion mobility in stems of plants. Can J Bot 48: 1099–1108

    Article  Google Scholar 

  • Levengood WC (1973) Bioelectric currents and oxidant levels in plant systems. J Exp Bot 24: 626–640

    Article  Google Scholar 

  • Lucas WJ (1984) How are the transport processes of the Char a plasmalemma regulated? Plant Membr Transp Symp, Prague

    Google Scholar 

  • Lüttge U (1980) Malic acid transport across the tonoplast of Kalanchoe leaf cells: tonoplast biophysics and biochemistry in relation to crassulacean acid metabolism (CAM). In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 49–60

    Google Scholar 

  • MacDonald MA, Fensom DS, Taylor ARA (1974) Electrical impedance in Ascophyllum nodosum and Fucus vesiculosus in relation to cooling, freezing and desiccation. J Phycol 10: 462–469

    Google Scholar 

  • MacRobbie EAC (1980) Stomatal ionic relations. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 97–107

    Google Scholar 

  • MacRobbie EAC, Fensom DS (1969) Measurements of electro-osmosis in Nitella translucens. J Exp Bot 20: 466–484

    Article  CAS  Google Scholar 

  • Marchel E (1977) Aggregation and conformational changes in solution studied by dielectric absorption of polypeptides and substituted polysaccharides. In: Takashima S, Fishman HM (eds). Ann NY Acad Sci 303: 190–197

    Google Scholar 

  • Marre E (1977) Effects of fusicoccin and hormones on plant cell membrane activities: Observations and hypotheses. In: Marre E, Ciferri O (eds) Regulation of cell membrane activities in plants. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 175–202

    Google Scholar 

  • Marre E (1980) Fusicoccin: Mechanism of action on electrogenic H+ extrusion. In: Spanswick RM, Lucas WJ and Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 227–240

    Google Scholar 

  • Marrè E, Ciferri O (eds) (1977) Regulation of cell membrane activities in plants. Elsevier/North-Holland Biomedical Press, Amsterdam New York

    Google Scholar 

  • Maslobrod SA, Zemshman AYa, Stepanov KI, Lysikov VN, Semin VS (1975) Functional role of photoinduced electric response of the plant during uptake of phosphorus from soil in light. Fiziol Rast 22 (6): 1162–1167

    CAS  Google Scholar 

  • Meylan S (1971) Bio-éléctricité: Quelque problèmes. Masson & Cie, Paris Meylan S (1976) Étude conductimétrique des effets de trois auxines sur un parenchyme de réserve. Physiol Plant 38P: 267–272

    Article  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–148

    Article  PubMed  CAS  Google Scholar 

  • Moliteritz J (1965) Effect of electric current on citrus trees. Rep 37th Annu Rural Electr Conf, sponsored by the Dep Agric Eng, Univ Cal, Davis Newman IA (1959) Electrical determination of transport of 3-indole-acetic acid in Avena.

    Google Scholar 

  • Nature 184:1728–1729

    Google Scholar 

  • Newman IA (1963) Electric potentials and auxin translocation in Avena. Aust J Biol Sci 16: 629

    CAS  Google Scholar 

  • Newman I A, Sullivan JK (1976) Auxin transport in oats: A model for the electric changes. In: Wardlaw IF, Passioura JB (eds) Transport and transfer processes in plants. Academic Press, London, New York, pp 153–159

    Google Scholar 

  • Nobel PS (1974) Biophysical plant physiology. Freeman, San Francisco Novak VA, Ivankina NG (1975) Comparative study of light-induced changes in electric potentials in plants. Fiziol Rast 22 (1): 49–54

    Google Scholar 

  • Okamoto AH (1984) Hormonal and osmotic control of electrogenic ion pumps and growth by xylem perfusion of bean hypocotyl segments. Plant Membr Transp Symp, Prague

    Google Scholar 

  • Opritov VA, Kalinin VA, Yarchenkova IM (1974) Participation of free radicals in the mechanism of action potential propagation in vascular system cells of higher plants. Fiziol Rast 21 (3): 545–553

    Google Scholar 

  • Palta JP, Stadelmann EJ (1980) Simultaneous transport of water and solutes through plant cell membranes. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Ed. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 457–458

    Google Scholar 

  • Paszewski A, Zawadzki T (1973) Action potentials in Lupinus angustifolius L. shoots. J Exp Bot 24: 804–809

    Article  Google Scholar 

  • Penot M (1976) Mise en évidence de déplacements de 86Rb à grande vitesse, dans le phloème de Tradescantia viridis. Planta 132: 183–187

    Article  CAS  Google Scholar 

  • Penot Ma, Penot Mi (1979) High speed translocation of ions in seaweeds. Z Pflanzenphysiologie 95: 265–273

    CAS  Google Scholar 

  • Pickard BG (1973) Action potentials in higher plants. Bot Rev 39: 172–201

    Article  Google Scholar 

  • Pickard WF (1972) Further observations on cytoplasmic streaming in Char a braunii. Can J Bot 50: 703–711

    Article  Google Scholar 

  • Pilet PE (1961) Les phytohormones de croissance. Masson & Cie, Paris Pilet PE (1964) Auxines et polarité morphologique des tissus de carotte cultivés in vitro. Rev Cytol Biol Vég 27: 269

    Google Scholar 

  • Pilet PE, Meylan S (1953) Polarité électrique, auxines et physiologie des racines du Lens culinaris Medikus. Bull Soc Bot Sui 63: 430

    Google Scholar 

  • Pitman MG, Anderson WP, Schaefer N (1977) H+ ion transport in plant roots. In: Marrè E, Ciferri O (eds) Regulation of cell membrane activities in plants. Elsevier/ North-Holland Biomedical Press, Amsterdam New York, pp 147–160

    Google Scholar 

  • Pittman UJ (1972) Biomagnetic responses in potato. Can J Plant Sci 52: 727–733

    Article  Google Scholar 

  • Pittman UJ (1977) Effects of magnetic seed treatment of yields of barley, wheat and oats in southern Alberta. Can J Plant Sci 57: 37–46

    Article  Google Scholar 

  • Pittman UJ, Ormrod DP (1970) Physiological and chemical features of magnetically treated winter seeds and resultant seedlings. Can J Plant Sci 50: 211–217

    Article  CAS  Google Scholar 

  • Pittman UJ, Ormrod DP (1971) Biomagnetic responses in germinating malting barley. Can J Plant Sei 51: 64–65

    Article  Google Scholar 

  • Polevoi VV, Salamatova TS (1975) Mechanism of the auxin effect on membrane transport of hydrogen ions. Fiziol Rast 22 (3): 519–526

    CAS  Google Scholar 

  • Polevoi VV, Salamatova TS (1977) Auxin, proton pump and cell trophies. In: Marré E, Ciferri O (eds) Regulation of cell membrane activities in plants. Elsevier/North- Holland Biomedical Press, Amsterdam New York, pp 209–216

    Google Scholar 

  • Racusen R, Satter RL (1975) Rhythmic and phytochrome-regulated changes in transmembrane potential in Samanea pulvini. Nature (London) 255: 408–410

    Article  CAS  Google Scholar 

  • Raschke K (1977) The stomatal turgor mechanism and its responses to C02 and abscisic acid: Observations and a hypothesis. In: Marré E, Ciferri O (eds) Regulation of cell membrane activities in plants. Elsevier North-Holland Biomedical Press, Amsterdam New York, pp 173–184

    Google Scholar 

  • Raven JA, Smith FA (1977) Characteristics, function and regulation of active proton extrusion. In: Marré E, Ciferri O (eds) From regulation of cell membrane activities in plants. Elsevier/North-Holland Biomedical Press, Amsterdam New York, p 25

    Google Scholar 

  • Raven JA, Smith FA (1980) The chemiosmotic viewpoint. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/ North-Holland Biomedical Press. Amsterdam New York, pp 161–174

    Google Scholar 

  • Rosene HF, Lund EJ (1953) Bioelectric fields and correlation in plants. In: Loomis WE (ed) Growth and differentiation in plants. Iowa State College Press, Des Moines, pp 219–252

    Google Scholar 

  • Sambeek van JW, Pickard BG (1976) Mediation of rapid electrical, metabolic, transpirational and photosynthetic changes by factors released from wounds. I. Variation potentials and putative action potentials in intact plants. Can J Bot 54: 2642–2650

    Google Scholar 

  • Sambeek van JW, Pickard BG, Ulbright CE (1976) Mediation of rapid electrical, metabolic, transpirational and photosynthetic changes by factors released from wounds. II. Mediation of the variation potential by Ricca’s factor. Can J Bot 54: 2651–2661

    Google Scholar 

  • Schwan HP (1977) Field interactions with biological matter. In: Takashima S, Fishman HM (eds) Electrical properties of biological polymers, water and membranes. Ann NY Acad Sci 303: 198–213

    Google Scholar 

  • Schwarz G (1977) Chemical transitions of biopolymers induced by an electric field and their effects on dielectrics and birefringence. In: Takashima S, Fishman HM (eds) Ann NY Acad Sci 303: 190–197

    Google Scholar 

  • Scott BIH (1967) Electric fields in plants. Annu Rev Plant Physiol 18: 409–418

    Article  CAS  Google Scholar 

  • Shimmen T, Tazawa M (1982) Effects of intracellular vanadate on electrogenesis, excitability and cytoplasmic streaming in Nitellopsis obtusa. Plant Cell Physiol 23: 669–677

    CAS  Google Scholar 

  • Simons PJ (1981) The role of electricity in plant movements. New Phytol 87: 11–37

    Article  CAS  Google Scholar 

  • Skutt HR, Shigo AL, Lessard RA (1972) Detection of discoloured and decayed wood in living trees using a pulsed electric current. Can J For Res 2: 54–56

    Article  Google Scholar 

  • Smith FA, Raven JA (1976) H+ transport and regulation of cell pH. In: Lüttge U, Pittman MG (eds) Transport in plants II. Encyclopedia of plant physiology, new ser Vol 2 A. Springer, Berlin Heidelberg New York, p 338

    Google Scholar 

  • Smith JR, Coster HGL (1980) Frequency dependence of the AC membrane impedance of Chara: the effect of temperature. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 609–610

    Google Scholar 

  • Spanner DC (1964) Introduction to thermodynamics. Academic Press, London New York

    Google Scholar 

  • Spanswick RM (1972) Electrical coupling between cells of higher plants: A direct demonstration of intercellular communication. Planta 102: 215–227

    Article  CAS  Google Scholar 

  • Spanswick RM (1974) Symplastic transport in plants. Symp Soc Exp Biol 28: 125–135

    Google Scholar 

  • Spanswick RM (1976) Symplastic transport in tissues. In: Lüttge U, Pittman UJ (eds) Transport in plants II. Encyclopedia of plant physiology, new ser Vol 2 A. Springer, Berlin Heidelberg New York, pp 34–53

    Google Scholar 

  • Spanswick RM (1980) Biophysical control of electrogenicity in the Characeae. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 305–313

    Google Scholar 

  • Spanswick RM, Miller AG (1977) The effect of C02 and CI influx and electrogenic pump in Nitella translucens. Échanges ioniques transmembranes chez les végétaux. Colloque du CNRS 258: 239–245

    Google Scholar 

  • Startseva AV, Burtaeva TE, Ruban NF (1975) Effect of a weak electric current on the state of water in wheat leaves. Fiziol Rast 22 (4): 853–856

    Google Scholar 

  • Steveninck van RFM (1976) Effect of hormones and related substances on ion transport. In: Lüttge U, Pittman UJ (eds) Transport in plants II. Encyclopedia of plant physiology new ser Vol 2B. Springer, Berlin Heidelberg New York, pp 307–342

    Google Scholar 

  • Steveninck van RFM (1984) Role of abscisic acid in nutrient transport and osmoregulation. Plant Membr Transp Symp, Prague

    Google Scholar 

  • Stolarek J, Jablonska B, Pazurkiewicz-Kocot K (1980) Light-induced action potentials in Phaseolus vulgaris L. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 619–620

    Google Scholar 

  • Suckling EE (1961) Bioelectricity. McGraw-Hill, New York Szynkier K (1984) Plant membrane transport symposium, Prague (in press)

    Google Scholar 

  • Tattar TA, Blanchard RO (1976) Electrophysiological research in plant pathology. Annu Rev Phytopathol 14: 309–325

    Article  Google Scholar 

  • Tattar RA, Sylvia DM (1977) Frequency spectrum analysis of plant storage tissue during deterioration. Can J Bot 55: 2437–2438

    Article  Google Scholar 

  • Tattar TA, Blanchard RO, Sanfley GC (1974) Relationship between electrical resistance and capacitance of wood in progressive states of discoloration and decay. J Exp Bot 25: 658–662

    Article  Google Scholar 

  • Tazawa M, Shimmen T (1980) Action potentials in Characeae: some characteristics revealed by internal perfusion studies. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 349–362

    Google Scholar 

  • Tyree MT, Fensom DS (1968) Methods of measuring hydrokinetic pressure gradients in the xylem of plants in situ. Can J Bot 46: 310–314

    Article  Google Scholar 

  • Umrath K (1956) Electrophysiologische Phänomene. In: Ruhland W (ed) Encyclopedia of plant physiology vol II. Springer, Berlin Göttingen Heidelberg, pp 747–778

    Google Scholar 

  • Umrath K (1959) Der Erregungs vor gang. In: Ruhland W (ed) Encyclopedia of plant

    Google Scholar 

  • physiology Vol XVII. Springer, Berlin Göttingen Heidelberg, pp 44–110

    Google Scholar 

  • Umrath K, Kastberger G (1983) Action potentials of the high-speed conduction in Mimosa pudica and Neptunia plena. Phyton ( Horn, Austria ) 23: 65–78

    Google Scholar 

  • Vahey M, Scordilis SP (1980) Contractile proteins from the tomato. Can J Bot 58: 779–801

    Article  Google Scholar 

  • Vredenberg WJ (1974) Changes in transport determining electrical parameters of cell and chloroplast membranes associated with primary and associated photosynthetic reactions. In: Zimmermann MH, Dainty J (eds) Membrane transport in plants. Springer, Berlin Heidelberg New York, pp 126–130

    Google Scholar 

  • Vredenberg WJ (1976) Electrical interactions and gradients between chloroplast compartments and cytoplasm In: Barber J (ed) The intact chloroplast. Elsevier/North-Holland Biomedical Press, Amsterdam New York

    Google Scholar 

  • Wanless IR, Bryniak N, Fensom DS (1973) The effect of some growth-regulating compounds upon electro-osmotic movements, transcellular water flows and Na, K, and CI influxes in Nitella flexilis. Can J Bot 51: 1055–1070

    Google Scholar 

  • Watanabe S, Umrath K (1983) The influence of plant hormones on leaf movements of Mimosa pudica. Phyton ( Horn, Austria ) 23: 49–54

    Google Scholar 

  • Wilkins MB, Woodcock AER (1965) Origin of the geoelectric effect. Nature 208: 990

    Article  CAS  Google Scholar 

  • Williams EJ, Johnston RJ, Dainty J (1964) The electrical resistance and capacitance of the membrane of Nitella translucens. J Exp Bot 15: 1–14

    Article  Google Scholar 

  • Williams EJ, Munro C, Fensom DS (1972) The influence of small applied electrical currents on Na, K and CI fluxes in Nitella translucens. Can J Bot 50: 2255–2263

    Google Scholar 

  • Willmer CM (1983) Stomata. Longman, London New York, pp 126–130

    Google Scholar 

  • Wilner J, Brach EJ (1979) Utilization of bioelectric tests in biological research. Rep 1–139, Eng Statist Res Inst, Agric, Ottawa Canada

    Google Scholar 

  • Zimmermann MH, Brown CL (1971) Trees, structure and function. Springer, Berlin Heidelberg New York, p 78

    Google Scholar 

  • Zimmermann U, IJenz R (1980) Electromechanical properties of cell membranes and lipid bilayers. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 467–468 Zimmermann U, Steudle E (1977) Action of indoleacetic acid on membrane structure and transport. In: Marrè E, Ciferri O (eds) Regulation of cell membrane activities in plants. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 231–242

    Google Scholar 

  • Zimmermann U, Steudle E (1980) Fundamental water relations parameters. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier/North-Holland Biomedical Press, Amsterdam New York, pp 113–127

    Google Scholar 

  • Zimmermann U, Steudle E, Lelkes PI (1976) Turgor pressure regulation in Valonia utricularis: effect of cell-wall elasticity and auxin. Plant Physiol 58: 608–613

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Fensom, D.S. (1985). Electrical and Magnetic Stimuli. In: Pharis, R.P., Reid, D.M. (eds) Hormonal Regulation of Development III. Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67734-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67734-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67736-6

  • Online ISBN: 978-3-642-67734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics