Skip to main content

Pathogenic and Non-pathogenic Microorganisms and Insects

  • Chapter
Hormonal Regulation of Development III

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 11))

Abstract

The olefinic gas ethylene (ethene) is the most unusual and perhaps powerful of the growth-regulating chemicals produced by microorganisms and by healthy and diseased plants. The earliest observations of the physiological effects of the gas by Fahnstock (1858) and Girardin (1864, Abeles 1973) were in relation to damage to coleus plants and lime (Tilia vulgaris) trees by fuel (coal) gas contaminated by ethylene. The effects of ethylene on lime trees closely simulated the disease syndrome associated with vascular wilt pathogens such as the Dutch elm disease fungus (Ceratocystis ulmi) on elm, but it was many years later that its biosynthesis by microorganisms (including fungal and bacterial vascular pathogens) was established (Pegg 1976b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB (1973) Ethylene in plant biology. Academic Press, London New York Abeles FB, Craker LE, Forrence LE, Leather GR (1971) Fate of air pollutants: removal of ethylene, sulphur dioxide and nitrogen dioxide by soil. Science 173: 914–916

    Google Scholar 

  • Adams DO, Yang SF (1977) Ethylene biogenesis: S-adenosyl methionine as an intermediate in the conversion of methionine to ethylene in apple tissue. Plant Physiol (Suppl) 59: 45

    Google Scholar 

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: identification of 1-amino-cyclopropane-l-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76: 170–174

    PubMed  CAS  Google Scholar 

  • Anderson JD, Mattoo AK, Lieberman M (1982) Induction of ethylene biosynthesis in tobacco leaf discs by cell wall digesting enzymes. Biochem Biophys Res Comm 107: 588–596

    PubMed  CAS  Google Scholar 

  • Archer SA (1976) Ethylene and fungal growth. Trans Br Mycol Soc 67 (2): 325–326

    Google Scholar 

  • Armstrong DJ, Evans PK, Burrows WJ, Skoog F, Petit JF, Stewart T, Strominger J, Leonard NJ, Hecht SM, Occolowitz J (1970) Cytokinins: Activity and identification in Staphylococcus epidermidis transfer RNA. J Biol Chem 245: 2922–2926

    Google Scholar 

  • Arntzen CJ, Haugh MF, Bobick S (1973) Induction of stomatal closure by Helminthosporium maydis pathotoxin. Plant Physiol 52: 569–574

    PubMed  CAS  Google Scholar 

  • Arora N, Skoog F, Allen ON (1959) Kinetin-induced pseudonodules on tobacco roots. Am JBot 46: 610–613

    CAS  Google Scholar 

  • Assante G, Merlini L, Nasini G (1977) (+)-Abscisic acid, a metabolite of the fungus Cercospora rosicola. Experientia 33: 1556–1557

    Google Scholar 

  • Aubé C, Sackston WE (1965) Distribution and prevalence of Verticillium species producing substances with gibberellin-like biological properties. Can J Bot 43: 1335–1342

    Google Scholar 

  • Babcock DF, Morris RO (1970) V Quantitative measurement of isoprenoid nucleosides in transfer ribonucleic acid. Biochemistry 9: 3701–3705

    PubMed  CAS  Google Scholar 

  • Barthe P, Bulard C (1974) Identification d’une cytokinine par Chromatographie en phase gazeuse à partir de cultures pures de Taphrina cerasi. Can J Bot 52: 1515–1518

    CAS  Google Scholar 

  • Beijersbergen JCM (1973) Report in: Byrde RJW and Cutting CV (eds) Fungal pathogeni-city and the plant’s response. Academic Press, London

    Google Scholar 

  • Beijersbergen JCM, Lemmers CBG (1978) Influence of ethylene produced by Fusarium oxysporum on the postulated mechanism underlying the response of Tulipa sp. tissues to this fungus. Proceedings of the 3rd International Congress of Plant Pathology, München 1978: p. 229

    Google Scholar 

  • Bernheim F (1942) The effect of various substances on the oxygen uptake of Blastomyces dermatiditis. J. Bacteriol 44: 533–539

    PubMed  CAS  Google Scholar 

  • Biale JB (1940) Effect of emanations from several species of fungi on respiration and colour development of citrus fruits. Science 91: 458–459

    PubMed  CAS  Google Scholar 

  • Biale JB, Shepherd AD (1941) Respiration of citrus fruits in relation to metabolism of fungi. Effects of emanations of Pénicillium digitatum Sacc., on lemons. Am J Bot 28: 263–270

    Google Scholar 

  • Bird AF (1966) Some observations on exudates from Meloidogyne larvae. Nematologica 12: 471–482

    CAS  Google Scholar 

  • Bonn WG, Sequeira L, Upper CD (1972) Determination of the growth of the rate of ethylene production by Pseudomonas solanacearum. Proc Can Phytopath Soc 38th Sess 26

    Google Scholar 

  • Botallico A, Graniti A, Lerario P (1978) Further incestigations on the biological activity of some fusicoccins and cotylenins. Phytopath Mediterr 17: 127–134

    Google Scholar 

  • Braun W (1956) Cellular products affecting the establishment of bacteria of different virulence. Ann NY Acad Sci 66: 348

    CAS  Google Scholar 

  • Brian PW (1957) The effect of some microbial products on plant growth. Symp Soc Exp Biol 11: 166–182

    PubMed  CAS  Google Scholar 

  • Briggs DE (1966) Gibberellin-like activity of helminthosporol and helminthosporic acid. Nature (London) 210: 418–19

    CAS  Google Scholar 

  • Brooks C (1944) Stem-end rot of oranges and factors affecting its control. J Agric Res 68: 363–381

    CAS  Google Scholar 

  • Brown ME, Burlingham SK (1968) Production of plant-growth substances by Azotobacter chrococcum. J Gen Microbiol 53: 135–144

    PubMed  CAS  Google Scholar 

  • Burg SP (1973) Ethylene in plant growth. Proc Natl Acad Sci USA 70: 591–597

    PubMed  CAS  Google Scholar 

  • Carlisle DB, Osborne DJ, Ellis PE, Moorhouse JE (1963) Reciprocal effects of insect and plant growth substances. Nature 200: 1230

    PubMed  CAS  Google Scholar 

  • Chalutz E, Lieberman M, Sisler HD (1977) Methionine-induced ethylene production by Pénicillium digitatum. Plant Physiol 60: 402–406

    PubMed  CAS  Google Scholar 

  • Chen CM, Hall RH (1969) Biosynthesis of N6-(zi2-isopentenyl) adenosine in the transfer ribonucleic acid of tobacco pith tissue. Phytochemistry 8: 1687–1695

    CAS  Google Scholar 

  • Chou TW, Yang SF (1973) The biogenesis of ethylene in Pénicillium digitatum. Arch Biochem Biophys 157: 73–82

    PubMed  CAS  Google Scholar 

  • Chylinska KM, Knypl JS, Brzeski MW (1972) Stimulated protein and RNA synthesis in carrot infested with the northern root-knot nematode Meloidogyne hapla Chitw. Bull Acad Pol Sci 20: 209–212

    CAS  Google Scholar 

  • Considine PJ, Flynn N, Patching JW (1977) Ethylene production by soil micro-organisms. Appl Environ Microbiol 33: 977–979

    PubMed  CAS  Google Scholar 

  • Cornforth IS (1975) The persistence of ethylene in aerobic soils. Plant Soil 42: 85–96

    CAS  Google Scholar 

  • Crady EE, Wolf FT (1959) The production of indole acetic acid by Taphrina deformans and Dibotryon morbosum. Physiol Plant 12: 526–533

    Google Scholar 

  • Curtis RW (1957) Survey of fungi and Actinomycetes for compounds possessing gibberellin-like activity. Science 125: 646

    CAS  Google Scholar 

  • Curtis RW (1958) Curvatures and malformations in bean plants caused by a culture filtrate of Aspergillus niger. Plant Physiol 33: 17–22

    PubMed  CAS  Google Scholar 

  • Curtis RW (1968) Mediation of a plant response to Malformin by ethylene. Plant Physiol 43: 76–80

    PubMed  CAS  Google Scholar 

  • Curtis RW (1977) Studies on the stimulation of abscission by malformin on cuttings of Phaseolus aureus Roxb. Plant Cell Physiol 18: 1331–1341

    CAS  Google Scholar 

  • Curtis RW, Fellenburg G (1972) Effect of malformin on adventitious root formation and metabolism of indoleacetic acid 2-14C by Phaseolus vulgaris. Plant Cell Physiol 13: 715–726

    CAS  Google Scholar 

  • Daly JM, Knoche HW (1976) Hormonal involvement in metabolism of host-parasite interactions. In: Friend J, Threlfall DR (eds) Biochemical aspects of plant-parasite relationships. Academic Press, London New York, pp 117–133

    Google Scholar 

  • Da Silva EJ, Henriksson E, Henriksson LE (1974) Ethylene production by fungi. Plant Sci Lett 2: 63–66

    Google Scholar 

  • De Bont JAM (1976) Oxidation of ethylene by soil bacteria. Antonie Leeuwenhoek J Microbiol 42: 59–71

    Google Scholar 

  • Dekhuijzen HM (1976) Endogenous cytokinins in healthy and diseased plants. In: Heitefuss R, Williams PH (eds) Encyclopedia of plant physiology new series vol 4. Springer, Berlin Heidelberg New York, pp 526–559

    Google Scholar 

  • Dekhuijzen HM, Overeem JC (1971) The role of cytokinins in clubroot formation. Physiol Plant Path 1: 151–162

    CAS  Google Scholar 

  • De Münk WJ, De Rooy M (1971) The influence of ethylene on the development of 5° C pre-cooled “Apeldoorn” tulips during forcing. Hortic Sci 6: 40–41

    Google Scholar 

  • Devys M, Bousquet JF, Barbier M (1976) Le tyrosol (p-hydroxyphényl éthanol) inhibiteur de la germination isolé du milieu du culture de Pyricularia oryzae. Phytopath Z 85: 176–178

    CAS  Google Scholar 

  • Dropkin VH (1969) Cellular responses of plants to nematode infections. Ann Rev Phytopath 7: 101–122

    CAS  Google Scholar 

  • Durbin RD (1981) Toxins in plant disease. Academic Press New York, London, Toronto, Sydney, San Francisco pp. 515

    Google Scholar 

  • Edwards JM, Gibson F, Jackman LM, Shannon JS (1964) The source of the nitrogen atom for the biosynthesis of anthranilic acid. Biochim Biophys Acta 93: 78–84

    PubMed  CAS  Google Scholar 

  • Eklund E (1970) Secondary effects of some pseudomonads in the rhizoplane of peat-grown cucumber plants. Acta Agric Scand Suppl 17: 57

    Google Scholar 

  • Evans ML (1974) Rapid responses to plant hormones. Ann Rev Plant Physiol 25:195–223 Fahnestock GW (1858) Memoranda of the effects of carburetted hydrogen gas upon a collection of exotic plants. Proc Acad Nat Sei Phila 1: 118–134

    Google Scholar 

  • Fergus CL (1954) The production of ethylene by Pénicillium digitatum. Mycology 46: 543–555

    Google Scholar 

  • Fraser LM (1953) Effects of indole acetic acid on growth of Agaricus. Aust J Biol Sci 6: 379–395

    PubMed  CAS  Google Scholar 

  • Freebairn HT, Buddenhagen IW (1964) Ethylene production by Pseudomonas solanacearum. Nature 202: 313–314

    PubMed  CAS  Google Scholar 

  • Gane R (1934) Production of ethylene by some ripening fruits. Nature 134: 1008

    CAS  Google Scholar 

  • Gefter ML, Rüssel RL (1969) Role of modifications in tyrosine transfer RNA: A modified base affecting ribosome binding. J Mol Biol 39: 145–157

    Google Scholar 

  • Giebel J (1970) Phenolic content in roots of some Solanaceae and its influence on IAA-oxidase activity as an indicator of resistance to Heterodera rostochiensis. Nematologica 16: 22–32

    CAS  Google Scholar 

  • Gogala N (1971) Growth substances in mycorrhiza of the fungus Boletus pinicola Vitt. and the pine tree, Pinus sylvestris L. Razprave XIV /5: 123–202

    Google Scholar 

  • Gruen H (1959) Auxins and fungi. Annu Rev Plant Physiol 10: 405–440

    CAS  Google Scholar 

  • Guttenberg H von, Strutz I (1952) Zur Keimungsphysiologie von Ustilago zeae. Arch Mikrobiol 17: 189–198

    Google Scholar 

  • Hashimoto T, Sakurai A, Tamura S (1967) Physiological activities of helminthosporol and helminthosporic acid. 1. Effects on growth of intact plants. Plant Cell Physiol 8: 23–34

    Google Scholar 

  • Helgeson JP, Leonard NJ (1966) Cytokinins: Identification of compounds isolated from Corynebacterium fasciens. Proc Natl Acad Sci USA 56: 60–63

    Google Scholar 

  • Hirata S (1957) Studies on the phytohormone in the malformed portion of the diseased plants. III. Auxin formation on culture-grown Exobasidium, Taphrina, and Ustila- go spp. Ann Phytopath Soc J 22: 153–158

    Google Scholar 

  • Hislop EC, Archer SA, Hoad GV (1973) Ethylene production by healthy and Sclerotinia fructigena-infected apple peel. Phytochemistry 12: 1281–1286

    Google Scholar 

  • Ilag L, Curtis RW (1968) Production of ethylene by fungi. Science 159: 1357–1358

    PubMed  CAS  Google Scholar 

  • John WW, Curtis RW (1974) Stimulation of plant growth by malformin A. Experientia 30: 1392–1393

    PubMed  CAS  Google Scholar 

  • Johnston JC, Trione EJ (1974) Cytokinin production by the fungi Taphrina cerani and Taphrina deformans. Can J Bot 52: 1583–1589

    CAS  Google Scholar 

  • Jones DF, MacMillan J, Radley M (1963) Plant hormones III. Identification of gibberellic acid in immature barley and immature grass. Phytochemistry 2: 307–314

    Google Scholar 

  • Kaper JM, Veldstra H (1958) On the metabolism of tryptophan by Agrobacterium tumefaciens. Biochem Biophys Acta 30: 401–420

    PubMed  CAS  Google Scholar 

  • Katznelson H, Cole SE (1965) Production of gibberellin-like substances by bacteria and

    Google Scholar 

  • actinomycetes. Can J Microbiol 11:733–741

    Google Scholar 

  • Kende H (1971) The cytokinins. Int Rev Cytol 31: 301–338

    CAS  Google Scholar 

  • Khomoto K, Fukui R, Mizuno M, Nishimura S (1973) Pathochemical studies on Rhizoctonia disease III. Characteristic production of Rhizoctonia toxins and their vivo toxicity. J Fac Agric Tottori Univ 8: 21–31

    Google Scholar 

  • Kimura Y, Tamura S (1973) Isolation of L-ß-phenyllactic acid and tyrosol as plant growth regulators from Gloeosporium laeticolor. Agric Biol Chem 37: 2925

    CAS  Google Scholar 

  • Klambt D, Thies G, Skoog F (1966) Isolation of cytokinins from Corynebacterium fasciens. Proc Natl Acad Sci USA 56: 52–59

    PubMed  CAS  Google Scholar 

  • Kögl F, Kostermans DRFG (1934) Heteroauxin als Stoffwechselprodukt niederer pflanzlicher Organismen. Isolierung aus Hefe. XIII Mitt Z Physiol Chem 228: 113–121

    Google Scholar 

  • Kögl F, Haagensmit AJ, Erxleben H (1934) Über ein neues Auxin („Herteroauxin“) aus Harn. XI. Mitt Z Physiol Chem 228: 104–112

    Google Scholar 

  • Kono Y, Knoche HW, Daly JM (1982) Structure: Fungal host-specific. In: Durbin RD (Ed.) Kono Y, Knoche HW, Daly JM, pp. 221–257. Academic Press

    Google Scholar 

  • Lado P, Rasi-Caldogono F, Colombo R (1974) Promoting effects of fusicoccin on seed germination. Physiologia Plantarum 31: 149–152

    CAS  Google Scholar 

  • Laloue M, Hall RH (1973) Cytokinins in Rhizopogon roseolus-secretion of N-[9-(ß-D- Ribofuranosyl-9H) purin-6-yl-carbomoyl] threonine. Plant Physiol 51: 559–562

    PubMed  CAS  Google Scholar 

  • Lamotte CE, Lersten NR (1972) Attempts to obtain bacteria-free plants of Psychotria punctata ( Rubiaceae ): Growth and root formation in callus cultures. Am J Bot 59: 89–96

    Google Scholar 

  • Lersten NR, Horner HT (1976) Bacterial leaf nodule symbiosis in angiosperms with emphasis on Rubiaceae and Myrsinaceae. Bot Rev 42 (2): 145–214

    Google Scholar 

  • Libbert E, Manteuffel R (1970 a) Interactions between plants and epiphytic bacteria regarding their auxin metabolism. VII Physiol Plant 23: 93–98

    Google Scholar 

  • Libbert E, Risch H (1969) Interactions between plants and epiphytic bacteria regarding their auxin metabolism. V Physiol Plant 22: 51–58

    Google Scholar 

  • Libbert E, Silhengst P (1970 b) Interactions between plants and epiphytic bacteria regarding their auxin metabolism. VIII Physiol Plant 23: 480–487

    Google Scholar 

  • Libbert E, Wichner S, Duerst E, Kaiser W, Kunert R, Manicki A, Manteuffel R, Riecke E, Schroder R (1968) Auxin content and auxin synthesis in sterile and non-sterile plants, with special regard to the influence of epiphytic bacteria. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 213–230

    Google Scholar 

  • Libbert E, Kaiser W, Kunert R (1969) Interactions between plants and epiphytic bacteria regarding their auxin metabolism. IV Physiol Plant 22: 432–439

    CAS  Google Scholar 

  • Lockard JE, Kneebone OR (1972) Investigation of the metabolic gases produced by Agaricus bisporus ( Lange) Sing. Mushroom Sci 5: 281–299

    Google Scholar 

  • Lockhart CL, Forsyth FR, Eaves CA (1968) Effect of ethylene on development of Gloeosporium album in apple and on growth of the fungus in culture. Can J Plant Sci 48: 557–559

    CAS  Google Scholar 

  • Lund BM, Mapson LW (1970) Stimulation by Erwinia carotovora of the synthesis of ethylene in cauliflower tissue. Biochem J 119: 251–263

    PubMed  CAS  Google Scholar 

  • Lürssen K, Naumann K, Schröder R (1979) 1-Amino cyclopropane-1-carboxylie acid - an intermediate of the ethylene biosynthesis in higher plants. Z Pflanzenphysiol 92: 285–294

    Google Scholar 

  • Lynch JM (1975) Ethylene in soil. Nature 256: 576–577

    CAS  Google Scholar 

  • Marrè E (1979) Fusicoccin: a tool in plant physiology. Annual Review of Plant Physiology 30: 273–288

    Google Scholar 

  • Marrè E, Colombo R, Lado P, Rasi-Caldogno F (1974) Correlation between proton extrusion and simulation of cell enlargement. Effects of fusicoccin and of cytokinins on leaf fragments and isolated cotyledons. Plant Science Letters 2: 139–150

    Google Scholar 

  • Maruzzella JC, Garner JG (1963) Effect of kinetin on bacteria. Nature 200: 385

    PubMed  CAS  Google Scholar 

  • Meherink M, Spencer M (1964) Ethylene production during germination of oat seeds and Pénicillium digitatum spores. An J Bot 42: 337–340

    Google Scholar 

  • Meister A (1965) Biochemistry of the amino acids vol 2. Academic Press, London New York

    Google Scholar 

  • Miles PW, Lloyd J (1967) Synthesis of a plant hormone by the salivary apparatus of plant-sucking Hemiptera. Nature 213: 801–802

    CAS  Google Scholar 

  • Miller CO (1967) Zeatin and zeatin riboside from a mycorrhizal fungus. Science 157: 1055–1056

    PubMed  Google Scholar 

  • Miller EV, Winston JR, Fisher DF (1940) Production of epinasty by emanations from normal and decaying citrus fruits from Pénicillium digitatum. J Agric Res 60: 269–277

    CAS  Google Scholar 

  • Miura G A, Hall RH (1973) Trans-ribosyl zeatin. Its biosynthesis in Zea mays endosperm and the mycorrhizal fungus Rhizopogon roseolus. Plant Physiol 51: 563–569

    Google Scholar 

  • Miura GA, Miller CO (1969) 6-(y,y-dimethyl-allylamino) purine as a precursor of zeatin. Plant Physiol 44: 372–376

    Google Scholar 

  • Moore K, Towers GHN (1967) Degradation of aromatic amino acids by fungi. I Fate of L. phenylalanine in Schizophyllum commune. Can J Biochem 45: 1959–1965

    Google Scholar 

  • Moore K, Subba Rao PV, Towers GHN (1968) Degradation of phenylalanine and tyrosine in Sporobolomyces roseus, Biochem J 106: 507–514

    PubMed  CAS  Google Scholar 

  • Morell H, Clark MJ, Knowles PF, Sprinson DB (1967) The enzymic synthesis of chorismic and prephenic acids from 3-enolpyruvyl shikimic acid 5-phosphate. J Biol Chem 242: 82–90

    PubMed  CAS  Google Scholar 

  • Muromtsev GS, Globus GA (1976) Adaptive significance of the ability to synthesize gibberellins for the phytopathogenic fungus. Dokl Akad Nauk SSSR vol 226 no 1: 204–206

    PubMed  CAS  Google Scholar 

  • Nickerson WJ (1948) Ethylene as a metabolic product of the pathogenic fungus, Blastomyces dermatiditis. Arch Biochem 17: 225–233

    PubMed  CAS  Google Scholar 

  • Nielsen N (1928) Materials which hasten the growth of Avena coleoptiles. Planta 6 (2): 376–378

    Google Scholar 

  • Nielsen N (1930) Untersuchungen über einen neuen wachstumregulierenden Stoff: Rhizopin. Jahrb Wiss Bot 73: 125

    Google Scholar 

  • Norman SM, Bennett RD, Maier VP, Poling SM (1983) Cytokinins inhibit abscisic acid biosynthesis in Cercospora rosicola. Plant Science Letters 28: 255–263

    CAS  Google Scholar 

  • Nuorteva P (1956) Studies on the effect of the salivary secretions of some Heteroptera and Homoptera on plant growth. Ann Ent Fenn 22: 108–117

    Google Scholar 

  • Nysterakis R (1954) Résistance de Neurospora tetrasperma aux fortes doses d’auxine et relation avec l’hypothèse de l’existence des métabolites antiauxines. C R Acad Sci 238: 143–145

    CAS  Google Scholar 

  • Okuda M, Kato J, Tamura S (1967) Effects of helminthosporol and helminthosporic acid on activation of a-amylase production in barley endosperm. Planta 72: 289–291

    CAS  Google Scholar 

  • Owens LD, Lieberman M, Kunishi A (1971) Inhibition of ethylene production by rhizobitoxine. Plant Physiol 48: 1–4

    PubMed  CAS  Google Scholar 

  • Pegg GF (1973 a) Gibberellin-like substances in the sporophores of Agaricus bisporus (Lange) Imbach. J Exp Bot 24:675–688

    Google Scholar 

  • Pegg GF (1973 b) Occurrence of gibberellin-like growth substances in basidiomycete sporophores. Trans Brit Mycol Soc 61:277–286

    Google Scholar 

  • Pegg GF (1976) The response of ethylene-treated tomato plants to infection by Verticillium alboatrum. Physiological Plant Pathology 9: 215–216

    CAS  Google Scholar 

  • Pegg GF (1976a) Endogenous gibberellins in healthy and diseased plants. In: Heitefuss R, Williams PH (eds) Encyclopedia of plant physiology new ser vol 4. Springer, Berlin Heidelberg New York, pp 592–606

    Google Scholar 

  • Pegg GF (1976b) The involvement of ethylene in plant pathogenesis. In: Heitefuss R, Williams PH (eds) Encyclopedia of plant physiology new ser vol 4 Springer, Berlin Heidelberg New York, pp 582–591

    Google Scholar 

  • Pegg GF (1976c) Endogenous auxins in healthy and diseased plants. In: Heitefuss R, Williams PH (eds) Encyclopedia of plant physiology new ser vol 4. Springer, Berlin Heidelberg New York, pp 560–581

    Google Scholar 

  • Pegg GF, Cronshaw DK (1976) Ethylene production in tomato plants infected with Verticillium alboatrum. Physiol Plant Path 8: 279–295

    CAS  Google Scholar 

  • Perley JE, Stowe BB (1966) On the ability of Taphrina deformans to produce indoleacetic acid from tryptophan by way of tryptamine. Plant Physiol 41: 234–237

    PubMed  CAS  Google Scholar 

  • Phan CT (1962) Contribution a l’étude de la production de l’éthylène par le Pénicillium digitatum Sacc. Rev Gen Bot 69: 505–593

    Google Scholar 

  • Phelps RH, Sequeira L (1968) Auxin biosynthesis in a host-parasite complex. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 197–212

    Google Scholar 

  • Phillips DA, Torrey JG (1972) Studies on cytokinin production by Rhizobium. Plant Physiol 49: 11–15

    PubMed  CAS  Google Scholar 

  • Primrose SB (1976 a) Formation of ethylene by Escherichia coli. J Gen Microbiol 95:159–165

    Google Scholar 

  • Primrose SB (1976 b) Ethylene-forming bacteria from soil and water. J Gen Microbiol 97:343–346

    Google Scholar 

  • Quinn LY, Oates RP, Beers TS (1963) Support of cellulose digestion by Clostridium thermocellum in a kinetin-supplemented basal medium. J Bacteriol 86: 1359

    PubMed  CAS  Google Scholar 

  • Rathbone MP, Hall RH (1972) Concerning the presence of the cytokinin N6(J2-isopentenyl) adenine in cultures of Corynebacterium fasciens. Planta 108: 93–102

    CAS  Google Scholar 

  • Reddy MN, Williams PH (1970) Cytokinin activity in Plasmodiophora brassicae-mfectQd cabbage tissue cultures. Phytopathology 60: 1463–1465

    CAS  Google Scholar 

  • Rivière J (1963 a) Action des micro-organismes de la rhizosphère sur la croissance du blé. II. Isolement et charactérisation des bactéries produisant des phytohormones. Ann Inst Pasteur 105: 303–314

    Google Scholar 

  • Rivière J (1963 b) Rhizosphère et croissance du blé. Ann Agron 14:619–653

    Google Scholar 

  • Roberts JL, Roberts E (1939) Auxin production by soil micro-organisms. Soil Sci 48: 135–139

    CAS  Google Scholar 

  • Rodrigues Pereira AS, Houwen PJW, Deurenberg-Vos H-WJ, Dey EBF (1972) Cytokines and the bacterial symbiosis oï Ardisia species. Z Pflanzenphysiol 68: 170–177

    CAS  Google Scholar 

  • Saftner RA, Evans ML (1974) Selective effects of Victorin on growth and the auxin response in Avena. Plant Physiol 53: 382–383

    PubMed  CAS  Google Scholar 

  • Sakai S, Imaseki H, Uritani I (1970) Biosynthesis of ethylene in sweet potato root tissue. Plant Cell Physiol 11: 737–745

    CAS  Google Scholar 

  • Sandstedt R, Schuster ML (1966) The role of auxins in root-knot nematode-induced growth on excised tobacco stem sections. Physiol Plant 19: 960–967

    CAS  Google Scholar 

  • Sassa T (1970) Promotion and enlargement of cotyledons by cotylenins A and B. Agric Biol Chem 34: 1588–1589

    CAS  Google Scholar 

  • Sassa T, Tojyo T, Munakata K (1970) Isolation of a new plant growth substance with cytokinin activity. Nature (London) 227: 379

    CAS  Google Scholar 

  • Scarbrough E, Armstrong DJ, Skoog F, Frihart CR, Leonard NJ (1973) Isolation of ciszeatin from Corynebacterium fascians cultures. Proc Natl Acad Sci USA 70: 3825–3829

    PubMed  CAS  Google Scholar 

  • Schaller von G (1965) Untersuchungen über den ß-Indolylessigsäure-Gehalt des Speichels von Aphidenarten mit unterschiedlicher Phytopathogenität. Zool Jb Physiol 71: 385–392

    Google Scholar 

  • Schiewer V, Erdmann N, Libbert E (1970) Conversion of indolylglycerol phosphate into tryptophan by extracts of Pisum. Physiol Plant 23: 473–479

    CAS  Google Scholar 

  • Sequeira L (1973) Hormone metabolism in diseased plants. Annu Rev Plant Physiol 24: 353–380

    CAS  Google Scholar 

  • Sequeira L, Williams PH (1964) Synthesis of indoleacetic acid by Pseudomonas solanacearum. Phytopathology 54: 1240–1246

    CAS  Google Scholar 

  • Shaw M, Hawkins AR (1958) The physiology of host - parasite relations. I. A preliminary examination of the level of free endogenous indoleacetic acid in rusted and mildewed cereal leaves and their ability to decarboxylate exogenously supplied radioactive indoleacetic acid. Can J Bot 36: 1–16

    Google Scholar 

  • Skoog F, Schmitz RY (1972) Cytokinins. In: Steward FC (ed) Plant physiology. Physiology of Development: The Hormones. Vol VIB. Academic Press, London New York, pp 181–213

    Google Scholar 

  • Smith AM (1973) Ethylene as a cause of soil fungistasis. Nature 246: 311 - 313

    PubMed  CAS  Google Scholar 

  • Smith AM (1976) Ethylene in soil biology. Ann Rev Phytopathol 14: 53–73

    CAS  Google Scholar 

  • Smith AM, Cook RJ (1974) Implications of ethylene production by bacteria for biological balance of soil. Nature 252: 703–705

    CAS  Google Scholar 

  • Smith KA, Restall SWF (1971) The occurrence of ethylene in anaerobic soil. J Soil Sci 22: 430–443

    CAS  Google Scholar 

  • Smith KA, Rüssel RS (1969) Occurrence of ethylene, and its significance in anaerobic soil. Nature 222: 769–771

    CAS  Google Scholar 

  • Sobieszczanski (1966) Studies on the role of micro-organisms in the life of cultivated plants. III. Origin of the bacterial substances stimulating the growth of plants. Acta Microbiol Poloni 15: 67–84

    CAS  Google Scholar 

  • Somner NF (1961a) Production by Taphrina deformans of substances stimulating cell elongation and division. Physiol Plant 14: 460–469

    Google Scholar 

  • Somner NF (1961 b) Longitudinal and lateral response of etiolated pea sections to indoleacetic acid, gibberellin, kinetin, sucrose and cobaltous chloride. Physiol Plant 14:741–749

    Google Scholar 

  • Spalding DH, Lieberman M (1965) Factors affecting the production of ethylene by Penicillium digitatum. Plant Physiol 40: 645–648

    PubMed  CAS  Google Scholar 

  • Srinivasan PR (1965) The biosynthesis of anthranilate from (3,4-C14) glucose in Escherichia coli. Biochemistry 4: 2860–2865

    PubMed  CAS  Google Scholar 

  • Swart A, Kamerbeek GA (1977) Ethylene production and mycelium growth of the tulip strain of Fusarium oxysporum as influenced by shaking of and oxygen supply to the culture medium. Physiol Plant 39: 38–44

    CAS  Google Scholar 

  • Tamura S, Sakura A (1964) Syntheses of several compounds related to helminthosporol and their plant growth promoting activities. Agric Biol Chem 29: 595–596

    Google Scholar 

  • Thimann KV (1935) On the plant-growth hormone produced by Rhizopus suinus. J Biol Chem 109: 179–291

    Google Scholar 

  • Thimann KV, Grochowska MV (1968) The role of tryptophan and tryptamine as IAA precursors. In: Wightman F, Setterfield G (eds) Biochem physiol plant growth substances. Runge, Ottawa, pp 231–242

    Google Scholar 

  • Thimann KV, Sachs T (1966) The role of cytokinins in the “fasciation” disease caused by Corynebacterium fasciens. Am J Bot 53: 731–739

    CAS  Google Scholar 

  • Thimmappaya B, Cherayil JD (1974) Unique presence of 2-methylthio-ribosylzeatin in the transfer ribonucleic acid of the bacterium Pseudomonas aeruginosa. Biochem Biophys Res Commun 60: 665–672

    PubMed  CAS  Google Scholar 

  • Thomas KC, Spencer M (1977) L-Methionine as an ethylene precursor in Saccharomycescerevisiae. Can J Microbiol 23: 1669–1674

    PubMed  CAS  Google Scholar 

  • Truffa-Bachi P, Cohen GN (1968) Some aspects of amino acid biosynthesis in microorganisms. Ann Rev Biochem 37: 79–108

    PubMed  CAS  Google Scholar 

  • Turfitt GF (1941) A new method for the determination of phytohormone activity. Biochem J 35: 237–244

    PubMed  CAS  Google Scholar 

  • Turner EM, Wright M, Ward T, Osborne DJ, Self R (1975) Production of ethylene and other volatiles and changes in cellulose and laccase activities during the life cycle of the cultivated mushroom, Agaricus bisporus. J Gen Microbiol 91: 167–176

    Google Scholar 

  • Upper CD, Helgeson JP, Kemp JD, Schmidt CJ (1970) Gas liquid chromatographic isolation of cytokinins from natural sources. Plant Physiol 45: 543–547

    PubMed  CAS  Google Scholar 

  • Vander Molen GE, Labavitch JM, Strand LL, Devay JE (1983) Pathogen-induced vascular gels: ethylene as a host intermediate. Physiol Plantarum 59: 573–580

    Google Scholar 

  • Van Staden J (1975) Cytokinins from larvae in Erythrina latissima galls. Plant Sci Lett 5: 227–230

    Google Scholar 

  • Van Staden J, Dimalia GG (1977) A comparison of the endogenous cytokinins in the roots and xylem exudate of nematode-resistant and susceptible tomato cultivars. J Exp Bot 28: 1351–1356

    Google Scholar 

  • Van Sumere CF, Van Sumere-De Preter C, Vining LL, Ledingham GA (1957) Coumarins and phenolic acids in the uredospores of wheat stem rust. Can J Microbiol 3: 847–862

    Google Scholar 

  • Viglierchio DR (1971) Nematodes and other pathogens in auxin-related plant growth disorders. Bot Rev 37: 1–21

    CAS  Google Scholar 

  • Viglierchio DR, Yu PK (1968) Plant growth substances and parasitic nematodes. II. Host influence on auxin content. Exp Parasitol 23: 88–95

    Google Scholar 

  • Ward T, Turner EM, Osborne DJ (1978) Evidence for the production of ethylene by the mycelium of Agaricus bisporus and its relationship to sporocarp development. J Gen Microbiol 104: 23–30

    CAS  Google Scholar 

  • Wightman F, Lighty DL (1982) Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol Plant 55: 17–24

    CAS  Google Scholar 

  • Williams PH, Reddy MN, Strandberg JO (1969) Growth of non-infected and Plasmodiophora brassicae-infected cabbage callus in culture. Can J Bot 47: 1217–1221

    Google Scholar 

  • Williamson CE (1950) Ethylene, a metabolic product of diseased or injured plants. Phytopathology 40: 205–208

    CAS  Google Scholar 

  • Wolf FT (1956) The production of indolacetic acid by cedar apple rust fungus and its identification by paper chromatography. Phytopathol Z 26: 219–233

    CAS  Google Scholar 

  • Wood DA, Hammond JBW (1977) Ethylene production by axenic fruiting cultures of Agaricus bisporus. Appl Environ Microbiol 34: 228–229

    PubMed  CAS  Google Scholar 

  • Yamada Y, Nishimura S, Ishikura H (1971) The presence of 2 methylthio-N6 ( J2-isopentenyl) adenosine in leucine, tryptophan and cysteine tRNAs from Escherichia coli. Biochim Biophys Acta 247: 170–174

    Google Scholar 

  • Yang SF (1974) Biochemistry of ethylene: biosynthesis and metabolism. In: Runeckles VC, Sondheimer E, Walton DC (eds) Recent advances in phytochemistry Vol 7. Academic Press, London New York, pp 131–164

    Google Scholar 

  • Yang SF, Baur AH (1972) Biosynthesis of ethylene in fruit tissues. In: Carr DC (ed) Plant growth substances 1970. Springer, Berlin Heidelberg New York, pp 510–517

    Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants.

    Google Scholar 

  • Ann Rev Plant Physiol 35:155–189

    Google Scholar 

  • Yu PK, Viglierchio DR (1964) Plant growth substances and parasitic nematodes. I. Root knot nematodes and tomato. Exp Parasitol 15: 242–248

    Google Scholar 

  • Zeigler RS, Powell LE, Thurston HD (1980) Gibberellin A4 production by Sphaceloma manihoticola, causal agent of Cassava superelongation disease. Phytopathology 70: 589–593

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Pegg, G.F. (1985). Pathogenic and Non-pathogenic Microorganisms and Insects. In: Pharis, R.P., Reid, D.M. (eds) Hormonal Regulation of Development III. Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67734-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67734-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67736-6

  • Online ISBN: 978-3-642-67734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics