Skip to main content

Water Relations and Plant Hormones

  • Chapter
Hormonal Regulation of Development III

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 11))

Abstract

Water is required for all aspects of plant growth and development, the control of rates of water loss and water uptake is of vital importance to the organism. Plants exert considerable control over their water status through morphological and behavioral adaptations. Typical morphological adaptations are a thicker epicuticular wax layer and deeper root system. Short-term control of water status by changes in stomatal aperature, and long-term strategies of dormancy or ephemeral growth habit also increase plant survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB (1972) Biosynthesis and mechanism of action of ethylene. Annu Rev Plant Physiol 23: 259–292

    CAS  Google Scholar 

  • Abeles FB (1973) Ethylene in plant biology. Academic Press, New York

    Google Scholar 

  • Abeles FB, Heggestad HE (1973) Ethylene: an urban air pollutant. J Air Pollut Control Assoc 23: 517–521

    PubMed  CAS  Google Scholar 

  • Acevedo E (1975) The growth of maize (Zea mays L.) under field conditions as affected by its water relations. Ph.D. Thesis Univ Davis, Cal Acevedo E, Hsiao TC, Henderson DW (1971) Immediate and subsequent growth responses of maize leaves to changes in water status. Plant Physiol 48: 631–636

    Google Scholar 

  • Ackerson RC (1980) Stomatal response of cotton to water stress and abscisic acid as affected by water stress history. Plant Physiol 65: 455–459

    PubMed  CAS  Google Scholar 

  • Ackerson RC (1981) Osmoregulation in cotton in response to water stress. II. Leaf carbohydrate status in relation to osmotic adjustment. Plant Physiol 67: 489–493

    PubMed  CAS  Google Scholar 

  • Ackerson RC, Hebert RR (1981) Osmoregulation in cotton in response to water stress. I. Alterations in photosynthesis, leaf conductance, translocation and ultrastructure. Plant Physiol 67: 484–488

    Google Scholar 

  • Adams DO, Yang SF (1979) Ethylene biosynthesis: Identification of 1-aminocyclopro-Pane-1-car boxy lie acid as an intermediate in the conversion of methionine to ethylene. Proc Natl Acad Sci USA 76: 170–174

    PubMed  CAS  Google Scholar 

  • Adato I, Gazit S (1974) Water-deficit stress, ethylene production and ripening in avocado fruits. Plant Physiol 53: 45–46

    PubMed  CAS  Google Scholar 

  • Adedipe NO, Hunt LA, Fletcher RA (1971) Effects of benzyladenine on photosynthesis, growth and senescence of the bean plant. Physiol Plant 25: 151–153

    CAS  Google Scholar 

  • Aharoni N, Blumenfeld A, Richmond AE (1977) Hormonal activity in detached lettuce leaves as affected by leaf water content. Plant Physiol 59: 1169–1173

    PubMed  CAS  Google Scholar 

  • Alberta Institute of Agrologists (1971) Agriculture and the environment-a handbook. Alta Inst Agrol Edmonton, Alta pp 52–54

    Google Scholar 

  • Alvim P (1960 a) Moisture stress as a requirement for flowering of coffee. Science 132:354 Alvim P (1960 b) Net assimilation rate and growth behavior of beans as affected by gibberellic acid, urea and sugar sprays. Plant Physiol 35: 285–288

    Google Scholar 

  • Anderson LWJ (1978) Abscisic acid induces formation of floating leaves in the heterophyllous aquatic angiosperm Potamogeton nodosus. Science 201: 1135–1138

    PubMed  CAS  Google Scholar 

  • Andres J, Smith H (1976) Evidence for a rapid effect of abscisic acid on amino acid metabolism in Lemna. Plant Sci Lett 6: 315–318

    CAS  Google Scholar 

  • Aspinall D (1965) The effects of soil moisture stress on the growth of barley. II. Grain growth. Aust J Agric Res 16: 265–275

    Google Scholar 

  • Aspinall D (1980) Role of abscisic acid and other hormones in adaptation to water stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley-Interscience,

    Google Scholar 

  • New York, pp 155–172 Aspinall D, Husain I (1970) The inhibition of flowering by water stress. Aust J Biol Sci23: 925–936

    Google Scholar 

  • Aspinall D, Paleg LG (1981) Proline accumulation: physiological aspects. In Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 205–241

    Google Scholar 

  • Aspinall D, Singh TN, Paleg LG (1973) Stress metabolism. V. Abscisic acid and nitrogen metabolism in barley and Lolium temulentum L. Aust J Biol Sci 26: 319–327

    Google Scholar 

  • Back A, Bittner S, Richmond AE (1972) The effect of abscisic acid on the metabolism of kinetin in detached leaves of Rumex pulcher. J Exp Bot 23: 744–750

    CAS  Google Scholar 

  • Barber DA, Elbert M, Evans NTS (1962) The movement of 1502 through barley and rice plants. J Exp Bot 13: 397–403

    CAS  Google Scholar 

  • Barley KP (1962) The effects of mechanical stress on the growth of roots. J Exp Bot 13: 95–110

    Google Scholar 

  • Barlow EWR, Munns R, Scott NS, Reisner AH (1977) Water potential, growth and polyribosome content of the stressed wheat apex. J Exp Bot 28: 909–916

    Google Scholar 

  • Barlow EWR, Munns RE, Brady CJ (1980) Drought responses of apical meristems. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley-Interscience, New York, pp 191–205

    Google Scholar 

  • Barta AL (1980) Regrowth and alcohol dehydrogenase activity in waterlogged alfalfa and birdsfoot trefoil. Agron J 72: 1017–1020

    CAS  Google Scholar 

  • Bauer R, Huber W, Sankhla N (1976) Effect of abscisic acid on photosynthesis in Lemna minor L. Z Pflanzenphysiol 77: 237–246

    CAS  Google Scholar 

  • Beardsell MF, Cohen D (1975) Relationships between leaf water status, abscisic-acid levels, and stomatal resistance in maize and sorghum. Plant Physiol 56: 207–212

    PubMed  CAS  Google Scholar 

  • Begg JE, Turner NC (1976) Crop water deficits. Adv Agron 28: 161–217

    CAS  Google Scholar 

  • Bellandi DM, Dorffling K (1974 a) Transport of abscisic acid-2-C-14 in intact pea seedlings. Physiol Plant 32: 365–368

    Google Scholar 

  • Bellandi DM, Dorffling K (1974b) Effect of abscisic acid and other plant hormones on growth of apical and lateral buds of seedlings. Physiol Plant 32: 369–372

    CAS  Google Scholar 

  • Bengtson C, Falk SO, Larsson S (1977) The after-effect of water stress on transpiration rate and changes in abscisic acid content of young wheat plants. Physiol Plant 41: 149–154

    CAS  Google Scholar 

  • Ben-Yehoshua S, Alono B (1974) Effect of water stress on ethylene production by detached leaves of Valencia orange ( Citrus sinensis Osbeck ). Plant Physiol 53: 863–865

    Google Scholar 

  • Benzioni A, Mizrahi Y, Richmond AE (1974) Effect of kinetin on plant response to salinity. New Phytol 73: 315–319

    CAS  Google Scholar 

  • Bergman HF (1920) The relation of aeration to the growth and activity of roots and its influence on the ecesis of plants in swamps. Ann Bot 34: 13–33

    Google Scholar 

  • Bergman HF (1959) Oxygen deficiency as a cause of disease in plants. Bot Rev 25: 417–485

    CAS  Google Scholar 

  • Beyer EM (1973) Abscission support for a role of ethylene modification of auxin transport. Plant Physiol 52:1–5 Beyer

    Google Scholar 

  • EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58: 2268–2271

    Google Scholar 

  • Beyer EM (1978) Abscission: The initial effect of ethylene is in the leaf blade. Plant Physiol 55: 322–327

    Google Scholar 

  • Beyer EM, Morgan PW (1969) Ethylene modification of an auxin pulse in cotton stem sections. Plant Physiol 44: 1690–1694

    PubMed  CAS  Google Scholar 

  • Bilan MV (1960) Root development of loblolly pine seedlings in modified environments. Stephen F Austin State Coll For Bull 4

    Google Scholar 

  • Biscoe PV, Unsworth MH, Pickney HR (1973) The effects of low concentrations of sulphur dioxide on stomatal behavior in Vicia faba. New Phytol 72: 1299–1306

    CAS  Google Scholar 

  • Blake J, Ferrell WK (1977) The association between soil and xylem water potential, leaf resistance, and abscisic acid content in droughted seedlings of Douglas-fir ( Pseudotsuga menziesii ). Physiol Plant 39: 106–109

    Google Scholar 

  • Blake TJ, Reid DM (1981) Ethylene, water relations and tolerance to waterlogging of three Eucalyptus species. Aust J Plant Physiol 8: 497–505

    CAS  Google Scholar 

  • Bolton EF, Erickson AE (1970) Ethanol concentration in tomato plants durings soil flooding. Agron J 62: 220–224

    CAS  Google Scholar 

  • Borgstrom G (1973) (1939) in Kgl Fysigr Sellsk Lund Ferh 9, 135, cited on p 148 of Abeles FB

    Google Scholar 

  • Borohov A, Tirosh T, Halevy AH (1976) Abscisic acid content of senescing petals on cut rose flowers as affected by sucrose and water stress. Plant Physiol 58: 175–178

    PubMed  CAS  Google Scholar 

  • Boussiba S, Richmond AE (1976) Abscisic acid and the after-effect of stress in tobacco plants. Planta 129: 217–219

    CAS  Google Scholar 

  • Boyer JS (1968) Relationship of water potential to growth of leaves. Plant Physiol 43: 1056–1062

    PubMed  CAS  Google Scholar 

  • Boyer JS (1970) Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol 46: 233–235

    PubMed  CAS  Google Scholar 

  • Boyer JS (1971) Nonstomatal inhibition of photosynthesis in sunflower at low leaf water potentials and high light intensities. Plant Physiol 48: 532–536

    PubMed  CAS  Google Scholar 

  • Boyer JS (1976) Water deficits and photosynthesis. In: Kozlowski TT (ed) Water deficits and plant growth Vol IV. Academic Press, New York, pp 153–190

    Google Scholar 

  • Bradbury D, Ennis WB Jr (1952) Stomatal closure in kidney bean plants treated with ammonium 2,4-dichlorophenoxyacetate. Am J Bot 39: 324–328

    CAS  Google Scholar 

  • Bradford KJ (1983 a) Effects of soil flooding on leaf gas exchange of tomato plants. Plant Physiol 73:475–479

    Google Scholar 

  • Bradford KJ (1983 b) Involvement of plant growth substances in the alteration of leaf gas exchange of flooded plants. Plant Physiol 73:480–483

    Google Scholar 

  • Bradford KJ, Dilley DR (1978) Effects of root anaerobiosis on ethylene production, epinasty and growth of tomato plants. Plant Physiol 61: 506–509

    PubMed  CAS  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Stomatal behaviour and water relations of water-logged tomato plants. Plant Physiol 70: 1508–1513

    PubMed  CAS  Google Scholar 

  • Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-l-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65: 322–326

    PubMed  CAS  Google Scholar 

  • Bradford KJ, Yang SF (1981) Physiological responses of plants to waterlogging. Hortic Sci 16: 25–30

    CAS  Google Scholar 

  • Brown DCW, Thorpe TA (1980) Changes in water potential and its components during shoot formation in tobacco callus. Physiol Plant 49: 83–87

    Google Scholar 

  • Brown JW (1946) Effect of 2,4-dichlorophenoxyacetic acid on the water relations, the accumulation and distribution of solid matter and the respiration of bean plants. Bot Gaz 107: 332–343

    CAS  Google Scholar 

  • Brown R (1947) The gaseous exchange between root and the shoot of the seedling of Cucurbita pepo. Ann Bot NS 11:417–437 Brown KW, Jordan WR, Thomas JC (1976) Water stress induced alterations of the stomatal response to decreases in leaf water potential. Physiol Plant 37:1–5 Brown

    Google Scholar 

  • WGE, Lacate DS (1961) Rooting habit of white and red pine. Can Dept For, For Res Note 108 Browning G (1973) Flower bud dormancy in Coffea arabica L. II. Relation of cytokinins in xylem sap and flower buds to dormancy-release. J Hortic Sci 48: 297–310

    Google Scholar 

  • Browning G (1974) 2-chloroethanephosphoric acid reduces transpiration and stomatal opening in Coffea arabica L. Planta 121:175–179

    Google Scholar 

  • Bumbieris M (1976) The role of Phytophthora cryptogea and waterlogging in a decline of Pinus radiata. Aust J Bot 24: 703–710

    Google Scholar 

  • Burg SP, Burg EA (1966) The interaction between auxin and ethylene and its role in plant growth. Proc Natl Acad Sci USA 55: 262–269

    PubMed  CAS  Google Scholar 

  • Burg SP, Burg EA (1967) Inhibition of polar auxin transport by ethylene. Plant Physiol 42: 1224–1228

    PubMed  CAS  Google Scholar 

  • Burg SP, Burg EA (1968) Auxin-stimulated ethylene formation: its relationship to auxin-inhibited growth, root geotropism, and other plant processes. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, p 1275

    Google Scholar 

  • Burrows WJ, Carr DJ (1969) Effects of flooding the root system of sunflower plants on the cytokinin content in the xylem sap. Physiol Plant 22: 1105–1112

    PubMed  CAS  Google Scholar 

  • Butcher DN (1963) The presence of gibberellins in excised tomato roots. J Exp Biol 14: 272–280

    CAS  Google Scholar 

  • Bystrom BG, Glater RB, Scott FM, Bowler ESC (1968) Leaf surface of Beta vulgaris-electron microscope study. Bot Gaz 129: 133–138

    Google Scholar 

  • Caldwell MM (1976) Root extension and water absorption. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Springer, Berlin Heidelberg New York, pp 59–85

    Google Scholar 

  • Carmi A, Koller D (1978) Effects of the roots on the rate of photosynthesis in primary leaves of bean ( Phaseolus vulgaris L. ). Photosynthetica 12: 178–184

    Google Scholar 

  • Carr DJ, Reid DM (1968) The physiological significance of the synthesis of hormones in roots and of their export to the shoot system. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1169–1185

    Google Scholar 

  • Carr DJ, Reid DM, Skene KGM (1964) The supply of gibberellins from the root to the shoot. Planta 63: 382–392

    CAS  Google Scholar 

  • Chadwick AV, Burg SP (1967) An explanation of the inhibition of root growth caused by indole–3-acetic acid. Plant Physiol 42: 415–420

    PubMed  CAS  Google Scholar 

  • Chadwick AV, Burg SP (1970) Regulation of root growth by auxin-ethylene interaction. Plant Physiol 45: 192–200

    PubMed  CAS  Google Scholar 

  • Childers NF, White DG (1942) Influence of submersion of the roots on transpiration, apparent photosynthesis and respiration of young apple trees. Plant Physiol 17: 603–618

    PubMed  CAS  Google Scholar 

  • Chin TY, Beevers L (1970) Changes in endogenous growth regulators in Nasturtium leaves during senescence. Planta 92: 178–188

    CAS  Google Scholar 

  • Chin T-Y, Meyer MM, Beevers L (1969) Abscisic acid stimulated rooting of stem cuttings. Planta 88: 192–196

    CAS  Google Scholar 

  • Clarkson DT, Robards AW, Sanderson J, Peterson CA (1978) Permeability studies on epidermal-hypodermal sleeves isolated from roots of Allium cepa (onion). Can J Bot 56: 1526–1532

    CAS  Google Scholar 

  • Cleland R (1967) A dual role of turgor pressure in auxin-induced cell elongation in Avena coleoptiles. Planta 77: 182–191

    CAS  Google Scholar 

  • Clemens J, Pearson CJ (1977) The effect of waterlogging on the growth and ethylene content of Eucalyptus robusta SM. ( Swamp Mahogany ). Oecologia 29: 249–255

    Google Scholar 

  • Clemens J, Kirk A-M, Mills PD (1978) The resistance of waterlogging of three Eucalyptus species. Oecologia 34: 125–131

    Google Scholar 

  • Clough BF, Milthorpe FL (1975) Effects of water deficit on leaf development in tobacco. Aust J Plant Physiol 2: 291–300

    Google Scholar 

  • Collins JC, Kerrigan AP (1974) The effect of kinetin and abscisic acid on water and ion transport in isolated maize roots. New Phytol 73: 309–314

    CAS  Google Scholar 

  • Colquhoun AJ, Hillman JR (1972) The effects of abscisic acid on senescence in leaf discs of radish, Raphanus sativus L. Planta 105: 213–224

    Google Scholar 

  • Cooper WC, Rasmussen GK, Rogers BJ, Reece PC, Henry WH (1968) Control of abscission in agricultural crops and its physiological basis. Plant Physiol 43: 1560–1576

    PubMed  CAS  Google Scholar 

  • Coulombe LJ, Paquin R (1959) Effects de l’acide gibbérellique sur le métabolisme des plantes. Can J Bot 37: 897–901

    CAS  Google Scholar 

  • Coult DA (1964) Observations on gas movement in the rhizome of Menyanthes trifoliata L. with comments on the role of the endodermis. J Exp Bot 15: 205 — 218

    CAS  Google Scholar 

  • Cracker LE, Abeles FB (1969) Abscission: Role of abscisic acid. Plant Physiol 44: 1144–1149

    Google Scholar 

  • Cram WJ, Pitman MG (1972) The actions of abscisic acid on ion uptake and water flow in plant roots. Aust J Biol Sci 25: 1125–1132

    CAS  Google Scholar 

  • Crawford RMM (1974) Tree-root survival under flooding, concrete, traffic and gas leakage. In: Wright TWJ (ed) Tree growth in the landscape. Univ London, London, pp 10–13

    Google Scholar 

  • Crawford RMM, Tyler PD (1969) Organic acid metabolism in relation to flooding tolerance in roots. J Ecol 57: 235–244

    Google Scholar 

  • Crozier A, Reid DM (1971) Do roots synthesize gibberellins? Can J Bot 49: 967–975

    CAS  Google Scholar 

  • Crozier A, Reid DM (1972) Gibberellin metabolism in the roots of Phaseolus coccineus seedlings. In: Carr DJ (ed) Plant growth substances 1970. Springer, Berlin Heidelberg New York, pp 414–419

    Google Scholar 

  • Cummins WR, Kende H, Raschke K (1971) Specificity and reversibility of the rapid stomatal response to abscisic acid. Planta 99: 347–351

    CAS  Google Scholar 

  • Currie ME, Weete JD, Peterson CM (1978) Effects of plant hormones on wax synthesis on cotton leaves. Plant Physiol (Suppl) 61: 106

    Google Scholar 

  • Cutler JM, Rains DW (1978) Effects of water stress and hardening on the internal water relations and osmotic constituents of cotton leaves. Physiol Plant 42: 261–266

    Google Scholar 

  • Cutler JM, Rains DW, Loomis RS (1977) The importance of cell size in the water relations of plants. Physiol Plant 40: 255–260

    Google Scholar 

  • Dainty J (1969) The water relations of plants. In: Wilkins MB (ed) The physiology of plant growth and development. McGraw-Hill, London, pp 421–452

    Google Scholar 

  • Dalton FN, Raats PAC, Gardner WR (1975) Simultaneous uptake of water and solutes by plant roots. Agron J 67: 334–339

    CAS  Google Scholar 

  • Damptey HB, Aspinall D, Coombe BG (1978) Water deficit and inflorescence development in Zea mays L. The role of the developing tassel. Ann Bot 42: 849–854

    Google Scholar 

  • Darbyshire B (1971a) Changes in indoleacetic acid oxidase activity associated with plant water potential. Physiol Plant 25: 80–84

    CAS  Google Scholar 

  • Darbyshire B (1971b) The effect of water stress on indoleacetic acid oxidase in pea plants. Plant Physiol 47: 65–67

    PubMed  CAS  Google Scholar 

  • Darbyshire B, Steer BT (1973) Dehydration of macromolecules. I. Effect of dehydration-rehydration on indoleacetic acid oxidase, ribonuclease, ribulosediphosphate carboxylase, and ketose–1-phosphate aldolase. Aust J Biol Sei 26: 591–604

    CAS  Google Scholar 

  • Das VSR, Rao IM, Raghavendra AS (1976) Reversal of abscisic acid induced stomatal closure by benzyl adenine. New Phytol 76: 449–452

    CAS  Google Scholar 

  • Davenport TL, Jordan WR, Morgan PW (1977) Movement and endogenous levels of abscisic acid during water-stress-induced abscission in cotton seedlings. Plant Physiol 59: 1165–1168

    PubMed  CAS  Google Scholar 

  • Davenport TL, Morgan PW, Jordan WR (1980) Reduction of auxin transport capacity with age and internal water deficits in cotton petioles. Plant Physiol 65: 1023–1025

    PubMed  CAS  Google Scholar 

  • Davies WJ (1978) Some effects of abscisic acid and water stress on stomata of Vicia faba L. J Exp Bot 29: 175–182

    CAS  Google Scholar 

  • Davison RM, Young H (1973) Abscisic acid content of xylem sap. Planta 109: 95–98

    CAS  Google Scholar 

  • Den Uyl D (1961) Some observation on bald cypress in Indiana. Ecology 42: 841–843

    Google Scholar 

  • Dhindsa RS, Beasley CA, Ting IP (1975) Osmoregulation in cotton fiber. Accumulation of potassium and malate during growth. Plant Physiol 56: 394–398

    Google Scholar 

  • Dittrich P, Raschke K (1977) Malate metabolism in isolated epidermis of Commelina communis L. in relation to stomatal functioning. Planta 134: 77–81

    CAS  Google Scholar 

  • Dorffling K, Sonka B, Tietz D (1974) Variation and metabolism of abscisic acid in pea seedlings during and after water stress. Planta 121: 57–66

    Google Scholar 

  • Dorffling K, Streich J, Kruse W, Muxfeldt B (1977) Abscisic acid and the after-effect of water stress on stomatal opening potential. Z Pflanzenphysiol 81: 43–56

    Google Scholar 

  • Dorffling K, Tietz D, Streich J, Ludewig M (1980) Studies on the role of abscisic acid in stomatal movements. In: Skoog F (ed) Plant growth substances 1979. Springer, Berlin Heidelberg New York, pp 274–285

    Google Scholar 

  • Douglas TJ, Paleg LG (1974) Plant growth retardants as inhibitors of sterol biosynthesis in tobacco seedlings. Plant Physiol 54: 238–245

    PubMed  CAS  Google Scholar 

  • Drakeford DR, Reid DM (1984) Changes in the ability of plants to alter the pH of the flooding medium as an early symptom of flooding stress in Helianthus annuus Can J Bot 62: 2417–2422

    Google Scholar 

  • Duniway JM, Durbin RD (1971) Detrimental effect of rust infection on the water relations of bean. Plant Physiol 48: 69–72

    PubMed  CAS  Google Scholar 

  • Durley RC, Bewley JD, Railton ID, Pharis RP (1976) Effects of light, abscisic acid, and 6N-benzyladenine on the metabolism of 3H-gibberellin A4 in seeds and seedlings of lettuce, cv. Grand Rapids. Plant Physiol 57: 699–703

    Google Scholar 

  • Duthion C, Mingeau M (1976) Effects of excess moisture on plant behavior and their consequences. Ann Agron 27 (2): 221–246

    CAS  Google Scholar 

  • Ebell LF (1967) Cone production induced by drought in potted Douglas-fir. Bi-monthly Res. Note Can Dep For Rural Dev 23: 26–27

    Google Scholar 

  • Edelman J, Hall MA (1964) Effect of growth hormones on the development of invertase associated with cell walls. Nature 201: 296–297

    PubMed  CAS  Google Scholar 

  • Eder A, Huber W (1977) About the effect of abscisic acid and kinetin on biochemical changes in Pennisetum typhoides during stress conditions. Z Pflanzenphysiol 84: 303–311

    CAS  Google Scholar 

  • Eder A, Huber W, Sankhla N (1977) Interaction between salinity and ethylene in nitrogen metabolism of Pennisetum typhoides seedlings. Biochem Physiol Pflanz 171: 93–100

    CAS  Google Scholar 

  • El-Antably HMM, Wareing PF (1966) Stimulation of flowering in certain short day plants by abscision. Nature 210: 328–329

    CAS  Google Scholar 

  • El-Beltagy AS, Hall MA (1974) Effect of water stress upon endogenous ethylene levels in Vicia faba. New Phytol 73: 47–60

    CAS  Google Scholar 

  • Eliasson L (1975) Effect of indoleacetic acid on the abscisic acid level in stem tissue. Physiol Plant 34: 117–120

    CAS  Google Scholar 

  • Erlandsson G, Pattersson S, Svensson S (1978) Rapid effects of abscisic acid on ion uptake in sunflower roots. Physiol Plant 43: 380–384

    CAS  Google Scholar 

  • Evans LT (1969) The induction of flowering; some case histories. MacMillan, Melbourne Evans NTS, Elbert M (1960) Radioactive oxygen in the study of gas transport down the root of Vicia faba L. J Exp Bot 11: 246–257

    Google Scholar 

  • Fabijan D, Taylor JS, Reid DM ( 1981 b) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) II. Action of gibberellins, cytokinins, auxins and ethylene. Physiol Plant 53: 589–597

    Google Scholar 

  • Fabijan DM, Plumb Dhindsa P, Reid DM (1981a) Effects of two growth retardants on tissue permeability in Pisum sativum and Beta vulgaris. Planta 152: 481–486

    CAS  Google Scholar 

  • Feierabend J (1969) Der Einfluß von Cytokininen auf die Bildung von Photosyntheseenzyme in Roggenkeimlingen (Influence of cytokinins on the formation of photosynthe-tic enzymes in rye seedlings). Planta 84: 11–29

    CAS  Google Scholar 

  • Feilding JM (1955) The seasonal and daily elongation of shoots of Monterey pine and the daily elongation of roots. Commonw Aust Timber Bur Leaflet 75

    Google Scholar 

  • Fenton R, Mansfield TA, Wellburn AR (1976) Effects of isoprenoid alcohols or oxygen exchange of isolated chloroplasts in relation to their possible physiological effects on stomata. J Exp Bot 27: 1206–1214

    CAS  Google Scholar 

  • Fenton R, Davies WJ, Mansfield TA (1977) The role of farnesol as a regulator of stomatal opening in Sorghum. J Exp Bot 28: 1043–1053

    CAS  Google Scholar 

  • Ferri MG, Lex A (1948) Stomatal behavior as influenced by treatment with ß-naphthoxy-acetic acid. Contr Boyce Thompson Inst Plant Res 15: 283–290

    CAS  Google Scholar 

  • Fischer RA, Hsiao TL, Hagan RM (1970) After-effect of water stress on stomatal opening potential. I. Techniques and magnitudes. J Exp Bot 21: 371–385

    Google Scholar 

  • Fiscus EL (1975) The interaction between osmotic-and pressure-induced water flow in plant roots. Plant Physiol 55: 917–922

    PubMed  CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28: 89–121

    CAS  Google Scholar 

  • Forrester ML, Krotkov G, Nelson CD (1966) Effect of oxygen on photosynthesis, photo-respiration and respiration in detached leaves. II. Corn and other monocotyledons. Plant Physiol 41: 428–531

    Google Scholar 

  • Forsythe W, Pinghinat AM (1971) Tolerance of the bean cultivar 27-R to flooding conditions. Turrialba 21: 228–231

    Google Scholar 

  • Fry KE (1972) Inhibition of ferricyanide reduction in chloroplasts prepared from water-stressed cotton leaves. Crop Sei 12: 698–701

    CAS  Google Scholar 

  • Fujino M (1967) Role of adenosinetriphosphate and adenosinetriphosphatase in stomatal movement. Sei Bull Fac Edu Nagasaki Univ 18: 1–47

    Google Scholar 

  • Fulton JM, Erickson AE (1964) Relation between soil aeration and ethyl alcohol accumulation in xylem exudate of tomatos. Soil Sei Soc Proc 28: 610–614

    CAS  Google Scholar 

  • Funke GL, de Coeyer F, de Decker A (1938) Biol Jahrb 5: 335

    Google Scholar 

  • Gaither DH, Lutz DH, Forrence LE (1975) Abscisic acid stimulates elongation of excised pea root tips. Plant Physiol 55: 948–949

    PubMed  CAS  Google Scholar 

  • Garcia-Nova F, Crawford RMM (1973) Soil aeration, nitrate reduction and flooding tolerance in higher plants. New Phytol 72: 1031–1039

    Google Scholar 

  • Gaspar T, Smith D, Thorpe TA (1977) Arguments supplémentaires en faveur d’une variation inverse du niveau auxinique au cours des deux premières phases de la rhizo-genèse. CR Acad Sei Paris, 7t.285 Serie D. pp 327–330

    Google Scholar 

  • Gates CT (1955) The response of the young tomato plant to a brief period of water shortage. I. The whole plant and its principal parts. Aust J Biol Sei 8: 196–214

    Google Scholar 

  • Gayler KR, Glasziou KT (1969) Plant enzyme synthesis: hormonal regulation of invertase and peroxidase synthesis in sugar cane. Planta 84: 185–194

    CAS  Google Scholar 

  • Gertman E, Fuchs Y (1972) Effect of abscisic acid and its interactions with other plant hormones on ethylene production in two plant systems. Plant Physiol 50: 194–195

    PubMed  CAS  Google Scholar 

  • Giaquinta RT (1983) Phloem loading of sucrose. Annu Rev Plant Physiol 34: 347–387

    CAS  Google Scholar 

  • Giles KL, Beardsell MF, Cohen D (1974) Cellular and ultrastructural changes in meso-phyll and bundle-sheath cells of maize in response to water stress. Plant Physiol 54: 208–212

    PubMed  CAS  Google Scholar 

  • Gill CJ (1970) The flooding tolerance of woody species-a review. For Abstr 31: 671–688

    Google Scholar 

  • Gill CJ (1974) Tree pre-planting on new reservoir margins. Landscape Design 107: 41–42

    Google Scholar 

  • Glinka Z (1973) Abscisic acid effect on root exudation related to increased permeability to water. Plant Physiol 51: 217–219

    PubMed  CAS  Google Scholar 

  • Glinka Z (1977) Effects of abscisic acid and of hydrostatic pressure gradient on water movement through excised sunflower roots. Plant Physiol 59: 933–935

    PubMed  CAS  Google Scholar 

  • Glinka Z (1980) Abscisic acid promotes both volume flow and ion release to the xylem in sunflower roots. Plant Physiol 65: 537–540

    PubMed  CAS  Google Scholar 

  • Glinka Z, Reinhold L (1971) Abscisic acid raises the permeability of plant cells to water. Plant Physiol 48. 103–105

    PubMed  CAS  Google Scholar 

  • Goeschl JD, Pratt HK (1968) Regulatory roles of ethylene in the etiolated growth habit of Pisum sativum. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, p 1229

    Google Scholar 

  • Goeschl JD, Rappaport L, Pratt HK (1966) Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Plant Physiol 41: 877–884

    PubMed  CAS  Google Scholar 

  • Goldacre PL, Galston AW, Weintraub RL (1953) The effect of substituted phenols on the activity of the indoleacetic acid oxidase of peas. Arch Biochem Biophys 43: 358–373

    PubMed  CAS  Google Scholar 

  • Goldsmith MHM (1968) Comparison of aerobic and anaerobic movement of 3-indole-acetic acid in coleoptiles of oats and corn. In: Wightman F, Setterfield G (eds) Biochemistry and physiology plant growth substances. Runge, Ottawa, pp 1037–1050

    Google Scholar 

  • Gomes ARS, Kozlowski TT (1980) Effects of flooding on Eucalyptus camaldulensis and Eucalyptus globulus seedlings. Oecologia 46: 139–142

    Google Scholar 

  • Grable AR (1966) Soil aeration and plant growth. Adv Agron 18: 57–106

    CAS  Google Scholar 

  • Granatek CH, Cockerline AW (1978) Callus formation versus differentiation of cultured barley embryos: hormonal and osmotic interactions. In vitro 14: 212–217

    Google Scholar 

  • Greacen EL, Oh JS (1972) Physics of root growth. Nat New Biol 235: 24–25

    PubMed  CAS  Google Scholar 

  • Greacen EL, Ponsana P, Barley KP (1976) Resistance to water flow in the roots of cereals. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Springer, Berlin Heidelberg New York, pp 86–100

    Google Scholar 

  • Greenwood DJ (1967) Studies on the transport of oxygen through the stems and roots of vegetable seedlings. New Phytol 66: 337–347

    Google Scholar 

  • Greenwood MS (1981) Reproductive development in loblolly pine. II. The effect of age, gibberellin plus water stress and out-of-phase dormancy on long shoot growth behavior. Am J Bot 9: 1184–1190

    Google Scholar 

  • Grineva GM, Nechiporenko GA (1977) Distribution and conversion of sucrose-U-C14 in corn plants under conditions of flooding. Sov Plant Physiol 24 (1): 32–37

    Google Scholar 

  • Grossenbacher KA (1939) Autonomic cycle of rate of exudation of plants. Am J Bot 26: 107–109

    Google Scholar 

  • Guinn G (1976) Water deficit and ethylene evolution by young cotton bolls. Plant Physiol 57 (3): 403–405

    PubMed  CAS  Google Scholar 

  • Guy RD, Reid DM, Krouse HR (1980) Shifts in carbon isotope ratios of two C3 halophytes under natural and artificial conditions. Oecologia 44: 241–247

    Google Scholar 

  • Hagan RM, Haise HR, Edminster T (1967) Irrigation of agricultural lands. Am Soc Agron, Madison, Wise

    Google Scholar 

  • Halevy AM, Kessler B (1963) Increased tolerance of bean plants to soil drought by means of growth-standing substances. Nature 197: 310–311

    Google Scholar 

  • Hall DM, Jones RL (1961) Physiological significance of surface wax on leaves. Nature 191: 95–96

    Google Scholar 

  • Hall MA, Kapuya JA, Sivakumaran S, John A (1977) The role of ethylene in the response of plants to stress. Pest Sei 8: 217–223

    CAS  Google Scholar 

  • Hanson AD, Nelson CE (1978) Betaine accumulation and [14C] formate metabolism in water-stressed barley leaves. Plant Physiol 62: 305–312

    PubMed  CAS  Google Scholar 

  • Harrison MA, Walton DC (1975) Abscisic acid metabolism in water-stressed bean leaves. Plant Physiol 56: 250–254

    PubMed  CAS  Google Scholar 

  • Härtung W (1977) Der Transport von (2–14C) Abscisinsäure aus dem Wurzelsystem intakter Bohnenkeimlinge in die oberirdischen Teile der Pflanze. Z Pflanzenphysiol 83: 81–84

    Google Scholar 

  • Härtung W, Fufer C (1981) Abscisic and apical dominance in Phaseolus coccineus L., the role of tissue age. Ann Bot 47: 371–375

    Google Scholar 

  • Härtung W, Gimmler H, Heilmann B, Kaiser G (1980) The site of abscisic acid metabolism in mesophyll cell of Spinacia oleracea. Plant Sei Lett 18: 359–364

    Google Scholar 

  • Hatrick AA, Bowling DJF (1973) A study of the relationship between root and shoot metabolism. J Exp Bot 24: 607–613

    Google Scholar 

  • Heide OM (1965) Interaction of temperature, auxins and kinins in the regeneration ability of Begonia leaf cuttings. Physiol Plant 18: 891–920

    CAS  Google Scholar 

  • Heide OM (1968) Stimulation of adventitious bud formation in Begonia leaves by abscisic acid. Nature 219: 960–961

    CAS  Google Scholar 

  • Heilmann B, Härtung W, Gimmler H (1980) The distribution of abscisic acid between chloroplasts and cytoplasm of leaf cells and the permeability of the chloroplast envelope for abscisic acid. Z Pflanzenphysiol 97: 667–678

    Google Scholar 

  • Heinrichs DH (1970) Flooding tolerance of legumes. Can J Plant Sei 50: 435–438

    Google Scholar 

  • Hellmers H, Horton JS, Juhren G, O’Keefe J (1955) Root systems of some chaparral plants in southern California. Ecology 36: 667–678

    Google Scholar 

  • Hemphill DD, Tukey HB (1975) Effect of intermediate mist on abscisic acid levels in Evonymus alatus Sieb.: Leaching vs. moisture stress. Hortscience 10: 369–370

    Google Scholar 

  • Hess CE (1969) Internal and external factors regulating root initiation. In: Whittington WJ (ed) Root growth. Whittington WJ, Buttersworth, London, pp 42–53

    Google Scholar 

  • Hiron RWP, Wright STC (1973) The role of endogenous abscisic acid in the response of plants to stress. J Exp Bot 24: 769–781

    CAS  Google Scholar 

  • Hoad GV (1967) (+)-Abscisin II [(+)-dormin] in phloem exudate of willow. Life Sci 6:1113–1118

    Google Scholar 

  • Hoad GV (1973) Effect of moisture stress on abscisic acid levels in Ricinus communis L. with particular reference to phloem exudate. Planta 113: 367–372

    CAS  Google Scholar 

  • Hoad GV (1975) Effect of osmotic stress on abscisic acid levels in xylem sap of sunflower (.Helianthus annuus L.). Planta 124: 25–29

    CAS  Google Scholar 

  • Hong SG, Sucoff E (1976) Effects of kinetin and root tip removal on exudation and potassium (rubidium) transport in root of honey locust. Plant Physiol 57: 230–236

    PubMed  CAS  Google Scholar 

  • Hook DD, Brown CL (1973) Root adaptations and relative flood tolerance of five hardwood species. For Sei 19: 225–229

    Google Scholar 

  • Hook DD, Crawford RMM (1978) Plant life in anaerobic environments. Ann Arbor Sei, Ann Arbor, Mich ISBN 0-250-40197-5

    Google Scholar 

  • Hook DD, Brown CL, Kormanik PP (1971) Inductive flood tolerance in swamp tupelo (Nyssa sylvatica var biflora ( Walt) Sarg). J Exp Bot 22: 78–89

    Google Scholar 

  • Horton RF (1971) Stomatal opening: the role of abscisic acid. Can J Bot 49: 583–585

    CAS  Google Scholar 

  • Horton RF (1979) Hormonal regulation of stomatal function. In: Singh DN (ed) Structure, function and ecology of stomata. ( Dehra Dun, India ) pp 103–210

    Google Scholar 

  • Horton RF, Moran L (1972) Abscisic acid inhibition of potassium influx into stomatal guard cells. Z Pflanzenphysiol 66: 193–196

    Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24: 519–570

    CAS  Google Scholar 

  • Hsiao TC, Acevedo E, Fereres E, Henderson DW (1976) Stress metabolism; water stress; growth and osmotic adjustment. Philos Trans R Soc Lond B. Biol Sei 273: 479–500

    Google Scholar 

  • Hsiao TC, Fereres E, Acevedo E, Henderson DW (1976) Water stress and dynamics of growth and yield of crop plants. In: Lange OL, Kappen L, Schulze E-D (eds) Water and plant life. Springer, Berlin Heidelberg New York, pp 281–306

    Google Scholar 

  • Huber W (1974) Influence of Na Cl and abscisic acid treatment on protein metabolism and some further enzymes of amino acid metabolism in seedlings of Pennisetum typhoides. Planta 121: 225–235

    CAS  Google Scholar 

  • Huber W, Sankhla N (1973) Eco-physiological studies on Indian arid zone plants. II. Effect of salinity and gibberellin on the activity of the enzymes of amino-acid metabolism in leaves of Pennisetum typhoides.Oecologia 13: 271–277

    Google Scholar 

  • Huber W, Rustagi PN, Sankhla N (1974) Eco-physiological studies on Indian arid zone plants. III. Effect of sodium chloride and gibberellin on the activity of the enzymes of carbohydrate metabolism in leaves of Pennisetum typhoides. Oecologia 15: 77–86

    Google Scholar 

  • Huber W, Sankhla N (1980) Effect of abscisic acid on betaine accumulation in Pennisetum typhoides seedlings. Z Pflanzenphysol 97: 179–182

    CAS  Google Scholar 

  • Hubick KT, Drakeford DR, Reid DM (1982) A comparison of two techniques for growing minimally water-stressed plants. Can J Bot 60: 219–223

    Google Scholar 

  • Huck MG, Klepper B, Taylor HM (1970) Diurnal variations in root diameter. Plant Physiol 45: 529–530

    PubMed  CAS  Google Scholar 

  • Humphries EC, Thorne GN (1864) The effect of root formation on photosynthesis of detached leaves. Ann Bot 28:391–400 Hunt FM (1951) Effects of flooded soil on growth of pine seedlings. Plant Physiol 26: 363–368

    Google Scholar 

  • Hunt PG, Campbell RB, Sojka RE, Parsons JE (1981) Flooding-induced soil and plant ethylene accumulation and water status response of field-grown tobacco. Plant Soil 59: 427–439

    CAS  Google Scholar 

  • Husain I, Aspinall D (1970) Water stress and apical morphogenesis in barley. Ann Bot 34: 393–407

    Google Scholar 

  • Huxter TJ, Reid DM, Thorpe TA (1979) Ethylene production by tobacco ( Nicotiana tabacum) callus. Physiol Plant 46: 374–380

    Google Scholar 

  • Ilan I (1971) Evidence for hormonal regulation of the selectivity of ion uptake by plant cells. Physiol Plant 25: 230–233

    CAS  Google Scholar 

  • Ilan I, Gilad T, Reinhold L (1971) Specific effects of kinetin on the uptake of monovalent cations by sunflower cotyledons. Physiol Plant 24: 337–341

    CAS  Google Scholar 

  • Imber D, Tal M (1970) Phenotypic reversion of Flacca, a wilty mutant of tomato, by abscisic acid. Science 169: 592–593

    PubMed  CAS  Google Scholar 

  • Incol LD, Whitelam GC (1977) The effect of kinetin on stomata in the grass Anthephora pubescens Ness. Planta (Berl) 137: 243–245

    Google Scholar 

  • Itai C, Benzioni A (1976) Water stress and hormonal response. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life. Springer, Berlin Heidelberg New York, pp 225–242

    Google Scholar 

  • Itai C, Vaadia Y (1965) Kinetin-like activity in root exudate of water-stressed sunflower plants. Physiol Plant 18: 941–944

    CAS  Google Scholar 

  • Itai C, Vaadia Y (1971) Cytokinin activity in water-stressed shoots. Plant Physiol 47: 87–90

    PubMed  CAS  Google Scholar 

  • Itai C, Richmond AE, Vaadia Y (1968) The role of root cytokinins during water and salinity stress. Isr J Bot 17: 187–195

    CAS  Google Scholar 

  • Itai C, Weyers JDB, Hillman JR, Meidner H, Willmer C (1978) Abscisic acid and guard cells of Commelina communis L. Nature 271: 652–653

    CAS  Google Scholar 

  • Jackson MB (1979) Rapid injury to peas by soil waterlogging. J Sei Food Agric 30: 143–152

    Google Scholar 

  • Jackson MB, Campbell DJ (1975 a) Movement of ethylene from roots to shoots, a factor in the responses of tomato plants to waterlogging soil conditions. New Phytol 74: 397–406

    Google Scholar 

  • Jackson MB, Campbell DJ (1975 b) Ethylene and waterlogging effects in tomato. Ann Appl Biol 81: 102–105

    Google Scholar 

  • Jackson MB, Campbell DJ (1976) Waterlogging and petiole epinasty in tomato: the role of ethylene and low oxygen. New Phytol 76 (1): 21–30

    CAS  Google Scholar 

  • Jackson MB, Harney PM (1970) Rooting cofactors, indoleacetic acid, and adventitious root initiation in mung bean cuttings ( Phaseolus aureus ). Can J Bot 48: 943–946

    Google Scholar 

  • Jackson MB, Kowalweska AKB (1983) Positive and negative messages from roots in-duce foliar dessication and stomatal closure in flooded pea plants. J Exp Bot 34: 493–506

    CAS  Google Scholar 

  • Jackson MB, Osborne DJ (1970) Ethylene, the natural regulator of leaf abscission. Nature 225: 1019–1022

    PubMed  CAS  Google Scholar 

  • Jackson MB, Gales K, Campbell DJ (1978) Effect of waterlogged soil conditions on the production of ethylene and on water relationships in tomato plants. J Exp Bot 29 (108): 183–193

    CAS  Google Scholar 

  • Jackson WT (1955) Role of adventitious roots in recovery of shoots following flooding of the original root systems. Am J Bot 42: 816–819

    Google Scholar 

  • Jackson WT (1956 a) Flooding injury studied by approach-graft and split-root system techniques. Am J Bot 43:496–502

    Google Scholar 

  • Jackson WT (1956 b) The relative importance of factors causing injury to shoots of flooded tomato plants. Am J Bot 43:637–639

    Google Scholar 

  • Jarvis PG, Jarvis MS (1963) Effects of several osmotic substances on the growth of Lupinus albus seedlings. Physiol Plant 16: 485–500

    CAS  Google Scholar 

  • Jewer PC, Incoll LD (1980) Promotion of stomatal opening in the grass Anthephora pubescens Nees by a range of natural and synthetic cytokinins. Planta 150: 218–221

    CAS  Google Scholar 

  • Jones MM, Turner NC (1978) Osmotic adjustment in leaves of sorghum in response to water deficits. Plant Physiol 61: 122–126

    PubMed  CAS  Google Scholar 

  • Jones RL, Armstrong JE (1971) Evidence for osmotic regulation of hydrolytic enzyme production in germinating barley seeds. Plant Physiol 48: 137–142

    PubMed  CAS  Google Scholar 

  • Jones RJ, Mansfield TA (1970) Suppression of stomatal opening in leaves treated with abscisic acid. J Exp Bot 21: 714–719

    CAS  Google Scholar 

  • Jones RL, Phillips ID J (1966) Organs of gibberellin synthesis in light-grown sunflower plants. Plant Physiol 41: 1381–1386

    PubMed  CAS  Google Scholar 

  • Jordan WR, Ritchie JT (1971) Influence of soil water stress on evaporation, root absorption and internal water status of cotton. Plant Physiol 48: 783–788

    PubMed  CAS  Google Scholar 

  • Jordan WR, Morgan PW, Davenport TL (1972) Water stress enhances ethylene-mediated leaf abscission in cotton. Plant Physiol 50: 756–758

    PubMed  CAS  Google Scholar 

  • Jordan WR, Brown KW, Thomas JC (1975) Leaf age as a determinant in stomatal control of water loss from cotton during water stress. Plant Physiol 56: 595–599

    PubMed  CAS  Google Scholar 

  • Kamienska A, Reid DM (1978) The effect of stem girdling on levels of GA-like substances in sunflower plants. Bot Gaz 139: 18–26

    CAS  Google Scholar 

  • Kappen L, Lange OL, Schulze E-D, Evenari M, Buschbom U (1979) Ecophysiological investigations on lichens of the Negev desert. VI. Annual course of the photosynthetic production of Ramalina maciformis ( Del) Bory. Flora 168: 85–108

    Google Scholar 

  • Kappen L, Lange OL, Schulze E-D, Buschbom U, Evenari M (1980) Ecophysiological investigations on lichens of the Negev desert. VII. The influence of the habitat exposure on dew imbibition and photosynthetic productivity. Flora 169: 216–229

    Google Scholar 

  • Karmoker JL, Van Steveninck RFM (1978) Stimulation of volume flow and ion flux by abscisic acid in excised root systems of Phaseolus vulgaris L. cv. Redland Pioneer. Planta 141: 37–43

    Google Scholar 

  • Karmoker JL, van Steveninck RFM (1979) The effect of abscisic acid on the uptake and distribution of ions in intact seedlings of Phaseolus vulgaris L. cv. Redland Pioneer. Physiol Plant 45: 453–459

    CAS  Google Scholar 

  • Kasamo K, Shimomura T (1981) Effect of cold osmotic shock on K+ efflux from Nicotiana tabacum L. leaf discs induced by abscisic acid and ionophores. Plant Cell Physiol 22: 939–951

    CAS  Google Scholar 

  • Kaufmann MR (1968) Water relations of pine seedlings in relation to root and shoot growth. Plant Physiol 43: 281–288

    PubMed  CAS  Google Scholar 

  • Kaufmann MR (1976) Water transport through plants: current perspectives. In: Wardlaw JF, Passioura JB (eds) Transport of transfer processes in plants. Academic, New York, pp 313–327

    Google Scholar 

  • Kaufman PB, Ghosheh N, Ikuma H (1968) Promotion of growth and invertase activity by gibberellic acid in developing Avena internodes. Plant Physiol 43: 29–34

    PubMed  CAS  Google Scholar 

  • Kawase M (1971) Causes of centrifugal root promotion. Physiol Plant 25: 64–70

    CAS  Google Scholar 

  • Kawase M (1972a) Effect of flooding on ethylene concentration in horticultural plants. J Am Soc Hortic Sci 97: 584–588

    Google Scholar 

  • Kawase M (1972a) Submission increases ethylene and stimulates rooting in cuttings. Proc Int Plant Propag Soc 22: 360–366

    Google Scholar 

  • Kawase M (1972b) Effect of flooding on sunflower plants. Plant Physiol (Suppl) 49: 116

    Google Scholar 

  • Kawase M (1973) Can ethylene cause flooding damage? Hortscience 8: 256

    Google Scholar 

  • Kawase M (1974) Role of ethylene in induction of flooding damage in sunflower. Physiol Plant 31: 29–38

    CAS  Google Scholar 

  • Kawase M (1976) Ethylene accumulation in flooded plants. Physiol Plant 36: 236–241

    CAS  Google Scholar 

  • Kawase M (1979) Role of cellulase in aerenchyma development in sunflower. Am J Bot 66: 183–190

    CAS  Google Scholar 

  • Kawase M, Whitmoyer RE (1980) Aerenchyma development in waterlogged plants. Am J Bot 67: 18–22

    Google Scholar 

  • Kefford NP (1962) Auxin-gibberellin interaction. Plant Physiol 37: 380–386

    PubMed  CAS  Google Scholar 

  • Kemble AR, Macpherson HT (1954) Liberation of amino acids in perennial rye grass during wilting. Biochem J 58: 46–49

    PubMed  CAS  Google Scholar 

  • Kende H (1965) Kinetin-like factors in the root exudate of sunflowers. Proc Natl Acad Sci USA 53: 1302–1307

    PubMed  CAS  Google Scholar 

  • Kennedy HE Jr, Krinard RM (1974) Mississippi river floods impact on natural hardwood forests and plantations. US For Ser Res Note 50: 177

    Google Scholar 

  • Kinet JM, Bodson M, Jacqmard A, Bernier G (1975) The inhibitor of flowering by abscisic acid in Sinapis alba L. Z Pflanzenphysiol 77: 70–74

    CAS  Google Scholar 

  • King RW (1976) Implications for plant growth of the transport of regulatory compounds in phloem and xylem. In: Wardlaw JF, Passioura JB (eds) Transport and transfer processes in plants. Academic Press, New York, pp 415–431

    Google Scholar 

  • King RW, Evans LT (1977) Inhibition of flowering in Lolium temulentum L. by water stress: A role for abscisic acid. Aust J Plant Physiol 4: 225: 233

    Google Scholar 

  • Kirkham MB, Gardner WR, Gerloff GC (1972) Regulation of cell division and cell enlargement by turgor pressure. Plant Physiol 49: 961–962

    Google Scholar 

  • Kirkham MB, Garnder WR, Gerloff GC (1974) Internal water status of kinetin-treated, salt-stressed plants. Plant Physiol 53: 241–243

    PubMed  CAS  Google Scholar 

  • Kosmakova VE, Zvereva EG (1973) In: Transport of assimilates and deposition of substances in storage in plants (in Russian). Vladivostok, p 204 Kozlowski TT (1964) Water metabolism in plants. Harper, New York Kozlowski TT (1976) Water supply and leaf shedding. In: Kozlowski TT (ed) Water deficits and plant growth. Academic Press, New York, pp 191–231

    Google Scholar 

  • Kozlowski TT, Pallardy SG (1979) Stomatal responses of Fraxinus pennsylvanica seedlings during and after flooding. Physiol Plant 46: 155–158

    Google Scholar 

  • Kramer PJ (1940) Causes of decreased absorption of water by plants in poorly aerated media. Am J Bot 27: 216–220

    CAS  Google Scholar 

  • Kramer PJ (1951) Causes of injury to plants resulting from flooding of the soil. Plant Physiol 29: 722–736

    Google Scholar 

  • Kramer PJ (1969) Plant and soil water relationships: A modern synthesis. McGraw-Hill, New York

    Google Scholar 

  • Kramer PJ (1974) Fifty years of progress in water relations research. Plant Physiol 54: 463–471

    PubMed  CAS  Google Scholar 

  • Krekule J, Horavka B (1972) The response of short-day plant Chenopodium rubrum L. to abscisic acid and gibberellic acid treatment applied at two levels of photoperiodic induction. Biol Plant 14: 254–259

    CAS  Google Scholar 

  • Krekule J, Ulimann J (1971) The effect of abscisic acid on flowering in Chenopodium rubrum L. Biol Plant 13: 60–63

    CAS  Google Scholar 

  • Kriedemann PE, Downton WJS (1981) Photosynthesis. In: Paleg LG, Aspinall D (eds) Physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 283–314

    Google Scholar 

  • Kriedemann PE, Loveys BR (1974) Hormonal mediation of plant responses to environmental stress. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanisms of regulation of plant growth. Bull 12, Royal Soc NZ, Wellington, pp 461–465

    Google Scholar 

  • Kriedemann PE, Loveys BR, Fuller GL, Leopold AC (1972) Abscisic acid and stomatal regulation. Plant Physiol 49: 842–847

    PubMed  CAS  Google Scholar 

  • Kulaeva ON (1962) The effect of roots on leaf metabolism in relation to the action of kinetin on leaves. Sov Plant Physiol (Engl Transl Fiziol Rast) 9: 182–189

    Google Scholar 

  • Kummerow J (1980) Adaptation of roots in water-stressed native vegetation. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley-Interscience, New York, pp 57–73

    Google Scholar 

  • Kummerow J, Krause D, Jow W (1977) Root systems of chaparral shrubs. Oecologia 29: 163–177

    Google Scholar 

  • Lamont B (1976) The effect of seasonality and waterlogging on the root systems of a number of Hakea species. Aust J Bot 24: 691–702

    Google Scholar 

  • Lancaster JE, Mann JD, Porter NG (1977) Ineffectiveness of abscisic acid in stomatal closure of yellow lupin, Lupinus luteus var. Weiko III. J Exp Bot 28: 184–191

    Google Scholar 

  • Lane HC, King EE (1968) Stimulation of indoleacetic acid oxidase and inhibition of catalase in cotton extracts by plant acids. Plant Physiol 43: 1699–1702

    PubMed  CAS  Google Scholar 

  • Larque-Saavedra A, Wain RL (1974) Abscisic acid levels in relation to drought tolerance in varieties of Zea mays L. Nature 251: 716–717

    CAS  Google Scholar 

  • Lawlor DW (1978) Effects of water and heat stress on carbon metabolism of plants with C3 and C4 photosynthesis. In: Mansele M, Staples RC (eds) Stress physiology of crop plants. Wiley-Interscience, New York

    Google Scholar 

  • Lawlor DW, Fock H (1975) Photosynthesis and photorespiratory C02 evolution of water-stressed sunflower leaves. Planta 126: 247–258

    CAS  Google Scholar 

  • Lenton JR, Bowen MR, Saunders PF (1968) Detection of abscisic acid in the xylem sap of willow ( Salix viminalis L.) by gas-liquid chromatography. Nature 220: 86–87

    Google Scholar 

  • Levitt JL (1980) Responses of plants to environmental stresses. Vol II: Water, radiation, salt and other stresses. Academic Press, New York

    Google Scholar 

  • Leyton L, Armitage IP (1968) Cuticle structure and water relations of the needles of Pinus radiata (D. Don. ). New Phytol 67: 31–38

    Google Scholar 

  • Lieberman M (1979) Biosynthesis and action of ethylene. Annu Rev Plant Physiol 30: 533–591

    CAS  Google Scholar 

  • Lin WT, Pool R, Wenkert W, Kriedemann PE (1978) Changes in photosynthesis, stomatal resistance and abscisic acid of Vitis labrusca through drought and irrigation cycles. Am J Enol Vitic 29: 239–246

    Google Scholar 

  • Lipe JA, Morgan PW (1973) Ethylene, a regulator of young fruit abscission. Plant Physiol 51: 949–953

    PubMed  CAS  Google Scholar 

  • Little CHA (1975) Inhibition of cambial activity in Abies balsamea by internal water stress: role of abscisic acid. Can J Bot 53: 3041–3050

    CAS  Google Scholar 

  • Little CHA, Eidt DC (1968) Effect of abscisic acid on budbreak and transpiration in woody species. Nature 220: 498–499

    CAS  Google Scholar 

  • Little CHA, Heald JK, Browning G (1978) Identification and measurement of indoleacetic and abscisic acids in the cambial region of Picea sitchensis ( Bong.) Carr by combined gas chromatography mass spectrometry. Planta 139: 133–138

    Google Scholar 

  • Livne A, Vaadia Y (1965) Stimulation of transpiration rate in barley leaves by kinetin and gibberellic acid. Physiol Plant 18: 658–664

    CAS  Google Scholar 

  • Loustalot AJ (1945) Influence of soil moisture conditions on apparent photosynthesis and transpiration of leaves. J Agr Res 71: 519–532

    CAS  Google Scholar 

  • Loveys BR (1977) The intracellular location of abscisic acid in stressed and non-stressed leaf tissue. Physiol Plant 40: 6–10

    CAS  Google Scholar 

  • Loveys BR, Kriedemann PE (1973) Rapid changes in abscisic acid-like inhibitor following alterations in vine leaf water potential. Physiol Plant 28: 476–479

    CAS  Google Scholar 

  • Luke HH, Freeman TE (1967) Rapid bioassay for phytokinins based on transpiration of excised oat leaves. Nature 215: 874–875

    CAS  Google Scholar 

  • Luke HH, Freeman TE (1968) Stimulation of transpiration by cytokinins. Nature 217: 873–874

    CAS  Google Scholar 

  • Lurssen K, Naumann K, Schroder R (1979) 1-Aminocyclopropane-l-carboxylic acid: An intermediate of the ethylene biosynthesis in higher plants. Z Pflanzenphysiol 92: 285–294

    Google Scholar 

  • Liittge U (1969) Aktiver Transport (Kurzstreckentransport) bei Pflanzen. Protoplasmato-logia VIII 76: 1–146

    Google Scholar 

  • Liittge U, Higinbotham N (1979) Transport in plants. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Luxmoore RJ, Fischer RA, Stolzy LH (1973) Flooding and soil temperature effects on wheat during grain tilling. Agronomy J 65: 361–364

    Google Scholar 

  • Lyon CJ (1963) Auxin factor in leaf epinasty. Plant Physiol 38: 567–574

    PubMed  CAS  Google Scholar 

  • Lyon CJ (1970) Ethylene inhibition of auxin transport by gravity in leaves. Plant Physiol 45: 644–646

    PubMed  CAS  Google Scholar 

  • MacHardy WE, Beckman CH (1973) Water relations in American elm infected with Ceratocystis ulmi. Phytopathology 63: 98–103

    Google Scholar 

  • MacRobbie EAC (1981) Effects of ABA in “isolated” guard cells of Commelina communis L. J Exp Bot 32: 563–572

    CAS  Google Scholar 

  • Majernik O, Mansfield TA (1970) Direct effect of S02 pollution on the degree of opening of stomata. Nature 227: 377–378

    PubMed  CAS  Google Scholar 

  • Mansfield TA (1967) Stomatal behaviour following treatment with auxin-like substances and phenylmercuric acetate. New Phytol 66: 325–350

    CAS  Google Scholar 

  • Mansfield TA (1976) Delay in the response of stomata to abscisic acid in C02-free air. J Exp Bot 27: 559–564

    CAS  Google Scholar 

  • Mansfield TA, Davies WJ (1981) Stomata and stomatal mechanism. In: Paleg LG, Aspinall D (eds) The Physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 315–346

    Google Scholar 

  • Mansfield TA, Jones RJ (1971) Effects of abscisic acid on potassium uptake and starch content of stomatal guard cells. Planta 101: 147–158

    CAS  Google Scholar 

  • Mansfield TA, Wellburn AR, Moreira TJS (1978) The role of abscisic acid and farnesol in the alleviation of water stress. Philos Trans R Soc Lond B Biol Sci 284: 471–482

    CAS  Google Scholar 

  • Marc J, Palmer JH (1976) Relationship between water potential and leaf and inflorescence initiations in Helianthus annuus. Physiol Plant 36: 101–104

    Google Scholar 

  • Marré E (1977) Physiologic implications of the hormonal control of ion transport in plants. In: Pilet PE (ed) Plant growth regulation. Springer, Berlin Heidelberg New York, pp 54–66

    Google Scholar 

  • Marré E (1979) Fusicoccin: A tool in plant physiology. Annu Rev Plant Physiol 30: 273–288

    Google Scholar 

  • Marré E (1982) Hormonal regulation of transport: data and perspectives. In: Wareing PF (ed) Plant growth substances. Academic Press, New York, pp 407–417

    Google Scholar 

  • Martin JT, Juniper BE (1970) The cuticles of plants. Edward Arnold, London Mawson BT, Colman B, Cummins WR (1981) Abscisic acid and photosynthesis in isolated leaf mesophyll cell. Plant Physiol 67: 233–236

    Google Scholar 

  • Maximov NA (1929) The plant in relation to water. Yapp RM (ed). Allen and Unwin, London Mayak S, Halevy AH (1972) Interrelationships of ethylene and abscisic acid in the control of rose petal senescence. Plant Physiol 50: 341–346

    Google Scholar 

  • McAlpine RG (1961) Yellow poplar seedlings intolerant to flooding. J For 59: 566–568

    Google Scholar 

  • McCree KJ (1974) Changes in the stomatal response characteristics of grain sorghum produced by water stress during growth. Crop Sci 14: 273–278

    Google Scholar 

  • McKersie BD, McDermott BM, Hunt LA, Poysa (1982) Changes in carbohydrate levels during ice encasement and floodings of winter cereals. Can J Bot 60: 1822–1826

    CAS  Google Scholar 

  • McLaren JS, Smith H (1977) Effect of abscisic acid on photosynthetic products of Lemna minor. Phytochemistry 16: 219–221

    CAS  Google Scholar 

  • McMichael BL, Jordan WR, Powell RD (1972) An effect of water stress on ethylene production by intact cotton petioles. Plant Physiol 49: 658–660

    PubMed  CAS  Google Scholar 

  • McMinn JW, McNabb WH (1971) Early growth and development of slash pine under drought and flooding. US For Ser Res Paper SE 89, pp 1–10

    Google Scholar 

  • McWha J A, Jackson DL (1976) Some growth promotive effects of abscisic acid. J Exp Bot 27: 1004–1008

    CAS  Google Scholar 

  • Meidner H (1954) Measurements of water intake from the atmosphere by leaves. New Phytol 53: 423–426

    Google Scholar 

  • Meidner H (1967) The effect of kinetin on stomatal opening and the rate of intake of carbon dioxide in mature primary leaves of barley. J Exp Bot 18: 556–561

    CAS  Google Scholar 

  • Meyer RF, Boyer JS (1981) Osmoregulation, solute-distribution, and growth in soybean seedlings having low water potentials. Planta 151: 482–489

    CAS  Google Scholar 

  • Michniewicz M, Kriesel K, Krassowska J (1970) Effects of adventitious roots on level of endogenous gibberellin-like substances in buds and newly formed shoots of willow cuttings ( Salix viminalis ). Bull Acad Pol Sci Ser Sci Biol 18: 355–359

    Google Scholar 

  • Milborrow BV (1974) Biosynthesis of abscisic acid by a cell-free system. Phytochemistry 13: 131–136

    CAS  Google Scholar 

  • Milborrow BV (1974) The chemistry and physiology of abscisic acid. Annu Rev Plant Physiol 25: 259–307

    CAS  Google Scholar 

  • Milborrow BV (1978) The stability of conjugated abscisic acid during wilting. J Exp Bot 29: 1059–1066

    CAS  Google Scholar 

  • Milborrow BV (1979) Antitranspirants and the regulation of abscisic acid content. Aust J Plant Physiol 6: 249–254

    CAS  Google Scholar 

  • Milborrow BV (1981) Abscisic acid and other hormones. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 347–388

    Google Scholar 

  • Milborrow BV, Noodle RC (1970) Conversion of 5-(l,2-epoxy–2,6,6-trimethylcyclohexyl)–3-methylpentacis-2-trans-4-dienoic acid into abscisic acid in plants. Biochem J 199: 727–734

    Google Scholar 

  • Milborrow BV, Robinson DR (1973) Factors affecting the biosynthesis of abscisic acid. J Exp Bot 24: 537–548

    CAS  Google Scholar 

  • Milburn J A (1979) Water flow in plants. Longman, London Mills VM, Todd GW (1973) Effects of water stress on the indoleacetic acid oxidase activity in wheat leaves. Plant Physiol 51: 1145–1146

    Google Scholar 

  • Minore D (1968) Effects of artificial flooding on seedling survival and growth of six northwestern tree species. USD A For Ser Res Note PNW 92

    Google Scholar 

  • Mittelheuser CJ, Van Steveninck RFM (1969) Stomatal closure and inhibition of transpiration induced by ( RS)-abscisic acid. Nature (Lond) 221: 281–282

    Google Scholar 

  • Mizrahi Y, Blumenfeld A, Richmond AE (1970) Abscisic acid and transpiration in leaves in relation to osmotic root stress. Plant Physiol 46: 169–171

    PubMed  CAS  Google Scholar 

  • Mizrahi Y, Blumenfeld A, Richmond A (1971) The role of abscisic acid and kinetin in controlling the adaptive response of plants to root stress. Isr J Bot 20: 335

    Google Scholar 

  • Morgan JM (1980) Possible role of abscisic acid in reducing seed set in water-stressed wheat plants. Nature 285: 655–657

    CAS  Google Scholar 

  • Morgan PW, Hall WC (1962) Effect of 2,4-dichlorophenoxyacetic acid on the production of ethylene by cotton and grain sorghum. Physiol Plant 15: 420–427

    CAS  Google Scholar 

  • Morgan PW, Hall WC (1964) Accelerated release of ethylene by cotton following application of indolyl–3-acetic acid. Nature 201: 99

    CAS  Google Scholar 

  • Morgan PW, Jordan WR, Davenport TL, Durham JI (1977) Abscission responses to moisture stress, auxin transport inhibitors, and ethephon. Plant Physiol 59: 710–712

    PubMed  CAS  Google Scholar 

  • Most BM (1971) Bascisic acid in immature apical tissue of sugar cane and leaves of plants subjected to drought. Planta 101: 61–65

    Google Scholar 

  • Mullins MG (1970) Hormone-directed transport of assimilates in decapitated internodes of Phaseolus vulgaris L. Ann Bot 34: 897–909

    CAS  Google Scholar 

  • Mullins MG (1972) Auxin and ethylene in adventitious root formation in Phaseolus aureus (Roxb.). In: Carr DJ (ed) Plant growth substances 1970. Springer, Berlin Heidelberg New York, pp 526–533

    Google Scholar 

  • Mullins MG, Osborne DJ (1970) Effect of abscisic acid on growth correlation in Vitis vinifera L. Aust J Biol Sci 23: 479–493

    CAS  Google Scholar 

  • Nadeau R, Rappaport L, Stolp CF (1972) Uptake and metabolism of 3H-gibberellin Ax by barley aleurone layers; response to abscisic acid. Planta 107: 315–324

    CAS  Google Scholar 

  • Newman EI (1970) Water movement through root systems. Philos Trans R Soc Lond B. Biol Sci 273: 463–478

    Google Scholar 

  • Newsome RE, Kozlowski TD, Tang ZC (1982) Responses of Ulmus americana seedlings to flooding of soil. Can J Bot 60: 1688–1695

    Google Scholar 

  • Nicholls PB, May LH (1963) Studies on the growth of the barley apex. I. Inter-relationships between primordium formation, apex, length, and spikelet formation. Aust J Biol Sci 16: 561–571

    Google Scholar 

  • Ogunkanmi AB, Tucker DJ, Mansfield TA (1973) An improved bio-assay for abscisic acid and other transplants. New Phytol 72: 277–282

    CAS  Google Scholar 

  • Ogunkanmi AB, Wellburn AR, Mansfield TA (1976) Detection of preliminary identification and endogenous antitranspirants in water-stressed Sorghum plants. Planta 117: 293–302

    Google Scholar 

  • Oppenheimer HR (1960) Adaptation to drought: xerophytism. In: Plant-water relationships in semi-arid conditions: review of research. UNESCO-Paris, p 105

    Google Scholar 

  • Osborne DJ (1968) Hormonal mechanisms regulating senescence and abscission. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 815–840

    Google Scholar 

  • Osborne DJ (1974) Auxin, ethylene and growth of cells. In: Bieleski RL, Ferguson AR, Cresswell MM (eds) Mechanisms of regulation of plant growth. Soc NZ Bull 12: 645–654

    Google Scholar 

  • Osmond CB (1978) Ion absorption and carbon metabolism in cells of higher plants. In: Luttge N, Pitman MG (eds) Encyclopedia of plant physiol, new ser Vol IIA. Springer, Berlin Heidelberg New York, pp 347–372

    Google Scholar 

  • Osonubi O, Davies WJ (1978) Solute accumulation in leaves and roots of woody plants subjected to water stress. Oecologia 32: 323–332

    Google Scholar 

  • O’Toole JC, Ozbun JL, Wallace DH (1977) Photosynthetic response to water stress in Phaseolus vulgaris. Physiol Plant 40: 111–114

    Google Scholar 

  • Overbeek J van, Loeffler JE, Mason MIR (1968) Mode of action of abscisic acid. In: Wightman F, Setterfield G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa, pp 1593–1607

    Google Scholar 

  • Paleg LG (1960) Physiological effects of gibberellic acid: I. On carbohydrate metabolism and amylase activity of barley endosperm. Plant Physiol 35: 293–299

    PubMed  CAS  Google Scholar 

  • Pallaghy CK, Raschke K (1972) No stomatal response to ethylene. Plant Physiol 49: 275–276

    PubMed  CAS  Google Scholar 

  • Pallas JE, Box JE (1970) Explanation for the stomatal response of excised leaves to kinetin. Nature 227: 87–88

    PubMed  CAS  Google Scholar 

  • Pallas JE Jr, Kays SJ (1982) Inhibition of photosynthesis by ethylene-a stomatal effect. Plant Physiol 70: 598–601

    PubMed  CAS  Google Scholar 

  • Parker J (1968) Drought-resistance mechanisms. In: Kozlowski TT (ed) Water deficits and plant growth Vol 1. Academic Press, New York, pp 195–234

    Google Scholar 

  • Passioura JB (1976) The control of water movement through plants. In: Wardlaw IF, Passioura JB (eds) Transport and transfer processes in plants. Academic Press, New York, pp 373–380

    Google Scholar 

  • Passioura JB (1981) Water collection by roots. Paleg LG, Aspinall D (eds) In: The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 39–53

    Google Scholar 

  • Patrick JW (1976) Hormone-directed transport of metabolites. In: Wardlaw IF, Passioura JB (eds) Transport and transfer process in plants. Academic Press, London New York, pp 433–446

    Google Scholar 

  • Patrick JW, Wareing PF (1973) Auxin-promoted transport of metabolites in stems of Phaseolus vulgaris L.: Some characteristics of the experimental transport systems. J Exp Bot 24: 1158–1171

    Google Scholar 

  • Pemadasa MA (1979) Stomatal response to two herbicidal auxins. J Exp Bot 30: 267–274

    CAS  Google Scholar 

  • Pemadasa MA (1982) Differential abaxial and adaxial stomatal response to indole-3-acetic acid in Commelina communis L. New Phytol 82: 69–80

    Google Scholar 

  • Pereira JS, Kozlowski TT (1977) Variations among woody angiosperms in response to flooding. Physiol Plant 41: 184–192

    Google Scholar 

  • Pharis RP (1977) Interaction of native or exogenous plant hormones in the flowering of woody plants. In: Schütte HR, Gross D (eds) Regulation of developmental processes in plants. Proc Conf, Halle, GDR Pharis RP (1981) Effects of temperature on strobilus production in gibberellin-treated seedlings of Western hemlock. Can For Serv Res Notes 1(3): 21–22

    Google Scholar 

  • Pharis RP, Ross SD, McMullan E (1980) Promotion of flowering in the Pinaceae by gibberellins. III. Seedlings of Douglas fir. Physiol Plant 50: 119–126

    Google Scholar 

  • Phillips IDJ (1964a) Root-shoot hormone relations. I. The importance of an aerated root system in the regulation of growth hormone levels in the shoot of Helianthus annuus. Ann Bot 28: 17–35

    Google Scholar 

  • 4concentration produced flooding of the root system of Helianthus annuus. Ann Bot 28:37–45 Phillips IDJ, Jones RL (1964) Gibberellin-like activity in bleeding sap of root systems of Helianthus annuus detected by a new dwarf pea epicotyl assay and other methods. Planta 63: 269–278

    Google Scholar 

  • Pickles VR, Sutcliffe JF (1955) The effects of 5-hydroxytryptamine, indole-3-acetic acid and some other substances on pigment effusion, sodium uptake and potassium efflux by slices of red beetroot, in vitro. Biochim Biophys Acta 17: 244–251

    PubMed  CAS  Google Scholar 

  • Pierce M, Raschke K (1980) Correlation between loss of turgor and accumulation of abscisic acid in detached leaves. Planta 148: 174–182

    CAS  Google Scholar 

  • Pilet PE (1968) Effet de l’acide abscissique sur les racines: interactions avec l’acide-indolyacetique. CR Acad Sci Paris 267: 1142–1145

    CAS  Google Scholar 

  • Pitman MG (1972) Uptake and transport of ions in barley seedlings. III. Correlation between transport to the shoot and relative growth rate. Aust J Biol Sci 25: 905–919

    CAS  Google Scholar 

  • Pitman MG (1975) Whole plants. In: Baker DA, Hall JL (eds) Ion transport in plant cells and tissues. North Holland, Amsterdam, pp 267–308

    Google Scholar 

  • Pitman MG (1977) Ion transport into the xylem. Annu Rev Plant Physiol 28: 71–88

    CAS  Google Scholar 

  • Pitman MG, Wellfare D (1978) Inhibition of ion transport in excised barley roots by abscisic acid; relation to water permeability by the roots. J Exp Bot 29: 1125–1138

    CAS  Google Scholar 

  • Pitman MG, Liittge U, Lauchli A, Ball E (1974 a) Action of abscisic acid on ion transport as affected by root temperature and nutrient status. J Exp Bot 25: 147–155

    Google Scholar 

  • Pitman MG, Schaefer N, Wildes RA (1974b) Effect of abscisic acid on fluxes of ions in barley roots. In: Zimmermann U, Dainty J (eds) Membrane transport in plants. Springer, Berlin Heidelberg New York, pp 391–396

    Google Scholar 

  • Pitman MG, Liittge U, Lauchli A, Ball E (1974c) Ion uptake to slices of barley leaves, and regulation of K content in cells of the leaves. Z Pflanzenphysiol 72: 75–88

    CAS  Google Scholar 

  • Place GA, Siddique MA, Wells BR (1971) Effects of temperature and flooding on rice growing in saline and alkaline soil. Agron J 63: 62–66

    CAS  Google Scholar 

  • Player MA (1950) Effects of some growth regulating substances on the transpiration of Zea mays L. and Ricinus communis L. Plant Physiol 25: 469–477

    PubMed  CAS  Google Scholar 

  • Poovaiah BW, Wiebe HW (1973) Influence of hydrogen fluoride fumigation on the water economy of soybean plants. Plant Physiol 51: 396–399

    PubMed  CAS  Google Scholar 

  • Poskuta J, Antoszewski R, Faltynowicz M (1972) Photosynthesis, photorespiration and respiration of strawberry and maize leaves as influenced by abscisic acid. Photosynthe-tica 6: 370–374

    CAS  Google Scholar 

  • Prisco JT, O’Leary JW (1972) Enhancement of intact bean leaf senescence by Na Cl salinity. Physiol Plant 27: 95–100

    CAS  Google Scholar 

  • Prisco JT, O’Leary JW (1973) The effects of humidity and cytokinin on growth and water relations of salt-stressed bean plants. Plant Soil 39: 263–276

    CAS  Google Scholar 

  • Quarrie SA, Jones HG (1977) Effects of abscisic acid and water stress on development and morphology of wheat. J Exp Bot 28: 192–203

    CAS  Google Scholar 

  • Quarrie SA, Jones HG (1979) Genotypic variation in leaf water potential, stomatal conductance and abscisic acid concentration in spring wheat subjected to artificial drought stress. Ann Bot 44: 323–332

    CAS  Google Scholar 

  • Railton ID, Reid DM (1973) Effects of benzyladenine on the growth of waterlogged tomato plants. Planta 111: 261–266

    CAS  Google Scholar 

  • Railton ID, Wareing PG (1973) Effects of abscisic acid on the levels of endogenous gibberellin-like substances in Solanum andigena. Planta 112: 65–69

    CAS  Google Scholar 

  • Railton ID, Reid DM, Gasking P, MacMillan J (1974) Characterization of abscisic acid in chloroplasts of Pisum sativum L. cv Alaska by combined gas chromatography-mass spectrometry. Planta 117: 179–182

    CAS  Google Scholar 

  • Rajagopal V, Anderson AS (1978) Does abscisic acid influence proline accumulation in stressed leaves? Planta 143: 85–88

    CAS  Google Scholar 

  • Rajagopal V, Anderson AS (1980) Water stress and root formation in pea cuttings. I. Influence of the degree and duration of water stress on stock plants grown under two levels of irradiance. Physiol Plant 48: 144–149

    Google Scholar 

  • Raschke K (1975 a) Stomatal action. Annu Rev Plant Physiol 26:309–340

    Google Scholar 

  • Raschke K (1975 b) Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L. Planta 125:243–259

    Google Scholar 

  • Raschke K (1979) Movements of stomata. In: Haupt W, Feinleib ME (eds) Physiology of Movements. Encyclopedia of plant physiology new ser Vol 7. Springer, Berlin Heidelberg New York, pp 383–441

    Google Scholar 

  • Raschke K, Zeevaart J AD (1976) Abscisic acid content, transpiration and stomatal conductance as related to leaf age in plants of Xanthium strumarium L. Plant Physiol 58: 169–174

    PubMed  CAS  Google Scholar 

  • Rasmussen OS (1976) Water stress in plants. I. Abscisic acid level in tomato leaves after a long period of wilting. Physiol Plant 36: 208–212

    CAS  Google Scholar 

  • Rawson HM (1979) Vertical wilting and photosynthesis, transpiration and water use efficiency of sunflower leaves. Aust J Plant Physiol 6: 109–120

    CAS  Google Scholar 

  • Rawson HM, Constabel GA, Howe GN (1980) Carbon production of sunflower cultivars in field and controlled environments. I. Photosynthesis and transpiration of leaves, stems and heads. Aust J Plant Physiol 7: 555–573

    Google Scholar 

  • Rayle DL (1973) Auxin-induced hydrogen-ion secretion in Avena coleoptiles and its implications. Planta 114: 63–73

    CAS  Google Scholar 

  • Rayle DL, Johnson KD (1973) Direct evidence that auxin-induced growth is related to hydrogen ion secretion. Plant Physiol (Suppl) 51: 2

    Google Scholar 

  • Read DJ, Bartlett EM (1972) The physiology of drought resistance in the soybean plant (iGlycine max). I. The relationship between drought resistance and growth. J Appl Ecol 9: 487–499

    Google Scholar 

  • Regehr DL, Bazzaz FA, Boggess WR (1975) Photosynthesis, transpiration and leaf conductance of Populus deltoides in relation to flooding and drought. Photosynthetica 9: 52–61

    Google Scholar 

  • Rehm MM, Cline MG (1973) Rapid growth inhibition of Avena coleoptile segments by abscisic acid. Plant Physiol 51: 93–96

    PubMed  CAS  Google Scholar 

  • Reid DM (1979) Crop responses to waterlogging. In: Gupta US (ed) Physiological aspects of crop nutrition and resistance. Atma Ram Delhi, pp 252–287

    Google Scholar 

  • Reid DM, Carr DJ (1967) Effects of a dwarfing compound, CCC, on the production and export of gibberellin-like substances by root systems. Planta 73: 1–11

    Google Scholar 

  • Reid DM, Clements JB, Carr DJ (1968) Red light induction of gibberellin synthesis in leaves. Nature 217: 580–582

    CAS  Google Scholar 

  • Reid DM, Crozier A (1970) CCC-induced increase of gibberellin levels in pea seedlings. Planta 94: 95–106

    CAS  Google Scholar 

  • Reid DM, Crozier A (1971) Effects of waterlogging on the gibberellin content and growth of tomato plants. J Exp Bot 22: 39–48

    CAS  Google Scholar 

  • Reid DM, Railton ID ( 1974 a) Effect of flooding on the growth of tomato plants: Involvement of cytokinins and gibberellins. In: Bieleski RL et al. (eds) Mechanisms of regulation of plant growth. R Soc NZ, Wellington, pp 789–792

    Google Scholar 

  • Reid DM, Railton ID (1974b) The influence of benzyladenine on the growth and gibberellin content of shoots of waterlogged tomato plants. Plant Sei Lett 2: 151–156

    CAS  Google Scholar 

  • Reid DM, Watson K Ethylene: An air pollutant. In: Roberts JA, Tucker GA (eds) Ethylene and plant development. Butterworth, London (in press)

    Google Scholar 

  • Reid DM, Crozier A, Harvey BMR (1969) The effects of flooding on the export of gibberellins from the root to the shoot. Planta 89: 376–379

    CAS  Google Scholar 

  • Reinhold L (1975) The effect of externally applied factors on the translocation of sugars in the phloem. In: Aronoff S, Dainty J, Graham PA, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York, pp 367–388

    Google Scholar 

  • Richards D (1976) Root-shoot interactions: A functional equilibrium for water uptake in peach [Prunus persica (L). Batsch.] Ann Bot 41: 279–281

    Google Scholar 

  • Richards D, Rowe RN (1977) Effects of root restriction, root pruning and 6-benzylamino-purine on the growth of peach seedlings. Ann Bot 41: 729–740

    CAS  Google Scholar 

  • Ridge I (1973) The control of cell shape and rate of cell expansion by ethylene: effects on microfibril orientation and cell-wall extensibility in etiolated peas. Acta Bot Neerl 22: 144–158

    CAS  Google Scholar 

  • Robinson M (1983) Influence of abscisic acid and ethylene on assimilate distribution in Gladiolus grandiflorus Ann Bot 51: 779–785

    CAS  Google Scholar 

  • Robinson M, Halevy AH, Galili D, Plaut Z (1983) Assimilate distribution in Gladiolus grandiflorus as affected by water deficit. Ann Bot 51: 461–468

    Google Scholar 

  • Rye M, Lewak St (1980) The role of abscisic acid ( ABA) in regulation of some photosyn-thetic enzyme activities in apple seedlings in relation to embryonal dormancy. Z Pflanzenphysiol 96: 195–202

    Google Scholar 

  • Samet JS, Sinclair TR (1980) Leaf senescence and abscisic acid in leaves of field-grown soybean. Plant Physiol 66: 1164–1168

    PubMed  CAS  Google Scholar 

  • Sankhla N, Huber W (1974) Effect of abscisic acid on the activities of photosynthetic enzymes and C02 fixation products in leaves of Pennisetum typhoides seedlings. Physiol Plant 30: 291–294

    CAS  Google Scholar 

  • Sankhla N, Huber W (1979) Effects of abscisic acid on enzyme induction in Lemna minor L. Pflanzenphysiology 91: 7–15

    CAS  Google Scholar 

  • Sarin MN, Narayanan A (1968) Effects of soil salinity and growth regulators on germination and seedling metabolism of wheat. Physiol Plant 21: 1201–1209

    CAS  Google Scholar 

  • Sartoris GB, Belcher BA (1949) The effect of flooding on flowering and survival of sugar cane. Sugar 44: 36–39

    Google Scholar 

  • Schneider EA, Wightmann F (1974) Metabolism of auxin in higher plants. Annu Rev Plant Physiol 25: 487–513

    CAS  Google Scholar 

  • Selman IW, Sandanam S (1972) Growth responses of tomato plants in non-aerated water culture to foliar sprays of gibberellic acid and benzyladenine. Ann Bot 36: 837–848

    CAS  Google Scholar 

  • Sembdner G, Gross D, Leibisch HW, Schneider G (1980) Biosynthesis and metabolism of plant hormones. In: MacMillan J (ed) Hormonal regulation of development I. Encyclopedia of plant physiology, new series Vol 9. Springer, Berlin Heidelberg New York, pp 281–444

    Google Scholar 

  • Setter TL, Brun WA, Brenner ML (1980) The effect of obstructed translocation of leaf abscisic acid, and associated stomatal closure and photosynthesis decline. Plant Physiol 65: 1111–1115

    PubMed  CAS  Google Scholar 

  • Setter TL, Brun WA, Brenner ML (1981) Abscisic acid translocation and metabolism in soybeans following depodding and petiole girdling treatments. Plant Physiol 67: 774–779

    PubMed  CAS  Google Scholar 

  • Sharpe RE, Davies WJ (1979) Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta 147: 43–49

    Google Scholar 

  • Sharpe RE, Osonubi O, Wood WA, Davies WJ (1979) A simple instrument for measuring leaf extension in grasses, and its application in the study of the effects of water stress on maize and sorghum. Ann Bot 44: 35–45

    Google Scholar 

  • Sheriff DW (1972) A new apparatus for the measurement of sap flux in small shoots with the magnetohydrodynamic technique. J Exp Bot 23: 1086–1095

    Google Scholar 

  • Sheriff DW, Sinclair R (1973) Fluctuations in leaf water balance, with a period of 1 to 10 minutes. Planta 113: 215–228

    Google Scholar 

  • Shindy W, Weaver RJ (1967) Plant regulators alter translocation of photosynthetic products. Nature 214: 1024–1025

    CAS  Google Scholar 

  • Shindy WW, Kliewer WM, Weaver RJ (1973) Benzyladenine-induced movement of Relabeled photosynthate into roots of Vitis vinifera. Plant Physiol 51: 345–349

    PubMed  CAS  Google Scholar 

  • Simon EW (1974) Phospholipids and plant membrane permeability. New Phytol 73: 377–420

    CAS  Google Scholar 

  • Singh BN, Galson E, Dashek W, Walton DC (1979) Abscisic acid levels and metabolism in the leaf epidermal tissue of Tulipa gesneriana L. and Commelina communis L. Planta 146: 135–138

    CAS  Google Scholar 

  • Singh TN, Aspinall D, Paleg LG (1973 a) Stress metabolism IV. The influence of (2-chlo-roethyl)trimethylammonium chloride and gibberellic acid on the growth and proline accumulation of wheat plants during water stress. Aust J Biol Sci 26: 77–86

    Google Scholar 

  • Singh TN, Aspinall D, Paleg LG, Boggess SF (1973b) Stress metabolism II. Changes in proline concentration in excised plant tissues. Aust J Biol Sci 26: 57–63

    Google Scholar 

  • Sivakumaran S, Hall MA (1978 a) Effects of age and water stress on endogenous levels of plant growth regulators in Euphorbia lathyris L. J Exp Bot 29: 195–205

    Google Scholar 

  • Sivakumaran S, Hall MA (1978 b) Effect of osmotic stress upon endogenous hormone levels in Euphorbia lathyris L. and Vicia faba L. Ann Bot 42: 1403–1411

    Google Scholar 

  • Sivakumaran S, Hall MA (1979) Hormones in relation to stress recovery in Populus robusta cuttings. J Exp Bot 30: 53–63

    CAS  Google Scholar 

  • Smith KA (1975) Ethylene in the soil atmosphere and its effect on root growth. Proc Assoc Applied Biol Ann Appl Biol 81:106 Smith KA, Robertson PD (1971) Effect of ethylene on root extension of cereals. Nature 234: 168–169

    Google Scholar 

  • Smith KA, Russell RS (1969) The occurrence of ethylene and its significance in anaerobic soil. Nature 222: 769–771

    CAS  Google Scholar 

  • Snaith PJ, Mansfield TA (1982) Stomatal sensitivity to abscisic acid: can it be defined? Plant Cell Environ 5: 309–311

    CAS  Google Scholar 

  • Squire GR, Mansfield TA (1972) Studies on the mechanism of action of fusicoccin, the fungal toxin that induces wilting, and its interaction with abscisic acid. Planta 105: 71–78

    CAS  Google Scholar 

  • Stalfelt MG (1955) The stomata as a hydrophotic regulator of the water deficit of the plant. Physiol Plant 8: 572–593

    Google Scholar 

  • Stansell JR, Klepper B, Browning VD, Taylor HM (1973) Plant water status in relation to clouds. Agron J 65: 677–678

    Google Scholar 

  • Steward FC (1968) Growth and organization in plants. Addison-Wesley, Reading, MA Steward FC, Krikorian AD ( 1971 ) Plants, chemicals and growth. Academic Press, New York, pp 173–178

    Google Scholar 

  • Stewart CR (1980) The mechanism of abscisic acid-induced proline accumulation in barley leaves. Plant Physiol 66: 230–233

    PubMed  CAS  Google Scholar 

  • Stewart CR, Hanson AD (1980) Proline accumulation as a metabolic response to water stress. In: Turner NC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 173–189

    Google Scholar 

  • Stewart GR, Lee J A (1974) The role of proline accumulation in halophytes. Planta 120: 279–289

    CAS  Google Scholar 

  • Stewart CR, Morris CJ, Thompson JF (1966) Changes in amino acid content of excised leaves during incubation. II. Role of sugar in the accumulation of proline in wilted leaves. Plant Physiol 41: 1585–1590

    Google Scholar 

  • Stoker R, Weatherley PE (1971) The influence of the root system on the relationship between the rate of transpiration and depression of leaf water potential. New Phytol 70: 547–554

    Google Scholar 

  • Storey R, Jones RFW (1975) Betaine and choline levels in plants and their relationship to Na Cl stress. Plant Sci Lett 4: 161–168

    CAS  Google Scholar 

  • Strack Z, Karwowska K, Kraszewska E (1975) The effect of several stress conditions and growth regulators on photosynthesis and translocation of assimilates in the bean plant. Acta Soc Bot Pol 44: 567–588

    Google Scholar 

  • Stuart DM (1973) Reduction of water permeability in potato tuber slices by cyanide, ammonia, 2,4-dinitrophenol, and oligomycin and its reversal by adenosine, 5-triphos-phate and cytidine 5-triphosphate. Plant Physiol 51: 485–488

    PubMed  CAS  Google Scholar 

  • Stuart KL, Coke LB (1975) The effect of vomifoliol on stomatal aperture. Planta 122: 307–310

    CAS  Google Scholar 

  • Sutcliffe JF (1962) Mineral salts: absorption in plants. Pergamon, Oxford Taerum R (1973) Occurrence of inverted water potential gradients between soil and bean roots. Physiol Plant 28: 471–475

    Google Scholar 

  • Tal M, Imber D (1970) Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato. II. Auxin-and abscisic acid-like activity. Plant Physiol 46: 373–376

    Google Scholar 

  • Tal M, Imber D (1971) Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato. III. Hormonal effects on the water status of the plant. Plant Physiol 47: 849–850

    Google Scholar 

  • Tal M, Imber D, Erez A, Epstein E (1979) Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato. Plant Physiol 63: 1044–1048

    PubMed  CAS  Google Scholar 

  • Tanada T (1968) Substances essential for a red, far-red light reversible attachment of mung bean root tips to glass. Plant Physiol 43: 2070–2071

    PubMed  CAS  Google Scholar 

  • Tang ZC, Kozlowski TT (1982) Physiological, morphological, and growth responses of Platanus occidentalis seedlings to flooding. Plant Soil 66: 243–255

    Google Scholar 

  • Tang ZC, Kozlowski TT (1982 a) Some physiological and morphological responses of Quercus macrocarpa seedlings to flooding. Can J For Res 12: 196–202

    Google Scholar 

  • Taylor CM, Railton ID (1977) The influence of wilting and abscisic acid application on gibberellin interconversion in etiolated seedlings of dwarf Pisum sativum var. Meteor. Plant Sci Lett 9: 317–322

    Google Scholar 

  • Taylor JS, Reid DM, Pharis RP (1981) Mutual antagonism of sulphur dioxide and abscisic acid in their effect on stomatal aperture in broad bean ( Vicia faba L.) epider-mal strips. Plant Physiol 68: 1504–1507

    Google Scholar 

  • Teskey RO, Hinckley TM (1981) Influence of temperature and water potential on root growth of white oak. Physiol Plant 52: 363–369

    Google Scholar 

  • Thorne GN, Evans AF (1964) Influence of tops and roots on net assimilation rate of sugar-beet and spinach beet and grafts between them. Ann Bot 28: 499–508

    CAS  Google Scholar 

  • Thorpe TA, Meier DD (1973) Effects of gibberellic acid and abscisic acid on shoot formation in tobacco callus cultures. Physiol Plant 29: 121–124

    CAS  Google Scholar 

  • Tillberg E, Eliasson L, Ericsson T (1980) Time course of uptake of 14C-abscisic acid by Lemna gibba in relation to growth. Physiol Plant 48: 584–587

    CAS  Google Scholar 

  • Tillberg E, Dons C, Haugstad M, Nilsen S (1981) Effect of abscisic acid on C02 exchange in Lemna gibba. Physiol Plant 52: 401 - 406

    CAS  Google Scholar 

  • Torrey JG (1976) Root hormones and plant growth. Annu Rev Plant Physiol 27: 435–459

    CAS  Google Scholar 

  • Treharne KJ, Stoddart JL (1968) Effects of gibberellin on photosynthesis in red clover (.Trifolium pratense L.). Nature 220: 457–458

    PubMed  CAS  Google Scholar 

  • Treharne KJ, Stoddart JL, Pughe J, Paranjothy K, Wareing PF (1970) Effects of gibberellin and cytokinins on the activity of photosynthetic enzymes and plastid ribosomal RNA synthesis in Phaseolus vulgaris L. Nature 228: 129–131

    PubMed  CAS  Google Scholar 

  • Trewavas AJ (1979) What is the molecular basis of plant hormone action? Trends Biol Sci 4: 199–202

    Google Scholar 

  • Trewavas A (1981) How do plant growth substances work? Plant Cell Environ 4: 203–228

    CAS  Google Scholar 

  • Tucker DJ (1978) Apical dominance in the tomato: The possible roles of auxin and abscisic acid. Plant Sci Lett 12: 273–278

    CAS  Google Scholar 

  • Tucker DJ, Mansfield TA (1971) A simple bioassay for detecting “antitranspirant” activity of naturally occurring compounds such as abscisic acid. Planta 98: 157–163

    CAS  Google Scholar 

  • Tucker DJ, Mansfield TA (1973) Apical dominance in Xanthium strumarium. J Exp Bot 24: 731–740

    Google Scholar 

  • Turner NC (1975) Concurrent comparisons of stomatal behavior, water status and evaporation of maize in soil at high or low water potential. Plant Physiol 55: 932–936

    PubMed  CAS  Google Scholar 

  • Turner NC, Graniti A (1969) Fusicoccin: A fungal toxin that opens stomata. Nature 223: 1070–1071

    Google Scholar 

  • Turner NC, Jones MM (1980) Turgor maintenance by osmotic adjustments: A review and evaluation. In: Turner WC, Kramer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 87–103

    Google Scholar 

  • Ungar IA (1967) Vegetation-soil relationships on saline soils in northern Kansas. Am Midi Nat 78: 98–120

    Google Scholar 

  • Unsworth MH, Biscoe PV, Pinkney HR (1972) Stomatal responses to sulphur dioxide. Nature 239: 458–459

    CAS  Google Scholar 

  • Vaadia Y (1960) Autonomic diurnal fluctuations in rate of exudation and root pressure of decapitated sunflower plants. Physiol Plant 13: 701–717

    CAS  Google Scholar 

  • Van Kirk CA, Raschke K (1978) Release of malate from epidermal strips during stomatal closure. Plant Physiol 61:474–475 Van Steveninck RFM (1972) Abscisic acid stimulation of ion transport and alteration in K+/Na+ selectivity. Z Pflanzenphysiol 67: 282–286

    Google Scholar 

  • Van Steveninck RFM (1976) Effect of hormones and related substances on ion transport. In: Luttge U, Pitman MG (eds) Transport in plants Vol IIB. Tissues and organs. Encyclopedia of plant physiology, new series. Springer, Berlin Heidelberg New York, pp 307–342

    Google Scholar 

  • Van Volkenburg E, Davies WJ (1983) Inhibition of light-stimulated leaf expansion by abscisic acid. J Exp Bot 34: 835–845

    Google Scholar 

  • Vince-Prue D (1975) Photoperiodism in plants. McGraw-Hill, London, pp 30–56

    Google Scholar 

  • Vitagliano C (1975) Effects of ethephon on stomata, ethylene evolution and abscission in olive (Olea europaea L.) cv. coratina. J Am Soc Hortic Sci 100: 482–485

    CAS  Google Scholar 

  • Vreugdenhil, D (1983) Abscisic acid inhibits phloem loading of sucrose. Physiol Plant 57: 463–467

    CAS  Google Scholar 

  • Walker MA, Dumbroff EB (1981) Effects of salt stress on abscisic acid and cytokinin levels in tomato. Z Pflanzenphysiol 101: 461–470

    CAS  Google Scholar 

  • Walton DC (1980) Biochemistry and physiology of abscisic acid. Annu Rev Plant Physiol 31: 453–489

    CAS  Google Scholar 

  • Walton DC, Harrison MA, Cote P (1976) The effects of water stress on abscisic acid levels and metabolism in roots of Phaseolus vulgaris L. and other plants. Planta 131: 141–144

    CAS  Google Scholar 

  • Walton DC, Galson E, Harrison MA (1977) The relationship between stomatal resistance and abscisic acid levels in leaves of water-stressed bean plants. Planta 133: 145–148

    CAS  Google Scholar 

  • Wample RL (1976) Hormonal and morphological responses of Helianthus annuus L. to flooding. PhD Thesis, Univ Calgary, Calgary, Alberta, Canada

    Google Scholar 

  • Wample RL, Bewley JD (1975) Proline accumulation in flooded and wilted sunflower and the effects of benzyladenine and abscisic acid. Can J Bot 53: 2893–2896

    Google Scholar 

  • Wample RL, Davies RW (1983) Effect of flooding on starch accumulation in chloroplasts of sunflower (Helianthusannuus L.) Plant Physiol 73: 195–198

    CAS  Google Scholar 

  • Wample RL, Reid DM (1975) Effect of aeration on the flood-induced formation of adventitious roots and other changes in sunflower ( Helianthus annuus ). Planta 127: 263–270

    Google Scholar 

  • Wample RL, Reid DM (1978) Control of adventitious root production and hypocotyl hypertrophy of sunflower ( Helianthus annuus L.) in response to flooding. Physiol Plant 44: 351–358

    Google Scholar 

  • Wample RL, Reid DM (1979) The role of endogenous auxins and ethylene in the formation of adventitious roots and hypocotyl hypertrophy in flooded sunflower plants ( Helianthus annuus L. ). Physiol Plant 45: 219–226

    Google Scholar 

  • Wample RL, Thornton RK (1984) Differences in the response of sunflowers ( Helianthus annuus) subjected to flooding and drought stress. Physiol Plant 61: 611–616

    Google Scholar 

  • Wangermann E (1961) The effect of water supply and humidity on growth and development. In: Ruhland W (ed) Encyclopedia of plant physiology Vol XVI. Springer, Berlin Göttingen Heidelberg, pp 618–633

    Google Scholar 

  • Wardlaw IF (1968) The control and pattern of movement of carbohydrates in plants. Bot Rev 34: 79–105

    Google Scholar 

  • Wardlaw IF (1980) Translocation and source-sink relationships. In: Carlson PS (ed) The biology of crop productivity. Academic Press, London New York, pp 299–339

    Google Scholar 

  • Warner HL, Leopold AC (1971) Timing of growth regulator responses in peas. Biochem Biophys Res Commun 44: 989–994

    PubMed  CAS  Google Scholar 

  • Weiler EW, Schnabl H, Hornberg C (1982) Stress-related levels of abscisic acid in guard cell protoplasts of Vicia faba L. Planta 154: 24–28

    CAS  Google Scholar 

  • Wellburn AR, Hampp R (1976) Fluxes of gibberellic and abscisic acids, together with that of adenosine 3,5-cyclic phosphate, across plastid envelopes during development. Planta 131: 95–96

    CAS  Google Scholar 

  • Wellburn AR, Ogunkami AB, Fenton R, Mansfield TA (1974) All-transfarnesol: A naturally occurring antitransplant? Planta 120: 255–263

    CAS  Google Scholar 

  • Wellburn FAM, Wellburn AR, Stoddart JL, Treharne KJ (1973) Influence of gibberellic and abscisic acids and the growth retardant CCC upon plastid development. Planta 111: 337–346

    CAS  Google Scholar 

  • Went FW (1928) Wuchsstoff und Wachstum. Ree Trav Bot Neerl 25: 1–116

    Google Scholar 

  • Went FW (1938) Transplantation experiments with peas. Am J Bot 25: 44–55

    Google Scholar 

  • Went FW (1938 b) Specific factors other than auxin affecting growth and root formation. Plant Physiol 13:55–80

    Google Scholar 

  • Went FW (1943) Effect of the root system on stem growth. Plant Physiol 18: 51–56

    PubMed  CAS  Google Scholar 

  • Weyers JDB, Hillman JR (1979) Uptake and distribution of abscisic acid in Commelina leaf epidermis. Planta 144: 167–172

    CAS  Google Scholar 

  • Weyers JDB, Hillman JR (1980) Effects of abscissic acid on 86Rbfluxes in Commelina communis L. leaf epidermis. J Exp Bot 31: 711–730

    CAS  Google Scholar 

  • Wilkens MB, Whyte P (1968) Polar transport of auxin in Zea coleoptiles under anaerobic conditions. In: Wightman F, Setterfied G (eds) Biochemistry and physiology of plant growth substances. Runge, Ottawa Williamson RE (1970) Effect of soil gas composition and flooding on growth of Nicotiana tabacum. Agron J 62: 80–83

    Google Scholar 

  • Williamson RE, Kriz GJ (1970) Response of agricultural crops to flooding, depth of water table and soil gaseous composition. Trans ASAE 13: 216–220

    Google Scholar 

  • Winter K, Liittge U (1976) Balance between C3 and CAM pathway of photosynthesis. In: Lange OL, Kappen L, Schulze ED (eds) Water and plant life. Springer, Berlin Heidelberg New York, pp 323–334

    Google Scholar 

  • Winter K, von Willert DJ (1972) Na Cl-induced crassulacean acid metabolism in Mesem-bryanthemum crystallinum. Z Pflanzenphysiol 67: 166–170

    CAS  Google Scholar 

  • Wood A, Paleg LG (1972) The influence of gibberellic acid on the permeability of model membrane systems. Plant Physiol 50: 103–108

    PubMed  CAS  Google Scholar 

  • Wood A, Paleg LG, Spotswood TM (1974) Hormonal-phospholipid interaction: a possible hormonal mechanism of action in the control of membrane permeability. Aust J Plant Physiol 1: 167–169

    CAS  Google Scholar 

  • Wright STC (1969) An increase in the “Inhibitor-/?” content of detached wheat leaves following a period of wilting. Planta 86: 10–20

    CAS  Google Scholar 

  • Wright STC (1977) The relationship between leaf water potential (leaf) and the levels of abscisic acid and ethylene in excised wheat leaves. Planta 134: 183–189

    CAS  Google Scholar 

  • Wright STC (1979) The effect of 6-benzyladenine and leaf-aging treatment on the levels of stress-induced ethylene emanating from wilted wheat leaves. Planta 144: 179–188

    CAS  Google Scholar 

  • Wright STC (1980) The effect of plant-growth regulator treatments on the levels of ethylene emanating from excised turgid and wilted wheat leaves. Planta 148: 381–388

    CAS  Google Scholar 

  • Wright STC, Hiron RWP (1969) (+)-Abscisic acid, the growth inhibitor induced in detached wheat leaves by a period of wilting. Nature 224: 719–720

    Google Scholar 

  • Wright STC, Hiron RWP (1972) The accumulation of abscisic acid in plants during wilting and under other stress conditions: In Carr DJ (ed) Plant growth substances 1970. Springer, Berlin Heidelberg New York, pp 291–298

    Google Scholar 

  • Wyn Jones RG, Storey R (1981) Betaines. In: Paleg LG, Aspinall D (eds) The physiology and biochemistry of drought resistance in plants. Academic Press, Sydney, pp 171–204

    Google Scholar 

  • Wyn Jones RG, Storey R, Leigh RA, Ahmad N, Pollard A (1977) A hypothesis on cytoplasmic osmoregulation. In: Marre E, Ciferri O (eds) Regulation of cell membrane activities in plants. Elsevier/North Holland, Amsterdam, pp 121–126

    Google Scholar 

  • Yee PT, Stolzy LM, Lettey J (1969) Survival of plants under prolonged flooded conditions. Agron J 61:844–848 Yegappan TM, Paton DM, Gates CT, Muller WJ (1980) Water stress in sunflower ( Helianthus annuus L. ): I. Effect on plant development. Ann Bot 46: 61–70

    Google Scholar 

  • Yegappan TM, Paton DM, Gates CT, Muller WJ ( 1982 a) Water stress in sunflower ( Helianthus annuus L. ): II. Effects on leaf cells and leaf area. Ann Bot 49: 63–68

    Google Scholar 

  • Yegappan TM, Paton DM, Gates CT, Muller WJ (1982b) Water stress in sunflower ( Helianthus annuus L. ): III. Responses of cypsela size. Ann Bot 49: 69–75

    Google Scholar 

  • Yomo H (1960) Amylase-activating substance IV. Amylase-activating activity of gibberel-lin. Hakko Kyokaishi 18: 600–602.

    CAS  Google Scholar 

  • Cited in Chem Abstr 55; 26145 (1961) Zabadal TJ (1974) A water potential threshold for the increase of abscisic acid in leaves. Plant Physiol 53: 125–127

    Google Scholar 

  • Zahner R (1968) Water deficits and growth of trees. In: Kozlowski TT (ed) Water deficits and plant growth. Academic Press, New York, pp 191–254

    Google Scholar 

  • Zeevaart J AD (1976) Physiology of flower formation. Ann Rev Plant Physiol 27: 321–348

    CAS  Google Scholar 

  • Zeevaart J AD (1977) Sites of abscisic acid synthesis and metabolism in Ricinus communis L. Plant Physiol 59: 788–791

    PubMed  CAS  Google Scholar 

  • Zeevaart J AD (1980) Changes in the levels of abscisic acid and its metabolites in excised leaf blads of Xanthium strumarium during and after water stress. Plant Physiol 66: 672–678

    PubMed  CAS  Google Scholar 

  • Zeiger E, Hepler PK (1976) Production of guard cell protoplasts from onion and tobacco. Plant Physiol 58: 492–498

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Reid, D.M., Wample, R.L. (1985). Water Relations and Plant Hormones. In: Pharis, R.P., Reid, D.M. (eds) Hormonal Regulation of Development III. Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67734-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67734-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67736-6

  • Online ISBN: 978-3-642-67734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics