Skip to main content

Wind and Other Mechanical Effects in the Development and Behavior of Plants, with Special Emphasis on the Role of Hormones

  • Chapter
Hormonal Regulation of Development III

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 11))

Abstract

There are three types of visible responses that are available to plants that have been mechanically stimulated: thigmonasty, thigmotropism, and thigmomorphogenesis (Fig. 1). The prefix “thigmo” indicates “touch”. A nastic response is one in which the direction of the movement is determined by anatomical constraints, and not by the direction of the stimulus. An additional characteristic of almost all nastic responses is that they are freely reversible, and may therefore be said to have the property of elasticity. The duration of the recovery period is characteristically longer than that of the motor response period. A tropic response is typically a bending movement, the direction of which is always determined by the vector of the stimulus. Tropisms often involve assymetric growth on one side of an organ, which results in its leaning toward (positive tropism) or away from (negative tropism) the stimulus vector. Tropic responses are sometimes, but not always, irreversible, and may be said to often have the property of plasticity. A morphogenetic response is one which affects the form of the plant, involves growth and/or differentiation, and is irreversible.

“I hear the wind among the trees playing celestial symphonies; I see the branches downward bent, like keys of some great instrument.” - Longfellow, A Day of Sunshine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles FB (1973) Ethylene in plant biology. Academic Press, London New York Allen RD (1969) Mechanisms of seismonastic reaction in Mimosa pudica. Plant Physiol 44: 1101–1107

    Google Scholar 

  • Ashida J (1934) Studies on the leaf movement of Aldrovanda vesiculosa L. Mem Coll Sei Kyoto Imp Univ Ser B 9: 141–244

    Google Scholar 

  • Audus LJ (1935) Mechanical stimulation and respiration rate in the cherry laurel. New Phytol 34: 386–402

    Google Scholar 

  • Bailey MA, Templeton JA (1926) A note on the abnormal behavior of cotton plants when subjected to handling. Emp Cotton Grow Rev 3: 477

    Google Scholar 

  • Balan J, Gerber NN (1972) Attraction and killing of the nematode Panagrellus redivivus by the predacious fungus Arthrobytrys dactyloides. Nematologica 18: 163–167

    CAS  Google Scholar 

  • Bangerth F (1974) Interaktionen von Auxin und Äthylen bei der thigmotropen Bewegung der Ranken von Cucumis sativus. Planta 117: 329–338

    CAS  Google Scholar 

  • Barber DA, Gunn KB (1974) The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions. New Phytol 73: 39–45

    CAS  Google Scholar 

  • Barker J (1935) A note on the effect of handling on the respiration of potatoes. New Phytol 34: 407–408

    Google Scholar 

  • Barley KP (1962) The effects of mechanical stress on the growth of roots. J Exp Bot 13: 95–110

    Google Scholar 

  • Benolken RM, Jacobson SL (1970) Response properties of a sensory hair excised from Venus’ flytrap. J Gen Physiol 56:64–82\

    Google Scholar 

  • Biswas S, Bose DM (1972) An ATPase in sensitive plant Mimosa pudica I. Purification and characterization. Arch Biochem Biophys 148: 199–207

    Google Scholar 

  • Boersch K (1938) Personal communication to G. Borgstrom, 1939, and quoted by the latter in: The transverse reactions of plants. Williams & Norgate, London

    Google Scholar 

  • Borgstrom G (1939) The transverse reactions of plants. Williams & Norgate, London

    Google Scholar 

  • Bose JC (1913) Researches on irritability of plants. Longmans, Green & Co, New York

    Google Scholar 

  • Bose JC (1927) Plant autographs and their revelations. MacMillan, New York

    Google Scholar 

  • Boyer N (1967) Modifications de la croissance de la tige de Bryone (Bryonia dioica) à la suite d’irritations tactiles. CR Acad Sei Paris 264: 2114–2117

    Google Scholar 

  • Boyer N (1972) Movement périodique de circumnutation et croissance des milles. Ann Sei Nat Bot Biol Veg 13: 417–175

    Google Scholar 

  • Boyer N (1973) Corrélations de croissance dans les plantes à milles. Ann Sei Nat Bot Biol Veg 14: 301–366

    CAS  Google Scholar 

  • Brown KM, Leopold AC (1973) Ethylene and the regulation of growth in pine. Can J For Res 3: 143–145

    CAS  Google Scholar 

  • Bünning E (1940) Über die Verhinderung des Etiolements. Ber Dtsch Bot Ges 59: 2–9

    Google Scholar 

  • Bünning E, Haag L, Timmermann G (1948) Weitere Untersuchungen über die formative Wirkung des Lichtes und mechanischer Reize aufpflanzen. Planta 36: 178–187

    Google Scholar 

  • Burden RF, Randerson PF (1972) Quantitative studies of the effects of human trampling on vegetation as an aid of the management of semi-natural areas. J Appl Ecol 9: 439–458

    Google Scholar 

  • Burkholder PR, Pratt R (1936) Leaf movements of Mimosa pudica in relation to light. Am J Bot 23: 46–52

    Google Scholar 

  • Coad DR, McGehee TF (1917) Collection of weevils and infested squares as a means of control of the cotton boll weevil in the Mississippi delta. USDA Bull 546: 1–51

    Google Scholar 

  • Colla S (1937) Die kontraktile Zelle der Pflanzen. Protoplasma 30: 1–163

    Google Scholar 

  • Couch JN (1937) The formation and operation of the traps in the nematode-catching fungus Dactylella bembicodes Drechsler. J Mitchell Soc 53: 301–309

    Google Scholar 

  • Darwin C (1876) The movements and habits of climbing plants, 2nd edn rev, Appleton, New York

    Google Scholar 

  • Darwin C (1881) The power of movement in plants. Appleton, New York

    Google Scholar 

  • Desbiez MO (1973) Précisions sur le mécanisme des corrélations entre bourgeons cotyle-donaires induits par des stimulation méchaniques du cotylédon chez Bidens pilosus L. Z Pflanzenphysiologie 69: 174–180

    CAS  Google Scholar 

  • Desbiez MO, Thellier M (1975) Lithium inhibition of the mechanically induced presence between cotyledonary buds. Plant Sei Lett 4: 315–321

    CAS  Google Scholar 

  • Dickinson S (1949a) Studies in the physiology of obligate parasitism. I. The stimuli determining the direction of growth of the germ tubes of rust and mildew spores. Ann Bot NS 13: 89–104

    Google Scholar 

  • Dickinson S (1949b) Studies in the physiology of obligate parasitism. II. The behavior of the germ-tubes of certain rusts in contact with various membranes. Ann Bot NS 13: 219–236

    Google Scholar 

  • Dickinson S (1971) Studies in the physiology of obligate parasitism. VII. An analysis of fungal responses to thigmotropic stimuli. Phytopathol Z 70: 62–70

    Google Scholar 

  • Duddington CL (1968) Fungal parasites of invertebrates. 2. Predacious fungi. In: Ainsworth GC, Sussman AS (eds) The fungi, an advanced treatise. Academic Press, New York, Vol III, pp 239–251

    Google Scholar 

  • Evans ML, Ray PM (1969) Timing of the auxin response in coleoptiles and its implications regarding auxin action. J Gen Physiol 53: 1–20

    PubMed  CAS  Google Scholar 

  • Feder WA, Everard COR, Wootton LMO (1963) Sensitivity of several species of the nematophagous fungus Dactylella to a morphogenic substance derived from free-living nematodes. Nematologica 9: 49–54

    Google Scholar 

  • Fitting H (1903) Untersuchungen über den Haptotropismus der Ranken. Jahrb Wiss Bot 38: 545–634

    Google Scholar 

  • Frizzell JL, Brown LC, Waddle BA (1960) Some effects of handling on the growth and development of cotton. Agron J 52: 69–70

    Google Scholar 

  • Galun E (1959) The cucumber tendril - a new test organ for gibberellic acid. Experentia 15: 184–185

    CAS  Google Scholar 

  • Godwin H (1935) The effect of handling on the respiration of cherry laurel leaves. New Phytol 34: 403–406

    Google Scholar 

  • Goeschl JD, Rappaport L, Pratt HK (1966) Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Plant Physiol 41: 877–884

    PubMed  CAS  Google Scholar 

  • Greengard P (1975) Cyclic nucleotides, protein phosphorylation, and neuronal function. In: Drummond GI, Greengard P, Robinson GA (eds) Advances in cyclic nucleotide research vol 5. Raven, New York, pp 585–601

    Google Scholar 

  • Gregory-Southworth A, Klein AO (1974) Light-induced sensitivity of bean seedlings to mechanical stimulation. Plant Physiol 53 Suppl: 46

    Google Scholar 

  • Haberlandt G (1914) Physiological plant anatomy. (Translated from the 4th German Ed by M. Drummond) MacMillan, London

    Google Scholar 

  • Hamner PA, Mitchell CA, Weiler TC (1974) Height control in greenhouse chrysanthemum by mechanical stress. Hort Science 9: 474–475

    Google Scholar 

  • Hertel R, St. Thomson K, Russo VEA(1972) In-vitro auxin binding to particulate cell fractions from corn coleoptiles. Planta 107:325–340

    Google Scholar 

  • Hesse G, Banerjee B, Schildknecht H (1957) Die Reizbewegungen der Mimosoideen and ihre Hormone. Experientia 13: 13–19

    CAS  Google Scholar 

  • Hiraki Y, Ota Y (1975) The relationship between growth inhibition and ethylene production by mechanical stimulation in Lilium longiflorum. Plant Cell Physiol 16: 185–189

    CAS  Google Scholar 

  • Hirsch P (1953) Eine empfindliche Pflanze. Kosmos 6: 266–268

    Google Scholar 

  • Hunt LA, Impens II, Leman ER (1967) Preliminary wind studies on photosynthesis and évapotranspiration of forage stands. Crop Sci 7: 575–578

    Google Scholar 

  • Irvine RF, Osborne DJ (1973) The effect of ethylene on [1–14C] glycerol incorporation into phospholipids of etiolated pea stems. Biochem J 136: 1133–1135

    PubMed  CAS  Google Scholar 

  • Iwanami Y (1962a) The movements of the stamens of Portulaca grandiflora. I. Bot Mag (Tokyo) 75: 133–139

    Google Scholar 

  • Iwanami Y (1962b) The movements of the stamens of Portulaca grandiflora. II. Bot Mag (Tokyo) 75:289-295 Iwanami Y ( 1962c ) The movements of the stamens of Portulaca grandiflora. III. Bot

    Google Scholar 

  • Mag (Tokyo) 75:331–335

    Google Scholar 

  • Iwanami Y (1962d) The movements of the stamens of Portulaca grandiflora. IV. Bot Mag (Tokyo) 75: 371–376

    Google Scholar 

  • Jacobs MR (1954) The effect of wind-sway on the form and development of Pinus radiate D. Don. Aust J Bot 2: 35–51

    Google Scholar 

  • Jacobson SL (1965) Receptor response in Venus’ fly-trap. J Gen Physiol 49: 117–129

    PubMed  CAS  Google Scholar 

  • Jaffe M J (1970) Physiological studies on pea tendrils. VII. Evaluation of a technique for the asymmetrical application of ethylene. Plant Physiol 45: 631–633

    Google Scholar 

  • Jaffe MJ (1972) Physiological studies on pea tendrils. VIII. The relationship of circumnutation to contact coiling. With a description of a laboratory intervalometer using integrated digital circuits. Physiol Plant 26: 73–80

    Google Scholar 

  • Jaffe M J (1973 a) The role of ATP in mechanically stimulated rapid closure of the Venus’ fly trap. Plant Physiol 51:17–18

    Google Scholar 

  • Jaffe M J (1973 b) Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation. With special reference to Bryonia dioica. Planta 114: 143–157

    Google Scholar 

  • Jaffe M J (1975) The role of auxin in the early events of the contact coiling of tendrils. Plant Sci Lett 5: 217–225

    CAS  Google Scholar 

  • Jaffe M J (1976 a) Thigmomorphogenesis: A detailed characterization of the response of beans (Phaseolus vulgaris L.) to mechanical stimulation. Z Pflanzenphysiol 77: 437–453

    Google Scholar 

  • Jaffe M J (1976 b) Thigmomorphogenesis: Electrical resistance and mechanical correlates of the early events of growth retardation due to mechanical stimulation in beans. Z Pflanzenphysiol 78: 24–32

    Google Scholar 

  • Jaffe M J, Biro R (1979) Thigmomorphogenesis: The effect of mechanical perturbation on the growth of plants, with special reference to anatomical changes, the role of ethylene, and interaction with other environmental stresses. In: Mussel H, Staples RC (eds) Stress physiology in crop plants. Wiley & Sons, New York, pp 25–59

    Google Scholar 

  • Jaffe MJ, Galston AW (1966a) Physiological studies on pea tendrils. I. Growth and coiling following mechanical stimulation. Plant Physiol 41: 1014–1025

    Google Scholar 

  • Jaffe MJ, Galston AW (1966b) Physiological studies on pea tendrils. II. The role of light and ATP in contact coiling. Plant Physiol 41: 1152–1158

    Google Scholar 

  • Jaffe M J, Galston AW (1967) Physiological studies on pea tendrils. III. ATPase activity and contractility associated with coiling. Plant Physiol 42: 845–847

    Google Scholar 

  • Jaffe M J, Galston AW ( 1968 a) Physiological studies on pea tendrils. V. Membrane changes and water movement associated with contact coiling. Plant Physiol 43: 537–542

    Google Scholar 

  • Jaffe M J, Galston AW (1968 b) The physiology of tendrils. Annu Rev Plant Physiol 19: 417–434

    Google Scholar 

  • Jaffe M J, Gibson C, Biro R (1977) Physiological studies of mechanically stimulated motor responses of flower parts. I. Characterization of the thigmotropic stamens of Portulaca grandiflora Hook. Bot Gaz 138: 438–447

    Google Scholar 

  • Johnson T (1934) A tropic response in germ tubes of urediospores of Puccinia graminis tritici. Phytopathology 24: 80–82

    Google Scholar 

  • Junker S (1976) Auxin transport in tendril segments of Passiflora caerulea. Physiol Plant 37: 258–262

    CAS  Google Scholar 

  • Junker S (1977) Thigmonastic coiling of tendrils of Passiflora quadrangular is is not caused by lateral redistribution of auxin. Physiol Plant 41: 51–54

    CAS  Google Scholar 

  • Junker S, Reinhold L (1975) A scanning electron microscopic survey of the surface of sensitive tendrils. J Microsc Biol Cell 23: 175–180

    Google Scholar 

  • Larson PR (1965) Stem formation of young Larix as influenced by wind and pruning. For Sci 11: 412–424

    Google Scholar 

  • Lea HW (1976) A muscle contracting substance from a plant’s closing fly-trap. Planta 129: 39–41

    CAS  Google Scholar 

  • Leopold AC, Brown KM, Emerson FH (1972) Ethylene in the wood of stressed trees. Hort Science 7: 175

    Google Scholar 

  • Lloyd FE (1942) The carnivorous plants. Ronald, New York

    Google Scholar 

  • Lyubimova MN, Demyanovskaya NS, Fedorovich IB, Itomlenskite IV (1964) Participation of ATP in the motor function of the Mimosa pudica leaf. (English transi) Biokhimiya 29: 663–667

    Google Scholar 

  • MacDougal DT (1908) Practical text-book of plant physiology. Longmans Green & Co New York

    Google Scholar 

  • Martin EV, Clements FE (1935) Effect of artificial wind on growth and transpiration of Helianthus annuus. Plant Physiol 10: 613–636

    PubMed  CAS  Google Scholar 

  • Milburn JA (1970) Phloem exudation from castor bean: Induction by massage. Planta 95: 272–276

    Google Scholar 

  • Milburn JA (1971) An analysis in the response of phloem exudation on application of massage to Ricinus. Planta 100: 143–154

    Google Scholar 

  • Mitchell CA, Severson CJ, Wott JA, Hamner PA (1975) Seismomorphogenic regulation of plant growth. J Am Soc Hortic Sci 100: 161–165

    Google Scholar 

  • Mitchell CA, Dostal HC, Seipel TM (1977) Dry weight reduction in mechanically dwarfed tomato plants. J Am Soc Hortic Sci 102: 605–608

    Google Scholar 

  • Neel PL, Harris RW (1971) Motion-induced inhibition of elongation and induction of dormancy in Liquidambar. Science 173: 58–59

    PubMed  CAS  Google Scholar 

  • Pelton WL (1967) The effect of a windbreak on wind travel, evaporation and wheat yield. Can J Plant Sci 47: 209–214

    Google Scholar 

  • Pfeffer W (1901) Pflanzenphysiologie, 2nd edn. Engelmann, Leipzig Pickard BG (1971) Action potentials resulting from mechanical stimulation of pea epicotyls. Planta 97:106–115

    Google Scholar 

  • Purdy LH (1958) Some factors affecting penetration and infection by Sclerotinia sclerotiorum. Phytopathology 48: 605–609

    Google Scholar 

  • Reinhold L (1967) Induction of coiling in tendrils by auxin and carbon dioxide. Science 158: 791–793

    PubMed  CAS  Google Scholar 

  • Reinhold L, Sachs T, Vislovska L (1972) The role of auxin in thigmotropism. In: Carr DJ (ed) Plant growth substances 1970. Springer, Berlin Heidelberg New York, pp 731–737

    Google Scholar 

  • Ricca U (1916) Solution d’un problème de physiologie. La propagation de stimulus dans la sensitive. Arch Ital Biol 65: 219–232

    Google Scholar 

  • Sachs J (1882) Text-book of botany, morphological and physiological, 2nd edn. (S.H. Vines) Clarendon Press, Oxford Salisbury F ( 1963 ) The flowering process. MacMillan, New York

    Google Scholar 

  • Schrank AR (1944) Relation between electrical and curvature responses in the Avena coleoptile to mechanical stimuli. Plant Physiol 19: 198–211

    PubMed  CAS  Google Scholar 

  • Schrank AR (1945) Effect of mechanical stimulation on the electrical and curvature responses in the Avena coleoptile. Plant Physiol 20: 344–358

    PubMed  CAS  Google Scholar 

  • Scurfield G (1973) Reaction wood: Its structure and function. Science 179: 647–655

    PubMed  CAS  Google Scholar 

  • Sibaoka T (1966) Action potentials in plant organs. Symp Soc Exp Biol 20: 49–74

    PubMed  CAS  Google Scholar 

  • Sibaoka T (1973) Transmission of action potentials in Biophytum. Bot Mag Tokyo 86: 51–61

    Google Scholar 

  • Staples RC, Laccetti L, Yaniv Z (1976) Appressorium formation and nuclear division in Colletotrichum truncatum. Arch Microbiol 109: 75–84

    CAS  Google Scholar 

  • Steucek GL, Gordon LK (1975) Response of wheat ( Triticum aestivum) seedlings to mechanical stress. Bot Gaz 136: 17–19

    Google Scholar 

  • Suda S (1960) On the physiological properties of mimosine. Bot Mag Tokyo 73: 142–147

    Google Scholar 

  • Todd GW, Chadwick DL, Tsai S-D (1972) Effect of wind on plant respiration. Physiol Plant 27: 342–346

    Google Scholar 

  • Toriyama H (1953) Observational and experimental studies of sensitive plants, I. The structure of parenchymatous cells of pulvinus. Cytologia 18: 283–292

    Google Scholar 

  • Toriyama H (1955) Observational and experimental studies of sensitive plants. VI. The migration of potassium in the primary pulvinus. Cytologia 20: 367–377

    Google Scholar 

  • Toriyama H, Jaffe MJ (1972) Migration of calcium and its role in the regulation of seismonasty in the motor cell of Mimosa pudica L. Plant Physiol 49: 72–81

    PubMed  CAS  Google Scholar 

  • Toriyama H, Sato S (1968) Electron microscope observation of the motor cell of Mimosa pudica L. II. On the contents of the central vacuole of the motor cell. Proc Jpn Acad 44: 949–953

    Google Scholar 

  • Toumey JW (1899) Sensitive stamens in the genus Opuntia. Asa Gray Bull 7: 35

    Google Scholar 

  • Tronchet A (1964) Quelques aspects de la sensibilite de vrilles. P V Mem Acad Sei Belles-Lett Arts Besancon 175: 23–39

    Google Scholar 

  • Turgeon R, Webb JA (1971) Growth inhibition by mechanical stress. Science 174: 961–962

    PubMed  CAS  Google Scholar 

  • Umrath K (1934) Über die elektrischen Erscheinungen bei thigmischer Reizung der Ranken von Cucumis melo. Planta 23: 47–50

    Google Scholar 

  • Umrath K (1966) Durch Erregungssubstanz ausgelöste Spaltöffnungsschließbewegung. Z Pflanzenphysiol 55: 217–223

    Google Scholar 

  • Umrath K (1972) Erregungsleitung bei jungen Pflanzen von Mimosa pudica und ihre vermutete Beziehung zur Erregungssubstanz. Ber Dtsch Bot Ges 85: 451–457

    Google Scholar 

  • Van Sambeek JW, Pickard BG, Ulbright CE (1976) Mediation of rapid electrical, metabolic, transpirational, and photosynthetic changes by factors released from wounds. II. Mediation of the variation potential by Ricca’s factor. Can J Bot 54: 2651–2661

    Google Scholar 

  • Venning FD (1949) Stimulation by wind motion of collenchyma formation in celery petioles. Bot Gaz 110: 511–514

    Google Scholar 

  • Victor TS, Vanderhoef LN (1975) Mechanical inhibition of hypocotyl elongation induces radial enlargement. Plant Physiol 56: 845–846

    PubMed  CAS  Google Scholar 

  • Wadsworth RM (1959) An optimum wind speed for plant growth. Ann Bot NS 23: 195–199

    Google Scholar 

  • Wadsworth RM (1960) Effect of artificial wind on growth rates of plants in water culture. Ann Bot NS 24: 200–211

    Google Scholar 

  • Walker WS (1957) The effect of mechanical stimulation on the collenchyma of Apium graveolens L. Proc Iowa Acad Sei 64: 177–186

    Google Scholar 

  • Walker WS (1960) The effects of mechanical stimulation and etiolation on the collenchyma of Datura stramonium. Am J Bot 47: 718–724

    Google Scholar 

  • Watanabe S (1971) Ouabain and IAA effects on Mimosa pulvinus. Artes Liberales 8: 75–80

    Google Scholar 

  • Westing AH (1965) Formation and function of compression wood in gymnosperms. Bot Rev 31: 381–480

    Google Scholar 

  • Westing AH (1968) Formation and function of compression wood in gymnosperms II. Bot Rev 34: 51–78

    Google Scholar 

  • Whitehead FH (1962) Experimental studies of the effect of wind on plant growth and anatomy. II. Helianthus annuus. New Phytol 67: 59–62

    Google Scholar 

  • Whitehead FH, Luti R (1962) Experimental studies of the effect of wind on plant growth and anatomy. I. Zea mays. New Phytol 61: 56–58

    Google Scholar 

  • Williams ME, Mozingo HN (1971) The fine structure of the trigger hair in Venus’ fly trap. Am J Bot 58: 532–539

    Google Scholar 

  • Williams SE, Pickard BG (1972 a) Receptor potentials and action potentials in Drosera tentacles. Planta 103: 193–221

    Google Scholar 

  • Williams SE, Pickard BG (1972b) Properties of action potentials in Drosera tentacles. Planta 103: 222–240

    Google Scholar 

  • Williams SE, Pickard BG (1974) Connections and barriers between cells of Drosera tentacles in relation to their electrophysiology. Planta 116: 1–16

    Google Scholar 

  • Wilson BF, Archer RA (1977) Reaction wood: induction and mechanical action. Annu Rev Plant Physiol 28: 23–33

    Google Scholar 

  • Wynn WK (1976) Appressorium formation over stomates by the bean rust fungus: Response to a surface contact stimulus. Phytopathology 66: 136–146

    Google Scholar 

  • Zeltner H (1931–1932) Über Elektronastik und andere Reizbewegungen der Ranken. Z Bot 25:97–172

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Jaffe, M.J. (1985). Wind and Other Mechanical Effects in the Development and Behavior of Plants, with Special Emphasis on the Role of Hormones. In: Pharis, R.P., Reid, D.M. (eds) Hormonal Regulation of Development III. Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67734-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67734-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67736-6

  • Online ISBN: 978-3-642-67734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics