Skip to main content

Roles of Hormones in Phototropism

  • Chapter
Hormonal Regulation of Development III

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 11))

Abstract

Because sunlight is the foremost environmental requirement of higher plants, processes which help seedling shoots emerge from the soil into the air, and which direct further development so as to optimize the intensity of light received by the leaves, are critical for plant survival. It is thus natural that plants, in addition to using sunlight as a source of energy, use it as a sensory cue to guide growth. It is the shorter wavelengths of the photosynthetic action spectrum to which the guidance systems respond, whereas the longer wavelengths often modulate the sensitivity or effectiveness of guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Mandour AA, Härtung W (1980) The effect of abscisic acid on growth and development of intact seedlings, root and callus cultures, and stem and root segments of Phaseolus coccineus. Z Pflanzenphysiol 100: 25–33

    CAS  Google Scholar 

  • Arisz WH (1914) Adjustment to light in oats. Proc K Ned Akad Wet Amsterdam, vol 16, part 2, pp 615–628

    Google Scholar 

  • Asana RD (1938) On the relation between the distribution of auxin in the tip of the Avena coleoptile and the first negative phototropic curvature. Ann Bot NS 2: 955–957

    CAS  Google Scholar 

  • Aspinall D, Paleg LG, Addicott FT (1967) Abscisin II and some hormone-regulated plant responses. Aust J Biol Sci 20: 869–882

    CAS  Google Scholar 

  • Ball NG (1969) Tropic, nastic and tactic responses. In: Steward FC (ed) Plant physiology, a treatise, vol VA. Academic Press, London New York, pp 119–228

    Google Scholar 

  • Bandurski RS, Schultz A, Cohen JD (1977) Photo-regulation of the ratio of ester to free indole-3-acetic acid. Biochem Biophys Res Commun 79: 1219–1223

    PubMed  CAS  Google Scholar 

  • Blaauw OH, Blaauw-Jansen G (1964) The influence of red light on the phototropism of Avena coleoptiles. Acta Bot Neerl 13: 541–552

    Google Scholar 

  • Blaauw OH, Blaauw-Jansen G (1970a) The phototropic responses of Avena coleoptiles. Acta Bot Neerl 19: 755–764

    Google Scholar 

  • Blaauw OH, Blaauw-Jansen G ( 1970 b) Third positive ( C-type) phototropism in the Avena coleoptile. Acta Bot Neerl 19: 764–776

    Google Scholar 

  • Black M, Shuttleworth JE (1974) The role of the cotyledons in the photocontrol of hypocotyl extension in Cucumis sativus L. Planta 117: 57–66

    Google Scholar 

  • Blatt MR, Briggs WR (1980 a) Blue-light-induced cortical fiber reticulation concomitant with chloroplast aggregation in the alga Vaucheria sessilis. Planta 147: 355–362

    Google Scholar 

  • Blatt MR, Briggs WR (1980 b) Actin and cortical fiber reticulation in the siphonaceous alga Vaucheria sessilis. Planta 147: 363–375

    Google Scholar 

  • Boothby D, Wright STC (1962) Effects of kinetin and other plant growth regulators on starch degradation. Nature 196: 389–390

    CAS  Google Scholar 

  • Brauner L (1922) Lichtkrümmung und Lichtwachstumreaktion. Z Bot 14: 497–547

    Google Scholar 

  • Brauner L (1959) Phototropismus und Photonastie der Laubblätter. In: Ruhland W (ed) Encyclopedia of plant physiology, vol 17/1. Springer, Berlin Göttingen Heidelberg, pp 492–529

    Google Scholar 

  • Brauner L, Hager A (1958) Versuche zur Analyse der geotropischen Perzeption. I. Planta 51: 115–147

    CAS  Google Scholar 

  • Brennan T, Gunckel JE, Frenckel C (1976) Stem sensitivity and ethylene involvement in phototropism of mung bean. Plant Physiol 57: 286–289

    PubMed  CAS  Google Scholar 

  • Briggs WR (1960) Light dosage and phototropic response of corn and oat coleoptiles. Plant Physiol 35: 951–962

    PubMed  CAS  Google Scholar 

  • Briggs WR (1963 a) The phototropic response of higher plants. Annu Rev Plant Physiol 14:311–352

    Google Scholar 

  • Briggs WR (1963 b) Red light, auxin relationships, and the phototropic responses of corn and oat coleoptiles. Am J Bot 50:196–207

    Google Scholar 

  • Briggs WR (1963 c) Mediation of phototropic responses of corn coleoptiles by lateral transport of auxin. Plant Physiol 38:237–247

    Google Scholar 

  • Briggs WR (1964) Phototropism in higher plants. In: Giese AC (ed) Photophysiology. Academic Press, London New York, pp 223–271

    Google Scholar 

  • Briggs WR (1976) The nature of the blue light photoreceptor in higher plants and fungi. In: Smith H (ed) Light and development. Butterworths, London, pp 7–18

    Google Scholar 

  • Briggs WR, Tocher RD, Wilson JF (1957) Phototropic auxin redistribution in corn coleoptiles. Science 126: 210–212

    PubMed  CAS  Google Scholar 

  • Britz SJ, Schrott E, Widell S, Briggs WR (1979) Red light-induced reduction of a particle- associated b-type cytochrome from corn in the presence of methylene blue. Photochem Photobiol 29: 359–365

    CAS  Google Scholar 

  • Bruinsma J (1977) Hormonal regulation of phototropism in dicotyledonous seedlings. In: Pilet PE (ed) Plant growth regulation. Springer, Berlin Heidelberg New York, pp 218–225

    Google Scholar 

  • Bruinsma J, Karssen CM, Benschop M, van Dort JB (1975) Hormonal regulation of phototropism in the light-grown sunflower seedling, Helianthus annuus L (1975): Immobility of endogenous indoleacetic acid and inhibition of hypocotyl growth by illuminated cotyledons. J Exp Bot 26: 411–418

    Google Scholar 

  • Bünning E, Reisener HJ, Weygand F, Simon H, Klebe JF (1956) Versuche mit radioaktiver Indolylessigsäure zur Prüfung der sogenannten Ablenkung des Wuchshormonstromes durch Licht. Z Naturforsch 11-B: 363–364

    Google Scholar 

  • Burg SP, Burg EA (1967) Lateral auxin transport in stems and roots. Plant Physiol 42: 891–893

    PubMed  CAS  Google Scholar 

  • Cande WZ, Ray PM (1976) Nature of cell-to-cell transfer of auxin in polar transport. Planta 129: 43–52

    CAS  Google Scholar 

  • Cleland RE, Rayle DL (1978) Auxin, H+-excretion, and cell elongation. Bot Mag Tokyo (Special Issue) 1: 125–139

    Google Scholar 

  • Cosgrove DJ (1981) Rapid suppression of growth by blue light. Plant Physiol 67: 584–590

    PubMed  CAS  Google Scholar 

  • Curry GM (1969) Phototropism. In: Wilkins MB (ed) The physiology of plant growth and development. McGraw-Hill, London, pp 245–273

    Google Scholar 

  • Davies PJ, Rubery PH (1978) Components of auxin transport in stem segments of Pisum sativum L. Planta 142: 211–219

    CAS  Google Scholar 

  • De Fabo E (1980) On the nature of the blue light photoreceptor: still an open question. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 187–197

    Google Scholar 

  • Dela Fuente RK, Leopold AC (1968) Lateral movement of auxin in phototropism. Plant Physiol 43: 1031–1036

    Google Scholar 

  • Dennison DS (1979) Phototropism. In: Haupt W, Feinleib ME (eds) Physiology of movements. Encyclopedia of plant physiology, new ser, vol 7. Springer, Berlin Heidelberg New York, pp 506–566

    Google Scholar 

  • Diemer R (1961) Untersuchungen des phototropischen Induktionsvorganges an Helianthus-Keimlingen. Planta 57: 111–137

    CAS  Google Scholar 

  • Drake G, Carr DJ (1978) Plasmodesmata, tropisms, and auxin transport. J Exp Bot 29: 1309–1318

    CAS  Google Scholar 

  • Du Buy HG (1933) Über Wachstum und Phototropismus von Avena sativa. Ree Trav Bot Neerl 30: 798–925

    Google Scholar 

  • Du Buy HG, Nuernbergk E (1934) Photo tropismus und Wachstum der Pflanzen. II. Ergeb Biol 10: 207–322

    Google Scholar 

  • Edwards KL, Goldsmith MHM (1980) pH-dependent accumulation of indoleacetic acid by corn coleoptile sections. Planta 147: 457–466

    Google Scholar 

  • Elliott WM, Shen-Miller J (1976) Similarity in dose responses, action spectra and red light responses between phototropism and photoinhibition of growth. Photochem Photobiol 23: 195–199

    PubMed  CAS  Google Scholar 

  • Esau K (1965) Vascular differentiation in plants. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Everett ML (1974) Dose-response curves for radish seedling phototropism. Plant Physiol 54: 222–225

    Google Scholar 

  • Everett M, Thimann KV (1968) Second positive phototropism in the Avena coleoptile. Plant Physiol 43: 1786–1792

    PubMed  CAS  Google Scholar 

  • Firn R, Digby J (1977) The role of the peripheral cell layers in the geotropic curvature of sunflower hypocotyls: a new model of shoot geotropism. Aust J Plant Physiol 4: 337–347

    Google Scholar 

  • Firn RD, Digby J (1980) The establishment of tropic curvatures in plants. Annu Rev Plant Physiol 31: 131–148

    Google Scholar 

  • Firn R, Digby J, Macleod K, Parsons A (1983) Phototropism: patterns of growth and gradients of light. What’s New in Plant Physiol 14: 29–32

    Google Scholar 

  • Fisher FJF, Wright M (1984) The dependence of suntracking in Lavatera crética L. upon carbon dioxide availability. ( Abstr.) Annual Meeting, Canadian Soc Plant Physiologists, p 16

    Google Scholar 

  • Franssen JM, Bruinsma J (1981) Relationships between xanthoxin, phototropism, and elongation growth in the sunflower seedling Helianthus annuus L. Planta 151: 365–370

    CAS  Google Scholar 

  • Roles of Hormones in Phototropism Galston AW (1959) Photo tropism of stems, roots and coleoptiles. In: Ruhland W (ed) Encyclopedia of plant physiology, vol 17/1. Springer, Berlin Göttingen Heidelberg, pp 429–529

    Google Scholar 

  • Galston AW (1974) Plant photobiology in the last half-century. Plant Physiol 54: 427–43.

    PubMed  CAS  Google Scholar 

  • Ganot D, Reinhold L (1970) The “acid growth effect” and geotropism. Planta 95: 62–71

    CAS  Google Scholar 

  • Gardner G, Shaw S, Wilkins MB (1974) IAA transport during the phototropic responses of intact Zea and Avena coleoptiles. Planta 121: 237–251

    CAS  Google Scholar 

  • Gillespie B, Thimann KV (1963) Transport and distribution of auxin during tropistic response. I. The lateral migration of auxin in geotropism. Plant Physiol 38: 214–225

    Google Scholar 

  • Goldsmith MHM (1968) The transport of auxin. Annu Rev Plant Physiol 19: 347–360

    CAS  Google Scholar 

  • Goldsmith MHM (1977) The polar transport of auxin. Annu Rev Plant Physiol 28: 439–478

    CAS  Google Scholar 

  • Goldsmith MHM, Goldsmith TH, Martin MH (1981) Mathematical analysis of the chemiosmotic polar diffusion of auxin through plant tissues. Proc Natl Acad Sei USA 78: 976–980

    CAS  Google Scholar 

  • Gordon SA, Dobra WA (1972) Elongation responses of the oat shoot to blue light, as measured by capacitance auxanometry. Plant Physiol 50: 738–742

    PubMed  CAS  Google Scholar 

  • Gordon SA, Eib M (1956) Auxin transport in the phototropic response. Plant Physiol (Suppl) 31:xiv Goswami KKA, Audus LJ (1976) Distribution of calcium, potassium, and phosphorus in Helianthus annuus hypocotyls and Zea mays coleoptiles in relation to tropic stimuli and curvatures. Ann Bot 40: 49–64

    Google Scholar 

  • Gressel J (1979) Blue light photoreception. Photochem Photobiol 30: 749–754

    CAS  Google Scholar 

  • Hager A, Schmidt R (1968a) Auxintransport und Phototropismus. I. Die lichtbedingte Bildung eines Hemmstoffes für den Transport von Wuchsstoffen in Koleoptilen. Planta 83: 347–371

    Google Scholar 

  • Hager A, Schmidt R (1968 b) Auxintransport und Phototropismus. II. Der Hemmechanismus des aus IES gebildeten Photooxidationsproduktes 3-Methylenoxindol beim Transport von Wuchstoffen. Planta 83: 372–386

    Google Scholar 

  • Hartmann E, Schmid K (1980) Effects of UV and blue light on the biopotential changes in etiolated hypocotyl hooks of dwarf beans. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 221–237

    Google Scholar 

  • Haupt W (1970) Phototropismus. Fortschr Bot 32: 168–175

    Google Scholar 

  • Haupt W (1979) Bewegungen. Fortschr Bot 41. 153–160

    Google Scholar 

  • Heilman B, Härtung W, Gimmler H (1980) The distribution of abscisic acid between chloroplasts and cytoplasm of leaf cells and the permeability of the chloroplast envelope for abscisic acid. Z Pflanzenphysiol 97: 67–78

    Google Scholar 

  • Hertel R, Jesaitis AJ, Dohrmann U, Briggs WR (1980) In vitro binding of riboflavin to subcellular particles from maize coleoptiles and Cucurbita hypocotyls. Planta 147: 312–31

    CAS  Google Scholar 

  • Hertel R, Lomax TL, Briggs WR (1983) Auxin transport in membrane vesicles from Cucurbita pepo L. Planta 157: 193–201

    CAS  Google Scholar 

  • Humphrey VR (1980) Effect of ethylene on the phototropic response of Avena and Oryza coleoptiles. Naturwissenschaften 67:198 lino M, Briggs WR (1984) Growth distribution during first positive phototropic curvature of maize coleoptiles. Plant Cell Environ 7: 97–104

    Google Scholar 

  • Iwami S, Masuda Y (1974) Geotropic response of cucumber hypocotyls. Plant Cell Physiol 5: 121–129

    Google Scholar 

  • Iwami S, Masuda Y (1976) Distribution of labeled auxin in geotropically stimulated stems of cucumber and pea. Plant Cell Physiol 17: 227–237

    CAS  Google Scholar 

  • Jacobs M, Gilbert SF (1983) Basal localization of presumptive auxin transport carrier in pea stem cells. Science 220: 1297–1300

    PubMed  CAS  Google Scholar 

  • Jaffe MJ (1970) On heliotropism of tendrils of Pisum sativum: a response to infrared irradiation. Planta 92: 146–151

    Google Scholar 

  • Jaffe MJ, Biro R (1979) Thigmomorphogenesis: the effect of mechanical perturbation on the growth of plants, with special reference to anatomical changes, the role of ethylene, and interaction with other environmental stresses. In: Mussell H, Staples RC (eds) Stress physiology in crop plants. Wiley and Sons, New York, pp 25–69

    Google Scholar 

  • Jesaitis AJ, Heners PR, Hertel R, Briggs WR (1977) Characterization of a membrane fraction containing B type cytochrome. Plant Physiol 59: 941–947

    PubMed  CAS  Google Scholar 

  • Johnsson A (1971) Aspects on gravity-induced movements in plants. Q Rev Biophys 4: 277–320

    PubMed  CAS  Google Scholar 

  • Kaiser WM, Härtung W (1981) Uptake and release of abscisic acid by isolated photoautotrophic mesophyll cells, depending on pH gradients. Plant Physiol 68: 202–206

    PubMed  CAS  Google Scholar 

  • Kang BG, Burg SP (1974) Red light enhancement of the photo tropic response of etiolated pea stems. Plant Physiol 53: 445–448

    PubMed  CAS  Google Scholar 

  • Katsumi M, Kazama H (1978) Gibberellin control of cell elongation in cucumber hypocotyl sections. Bot Mag Tokyo (Special Issue) 1: 141–158

    CAS  Google Scholar 

  • Kinraide TB, Etherton B (1980) Electrical evidence for different mechanisms of uptake for basic, neutral, and acidic amino acids in oat coleoptiles. Plant Physiol 65: 1085–1089

    PubMed  CAS  Google Scholar 

  • Lam S-L, Leopold AC (1966) Role of leaves in phototropism. Plant Physiol 41: 847–851

    PubMed  CAS  Google Scholar 

  • Leong T-Y, Briggs WR (1981) Partial purification and characterization of a blue light-sensitive cytochrome-flavin complex from corn membranes. Plant Physiol 67: 1042–1046

    PubMed  CAS  Google Scholar 

  • Leong TY, Vierstra R, Briggs W (1981) Blue light-sensitive cytochrome-flavin complex form corn coleoptiles. Further characterization. Photochem Photobiol 34: 697–703

    Google Scholar 

  • Leopold AC, Hall OF (1966) A mathematical model of polar auxin transport in plants. Plant Physiol 41: 1476–1480

    PubMed  CAS  Google Scholar 

  • Libbert E, Gerdes I (1964) Können Gibberelline an tropistischen Krümmungen beteiligt sein? Planta 61: 245–258

    CAS  Google Scholar 

  • Lister GA, Fisher FJF (1984) The action-spectrum of suntracking in Lavatera cretica L. ( Abstr) Annual Meeting, Canadian Soc Plant Physiologists, 1984, p 16

    Google Scholar 

  • Löser G, Schäfer E (1980) Phototropism in Phycomyces: a photochromic sensor pigment? In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 244–250

    Google Scholar 

  • Macnicol PK (1976) Rapid metabolic changes in the wounding response of leaf discs following excision. Plant Physiol 57: 80–84

    PubMed  CAS  Google Scholar 

  • Manabe K, Poff KL (1978) Purification and characterization of the photoreducible b-type cytochrome from Dictyostelium discoideum. Plant Physiol 61: 961–966

    PubMed  CAS  Google Scholar 

  • Mandoli DF, Briggs WR (1982 a) Optical properties of etiolated plant tissues. Proc Natl Acad Sei USA 79: 2902–2906

    Google Scholar 

  • Mandoli DF, Briggs WR (1982 b) The photoperceptive sites and the function of tissue light-piping in photomorphogenesis of etiolated oat seedlings. Plant Cell Environ 5: 137–145

    Google Scholar 

  • Mandoli DF, Briggs WR (1983) Physiology and optics of plant tissues. What’s New in Plant Physiol 14: 13–16

    Google Scholar 

  • Mclntyre GI, Browne KP (1984) The role of water in the light-induced growth inhibition and photo tropic curvature of the sunflower hypocotyl. ( Abstr) Annual Meeting, Canadian Soc Plant Physiologists, 1984, p 16

    Google Scholar 

  • McWha JA, Jackson DL (1976) Some growth promotive effects of abscisic acid. J Exp Bot 27: 1004–1008

    CAS  Google Scholar 

  • Menschick R, Hild V, Hager A (1977) Decarboxylierung von Indolylessigsäure im Zusam¬menhang mit dem Phototropismus in emz-Koleoptile. Planta 133: 233–228

    Google Scholar 

  • Mentze J, Raymond B, Cohen JD, Rayle DL (1977) Auxin-induced H+ secretion in Helianthus and its implications. Plant Physiol 60: 509–512

    PubMed  CAS  Google Scholar 

  • Meudt WJ, Bennet HW (1978) Rapid bioassay for auxin. Physiol Plant 44: 422–428

    CAS  Google Scholar 

  • Meyer AM (1969 a) Versuche zur Trennung von 1. positiver und negativer Krümmung der ewakoleoptile. Z Pflanzenphysiol 60:135–146

    Google Scholar 

  • Meyer AM (1969 b) Versuche zur 1. positiven und zur negativen phototropischen Krümmung der,4*;e«akoleoptile. I. Lichtperception und Absorptionsgradient. Z Pflanzenphysiol 60: 418–433

    Google Scholar 

  • Mollenhauer HH, Whaley WG, Leech JH (1960) Cell ultrastructure responses to mechanical injury. J Ultrastruct Res 4: 473–481

    PubMed  CAS  Google Scholar 

  • Muir RM, Zhu LJ (1983) Effect of light in the control of growth by auxin and its inhibitor(s) in the sunflower. Physiol Plant 57: 407–410

    CAS  Google Scholar 

  • Mulkey TJ, Kuzmanoff KM, Evans ML (1981) Correlations between protonefflux patterns and growth patterns during geotropism and phototropism in maize and sunflowers. Planta 152: 239–241

    CAS  Google Scholar 

  • Naqvi SM (1972 a) Possible role of abscisic acid in phototropism. Z Pflanzenphysiol 67:454—456

    Google Scholar 

  • Naqvi SM (1972 b) Lateral transport of indoleacetic acid-2-14C in Zea mays L coleoptile sections. Physiol Veg 10:495–501

    Google Scholar 

  • Naqvi SM, Engvild KC (1974) Action of abscisic acid on auxin transport and its relation to phototropism. Physiol Plant 30: 283–287

    CAS  Google Scholar 

  • Naqvi SM, Gordon SA (1967) Auxin transport in Zea mays coleoptiles. II. Influence of light on the transport of indoleacetic acid-2-14C. Plant Physiol 42: 138–143

    PubMed  CAS  Google Scholar 

  • Naqvi SM, Ansari R, Shere SM (1972) Phototropic response of decapitated coleoptiles. Pak J Bot 4: 51–53

    CAS  Google Scholar 

  • Ninneman H (1980) Blue light photoreceptors. Bioscience 30: 166–170

    Google Scholar 

  • Phillips ID J (1972 a) Endogenous gibberellin transport and biosynthesis in relation to geotropic induction of excised sunflower shoot tips. Planta 105:234–244

    Google Scholar 

  • Phillips ID J (1972 b) Diffusible gibberellins and phototropism in Helianthus annuus. Planta 106:363–367

    Google Scholar 

  • Phillips IDJ, Härtung W (1976) Longitudinal and lateral transport of [3,4-3H]gibberellin A1 and 3-indolyl(acetic acid-2-14C) in upright and geo tropically responding green internode segments from Helianthus annuus. New Phytol 76: 1–9

    CAS  Google Scholar 

  • Pickard BG (1973) Geotropic response patterns of the Avena coleoptile. I. Dependence on angle and duration of stimulation. Can J Bot 51: 1003–1021

    Google Scholar 

  • Pickard BG, Thimann KV (1964) Transport and distribution of auxin during tropistic response. II. The lateral migration of auxin in phototropism of coleoptiles. Plant Physiol 39: 341–350

    Google Scholar 

  • Pickard BG with participation by Dutson K, Harrison V, Donegan E (1969) Second positive phototropic response patterns of the oat coleoptile. Planta 88:1—33 Pohl R (1960)

    Google Scholar 

  • Beiträge zum Phototropismus der Avena-Koleopti. Phyton (Horn) 15:145–157

    Google Scholar 

  • Poole RJ (1978) Energy coupling for membrane transport. Annu Rev Plant Physiol 29: 437–460

    CAS  Google Scholar 

  • Poole RT, Thimann KV (1964) Uptake of indole-3-acetic acid and indole-3-acetonitrile by Avena coleoptile sections. Plant Physiol 39: 98–103

    PubMed  CAS  Google Scholar 

  • Railton ID, Phillips IDJ (1973) Gibberellins and geotropism in Zea Mays coleoptiles. Planta 109: 121–126

    CAS  Google Scholar 

  • Raven JA (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74: 163–172

    CAS  Google Scholar 

  • Reinders DE (1934) The sensibility for light of the base of normal and decapitated coleoptiles of Avena. Proc K Ned Akad Wet Amsterdam 37: 308–314

    Google Scholar 

  • Reinert J (1953) Über die Wirkung von Riboflavin und Carotin beim Phototropismus von eflKoleoptilen und bei anderen pflanzlichen Lichtreizreaktionen. Z Bot 41: 103–122

    CAS  Google Scholar 

  • Reinert J (1959) Phototropism and phototaxis. Annu Rev Plant Physiol 10: 441–458

    CAS  Google Scholar 

  • Reinhold L (1978) Phytohormones and the orientation of growth. In: Letham DS, Good¬win PB, Higgins TJV (eds) Phytohormones and related compounds - a comprehensive treatise, vol II. Elsevier/North-Holland Biomedical, Amsterdam, pp 251–289

    Google Scholar 

  • Reinhold L, Ganot D (1972) Asymmetric “acid growth” response following gravistimulus. In: Carr DJ (ed) Plant growth substances 1970. Springer, Berlin Heidelberg New York, pp 726–730

    Google Scholar 

  • Reisener JH (1958) Untersuchungen über den Phototropismus der Hafer-Koleoptile. Z Bot 46: 474–505

    CAS  Google Scholar 

  • Rubery PH (1977) The specificity of carrier-mediated auxin transport by suspension- cultured crown gall cells. Planta 135: 275–283

    CAS  Google Scholar 

  • Rubery PH (1978) Hydrogen ion dependence of carrier-mediated auxin uptake by suspension-cultured crown-gall cells. Planta 142: 203–206

    CAS  Google Scholar 

  • Rubery PH (1979) The effects of 2,4-dinitrophenol and chemical modifying reagents on auxin transport by suspension-cultured crown-gall cells. Planta 144: 173–178

    CAS  Google Scholar 

  • Rubery PH (1980) The mechanism of transmembrane auxin transport and its relation to the chemiosmotic hypothesis of the polar transport of auxin. In: Skoog F (ed) Plant growth substances 1979. Springer, Berlin Heidelberg New York, pp 50–60

    Google Scholar 

  • Rubery PH, Sheldrake AR (1973) Effect of pH and surface charge on cell uptake of auxin. Nature New Biol 244: 285–288

    PubMed  CAS  Google Scholar 

  • Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 118:101– 121

    Google Scholar 

  • Rüge U (1941) Über die geotropische Aufkrümmung decapitierter Helianthus-KQimlingQ. Planta 32: 176–186

    Google Scholar 

  • Sachs T (1975) The induction of transport channels by auxin. Planta 127: 201–206

    CAS  Google Scholar 

  • Schmidt GH (1980) Conformational changes caused by blue light. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 198–204

    Google Scholar 

  • Schmidt W (1980) Artificial flavin/membrane systems; a possible model for physiological blue light action. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 212–220

    Google Scholar 

  • Schmidt W (1983) The physiology of blue-light systems. In: The biology of photoreception, Symposium XXXVI, Soc for Exptl Biol. Cambridge University Press, Cambridge London New York, pp 305–330

    Google Scholar 

  • Schmidt W, Hart J, Filner P, Poff KL (1977) Specific inhibition of phototropism in corn seedlings. Plant Physiol 60: 736–738

    PubMed  CAS  Google Scholar 

  • Schneider EA, Wightman F (1974) Metabolism of auxin in higher plants. Annu Rev Plant Physiol 25: 487–513

    CAS  Google Scholar 

  • Schrott EL (1980) Dose-response and related aspects of carotogenesis in Neurospora crassa. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 309–318

    Google Scholar 

  • Schwartz A, Koller D (1978) Phototropic responses to vectorial light in leaves of Lavatera cretica L. Plant Physiol 61:924–928

    PubMed  CAS  Google Scholar 

  • Schwartz A, Koller D (1980) Role of the cotyledons in the phototropic response of Lavatera cretica seedlings. Plant Physiol 66: 82–87

    Google Scholar 

  • Scott TK, Most BH (1972) The movement of growth hormones in sugar cane. In: Kaldewey H, Vardar Y (eds) Hormonal regulation in plant growth and development. Verlag Chemie, Weinheim, pp 57–67

    Google Scholar 

  • Senger H, Briggs WR (1981) The blue light receptor(s): primary reactions and subsequent metabolic changes. In: Smith CK (ed) Photochemical and photobiological reviews, vol 6. Plenum Press, New York, pp 1–38

    Google Scholar 

  • Shen-Miller J, Gordon SA (1966) Hormonal relations in the phototropic response. III. The movement of C14-labeled and endogenous indoleacetic acid in photo tropically stimulated Zea coleoptiles. Plant Physiol 41: 59–65

    PubMed  CAS  Google Scholar 

  • Shen-Miller J, Gordon SA (1967) Gravitational compensation and the phototropic re¬sponse of oat coleoptiles. Plant Physiol 42: 352–360

    PubMed  CAS  Google Scholar 

  • Shen-Miller J, Cooper P, Gordon SA (1969) Phototropism and photo-inhibition of basipolar transport of auxin in oat coleoptiles. Plant Physiol 44: 491–496

    PubMed  CAS  Google Scholar 

  • Shibaoka H (1961) Studies on the mechanism of growthinhibiting effect of light. Plant Cell Physiol 2: 175–197

    CAS  Google Scholar 

  • Shibaoka H, Yamaki T (1959) Studies on the growth movement of sunflower plant. Sei Papers Coll Gen Ed, Univ Tokyo, vol 9, pp 105–126

    Google Scholar 

  • Shropshire W JR (1980) Carotenoids as primary photoreceptors in blue-light responses. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 172–186

    Google Scholar 

  • Shuttleworth JE, Black M (1977) The role of cotyledons in phototropism of deetiolated seedlings. Planta 135: 51–55

    Google Scholar 

  • Silk WK, Jones RL (1975) Gibberellin response in lettuce hypocotyl sections. Plant Physiol 56: 267–272

    PubMed  CAS  Google Scholar 

  • Smith H (1975) Phytochrome and photomorphogenesis. McGraw Hill, London Smith H (1984) Plants that track the sun. Nature 308: 774

    Google Scholar 

  • Song PS (1980) Spectroscopic and photochemical characterization of flavoproteins and carotenoproteins as blue light photoreceptors. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 157–171

    Google Scholar 

  • Steiner AM (1969 a) Dose response behavior for polarotropism of the chloronema of the fern Dryopteris filixmas (L) Schott. Photochem Photobiol 9:493–506

    Google Scholar 

  • Steiner AM (1969 b) Action spectrum for polarotropism in the chloronema of the fern Dryopteris filixmas (L) Schott. Photochem Photobiol 9:507–513

    Google Scholar 

  • Steyer B (1967) Die Dosis-Wirkungsrelationen bei geotroper und photo troper Reizung: Vergleich von Monomit Dicotyledonen. Planta 77: 277–286

    Google Scholar 

  • Strasser RJ, Butler WL (1980) Interactions of flavins with cytochrome C and oxygen in excited artificial systems. In: Senger H (ed) The blue light syndrome. Springer, Berlin Heidelberg New York, pp 205–211

    Google Scholar 

  • Stuart DA (1976) Gibberellic acid and elongation in lettuce hypocotyl sections. Dissertation, Univ California, Berkeley Sussman MR, Goldsmith MHM (1981) Auxin uptake and action of N-l-naphthylphthala- mic acid in corn coleoptiles. Planta 151: 15–25

    Google Scholar 

  • Terry ME, Jones RL (1981) Effect of salt on auxin-induced acidification and growth by pea internode sections. Plant Physiol 68: 59–64

    PubMed  CAS  Google Scholar 

  • Thimann KV (1964) Phototropism. Photochem Photobiol 3: 463–469

    CAS  Google Scholar 

  • Thimann KV (1967) Phototropism. In: Florkin M, Stotz EH (eds) Comprehensive bio¬chemistry, vol 27. Elsevier, Amsterdam, pp 1–29

    Google Scholar 

  • Thimann KV (1977) Hormone action in the whole life of plants. Univ Massachusetts Press, Amherst Thimann KV, Curry GM (1961) Phototropism and phototaxis. In: Florkin M, Mason HS (eds) Comparative biochemistry, vol I. Academic Press, London New York, pp 243–309

    Google Scholar 

  • Thornton RM, Thimann KV (1967) Transient effects of light on auxin transport in the Avena coleoptile. Plant Physiol 42: 247–257

    PubMed  CAS  Google Scholar 

  • Towers GHN, Abeysekera B (1984) Cell wall hydroxycinnamate esters as UV-A receptors in phototropic responses of higher plants–a new hypothesis. Phytochem 23: 951–952

    CAS  Google Scholar 

  • Trewavas A (1981) How do plant growth substances work? Plant Cell Environ 4: 203–228

    CAS  Google Scholar 

  • Valadon LRG, Mummery RS (1971) Relationship between the inhibitory effects of 5,6- epoxyxanthophylls and phototropism. Physiol Plant 24: 363–368

    CAS  Google Scholar 

  • van Overbeek J (1932) An analysis of phototropism in dicotyledons. Proc K Ned Akad Wet Amsterdam 35: 1325–1335

    Google Scholar 

  • van Overbeek J (1933) Wuchsstoff, Lichtwachstumreaktion und Phototropismus bei Raphanus. Ree Trav Bot Neerl 30: 537–626

    Google Scholar 

  • van Overbeek J (1936) Light growth response and auxin curvatures of Avena. Proc Natl Acad Sei USA 22: 421–415

    Google Scholar 

  • Van Sambeek JW, Pickard BG ( 1976 a) Mediation of rapid electrical, metabolic, transpirational, and photo synthetic changes by factors released from wounds. I. Variation potentials and putative action potentials in intact plants. Can J Bot 54: 2642–2650

    Google Scholar 

  • Van Sambeek JW, Pickard BG (1976 b) Mediation of rapid electrical, metabolic, and photosynthetic changes by factors released from wounds. III. Measurements of C02 and H20 flux. Can J Bot 54: 2662–2671

    Google Scholar 

  • Vierstra RD, Poff KL (1981) Mechanism of specific inhibition of phototropism by phenylacetic acid in corn seedling. Plant Physiol 67: 1011–1015

    PubMed  CAS  Google Scholar 

  • Vierstra RD, Poff KL (1981a) Role of carotenoids in the phototropic response of corn seedlings. Plant Physiol 68: 798–801

    PubMed  CAS  Google Scholar 

  • Vierstra RD, Poff KL, Walker EB, Song P-S (1981) Effect of xenon on the excited states of phototropic receptor flavin in corn seedlings. Plant Physiol 67: 996–998

    PubMed  CAS  Google Scholar 

  • Vogelmann TC, Björn LO (1983) Response to directional light by leaves of a sun-tracking lupine ( Lupinus succulentus ). Physiol Plant 59: 533–538

    Google Scholar 

  • Wainwright CM (1977) Suntracking and related leaf movements in a desert lupine (Lupi¬nus arizonicus). Am J Bot 64: 1032–1042

    Google Scholar 

  • Wangermann E, Withers LA (1978) Auxin transport characteristics and cellular ultrastructure of different types of parenchyma. N Phytol 81: 1–17

    CAS  Google Scholar 

  • Wareing PF, Phillips ID J (1978) The control of growth and differentiation in plants, 2nd edn. Pergamon, Oxford Went F (1928) Wuchstoff und Wachstum. Ree Trav Bot Neerl 25:1–116

    Google Scholar 

  • Went FW (1974) Reflections and speculations. Annu Rev Plant Physiol 25: 1–26

    CAS  Google Scholar 

  • Went FW, Thimann KV (1937) Phytohormones. MacMillan, New York Werk KS, Ehleringer J (1984) Nonrandom leaf orientation in Lactuca serriola L. Plant Cell Environ 7: 81–87

    Google Scholar 

  • Wilden M (1939) Analyse der positiven und negativen photo tropischen Biegungen. Planta 30: 286–288

    CAS  Google Scholar 

  • Wilkins MB (1965) Red light and the geotropic response of the Avena coleoptile. Plant Physiol 40: 24–34

    PubMed  CAS  Google Scholar 

  • Wilkins MB (1977) Gravity and light-sensing guidance systems in primary roots and shoots. In: SymposiumXXXI Soc Exp Biol. Integration of activity in the higher plant. Cambridge Univ Press, Cambridge, pp 275–335

    Google Scholar 

  • Zimmerman BK, Briggs WR (1963 a) Phototropic dosageresponse curves for oat coleoptiles. Plant Physiol 38: 248–253

    Google Scholar 

  • Zimmerman BK, Briggs WR (1963 b) A kinetic model for phototropic response of oat coleoptiles. Plant Physiol 38: 253–261

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Pickard, B.G. (1985). Roles of Hormones in Phototropism. In: Pharis, R.P., Reid, D.M. (eds) Hormonal Regulation of Development III. Encyclopedia of Plant Physiology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67734-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67734-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67736-6

  • Online ISBN: 978-3-642-67734-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics