Skip to main content
Book cover

Biosynthesis pp 132–174Cite as

Biochemical Mechanisms in the Biosynthesis of the Erythromycins

  • Chapter

Part of the book series: Antibiotics ((ANTIBIOTICS,volume 4))

Abstract

A number of reviews on macrolide antibiotics have appeared since they were first reviewed in this seriesVaněk and Majer1967: the subject was recently included in a more detailed account of macrolidesMasamune et al., 1977) as well as in an annual report on the subject of antibioticsCorcoran, 1977. A detailed discussion of the 16-membered group of macrolides appears in Chapter 8 of this volume. Of all the other possible models, the family of the erythromycins has been the subject of the most biochemical and enzymatic study, and far more knowledge is available about the detailed mechanisms involved in their biosynthesis than about any other macrolide type of antibiotic. Many natural products, including antibiotics, are made from the same (or similar) common intermediates of metabolism as are employed in the formation of the erythromycins, and the nature of the enzymatic reactions occurring in the formation of these precursors and in the synthesis of the complex natural product have implications for our understanding of biosynthesis beyond that of the model system (e.g., erythromycins) used for their elucidation.Therefore, this chapter analyzes in detail the present state of knowledge concerning the biosynthesis of the erythromycins (Fig. 1) and presents and discusses some general aspects of biosynthesis with this model system as an example.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Buckner JS, Kolattukudy PE (1975a) Lipid Biosynthesis in sebaceous glands; Regulation of the synthesis of n-and branched fatty acids by malonyl-coenzyme A decarboxylase. Biochemistry 14:1768–1773

    Article  PubMed  CAS  Google Scholar 

  • Buckner JS, Kolattukudy PE (1975b) Lipid biosynthesis in the sebaceous glands: synthesis of multibranched fatty acids from methylmalonyl-coenzyme A in cell-free preparations from the uropygial gland of goose. Biochemistry 14:1774–1782

    Article  PubMed  CAS  Google Scholar 

  • Buckner JS, Kolattukudy PE (1976) One-step purification and properties of a two-peptide fatty acid synthetase from the uropygial gland of the goose. Biochemistry 15:1948–1957

    Article  PubMed  CAS  Google Scholar 

  • Butte JC, Corcoran JW (1962) The biogenesis of desosamine, an amino-trideoxy-sugar in erythromycin. Fed Proc 21:89

    Google Scholar 

  • Butte JC, Corcoran JW (1963) The origin of propionate, used by Streptomyces erythreus for erythronolide-A synthesis. Fed Proc 22:355

    Google Scholar 

  • Cahn RS, Ingold C, Prelog V (1966) Specification of molecular chirality. Angew Chem Int Ed Engl 5385–5415

    Google Scholar 

  • Celmer WD (1971) Stereochemical problems in macrolide antibiotics. Pure Appl Chem 28:413–453

    Article  PubMed  CAS  Google Scholar 

  • Celmer WD (1972) Chem Abstr 76: Index Guide Sect IV, 841-1011

    Google Scholar 

  • Collum P, Egan RS, Goldstein AW, Martin JR (1976) 3-O-(2″,6″,-dideoxy-α-L-Ribo-hexopyranosyl) erythronolide B and 3-O-(2″,6″-dideoxy-α-L-Aribo-hexopyranosyl)erythronolide B, aberrant erythromycin biogenetic metabolites with defective sugar moieties. Tetrahedron 32:2375–2378

    Article  CAS  Google Scholar 

  • Corcoran JW (1965) Speculation on the origin of macrolide antibiotics. In: Biogenesis of antibiotic substances, pp 131–142. Czech Academy of Sciences, Prague

    Google Scholar 

  • Corcoran JW (1975) S-Adenosylmethionine: Erythromycin C O-methyltransferase. In: Hash JH (ed) Methods in enzymology, vol XLIII, pp 487–497. Antibiotics. Academic Press, London New York

    Google Scholar 

  • Corcoran JW (1977) Biosynthesis of antibiotics. In: Clarke FH (ed) Annu Rep Med Chem, vol XII, pp 130–139, Academic Press, London New York

    Google Scholar 

  • Corcoran JW, Chick M (1966) Biochemistry of the macrolide antibiotics. In: Snell JF (ed) Biosynthesis of antibiotics, pp 149–201. New York: Academic Press, London New York

    Google Scholar 

  • Corcoran JW, Majer J (1975) Erythromycin D, A key intermediate in the biogenesis of the erythromycins.Federation Proc 34:589

    Google Scholar 

  • Corcoran JW, McAlpine TS (1971) Enzymatic O-methylation of erythromycin C as the final step in the biogenesis of erythromycin A. Fed Proc 30:1168

    Google Scholar 

  • Corcoran JW, Takahashi S (1975) Acid catalyzed reactions of 9-(S)-dihydro-erythronolides A and B: structures of Wiley’s dehydration products A and B and analogous products derived from erythromycin B. 15th Intersci Conf Antimicrob Agents Chemother Abstr 425

    Google Scholar 

  • Corcoran JW, Vygantas AM (1977) Hydroxylation steps in erythromycin biogenesis. Fed Proc 36:663

    Google Scholar 

  • Corcoran JW, Chick M, Darby FJ (1967) The biogenesis of fatty acids and erythronolide-like substances in mycelium-free extracts of Streptomyces erythreus. In: Proc. 5th Int Congr Chemother, p 35. Abstracts of Communications, Wien

    Google Scholar 

  • Corcoran JW, Huber MLB, Huber FM (1977) Relationship of Ribosomal Binding and Antibacterial Properties of Tylosin-Type Antibiotics. J. Antibiotics, 30:1012–1014

    CAS  Google Scholar 

  • Dimroth P, Walter H, Lynen F (1970) Biosynthese von 6-Methylsalicylsaure. Eur J Biochem 13:98–110

    Article  PubMed  CAS  Google Scholar 

  • Duppel W, Lebeault J-M, Coon MJ (1973) Properties of a yeast cytochrome P-450-containing enzyme system which catalyzes the hydroxylation of fatty acids, alkanes, and drugs. Eur J Biochem 36:583–592

    Article  PubMed  CAS  Google Scholar 

  • Goldstein AW, Egan RS, Mueller SL, Martin JR (1978) Biotransformation of lankamycin, darcanolide, and 11-acetyllankolide by a blocked mutant of the erythromycin producting organism Streptomyces Erythreus. J Antibiot 31:63–69

    PubMed  CAS  Google Scholar 

  • Harris DR, McGeachin SG, Mills HH (1965) The structure and stereochemistry of erythromycin A. Tetrahedron Lett 679–685

    Google Scholar 

  • Hung PP, Marks CL, Tardrew PL (1965) The biosynthesis and metabolism of erythromycins by Streptomyces Erythreus. J Biol Chem 240:1322–1326

    PubMed  CAS  Google Scholar 

  • IUPAC Nomenclature of Organic Chemistry (1969) Sect A, B, C, pp 85–115. Butterworths, London

    Google Scholar 

  • IUPAC-IUB (1967) Commission on Biochemical Nomenclature. The nomenclature of lipids. J Biol Chem 242:4845–4849

    Google Scholar 

  • Kaneda T, Butte JC, Taubman SB, Corcoran JW (1962) Actinomycete antibiotics III. The biogenesis of erythronolide. The C21 branched chain lactone in erythromycin. J Biol Chem 237:322–328

    PubMed  CAS  Google Scholar 

  • Kaziro Y, Ochoa S (1961) Mechanism of the propionyl carboxylase reaction. I. Carboxylation and decarboxylation of the enzyme. J Biol Chem 236:3131–3136

    CAS  Google Scholar 

  • Kaziro Y, Ochoa S, Warner RL, Chen J-Y (1961) Metabolism of propionic acid in animal tissues. VIII. Crystalline propionyl carboxylase. J Biol Chem 236:1917–1923

    PubMed  CAS  Google Scholar 

  • Klyne W (1951) Nomenclature of some stereoisomeric compounds, specification of configurations. Chem Ind 1022–1025

    Google Scholar 

  • Lemahieu RA, Ax HA, Blount JF, Carson M, Despreaux CW, Pruess DL, Scannell JP, Weiss F, Kierstead RW (1976) A new semisynthetic macrolide antibiotic, 3-0-oleandrosyl-5-0-desosaminyl-erythronolide A oxime. J Antibiot 29:728–734

    CAS  Google Scholar 

  • Maezawa I, Hori T, Kinumaki A, Suzuki M (1973) Biological conversion of narbonolide to picromycin. J Antibiot 26:771–775

    PubMed  CAS  Google Scholar 

  • Maezawa I, Kinumaki A, Suzuki M (1976) Biological glycosidation of macrolide antibiotics I. Isolation and characterization of 5-O-mycaminosyl narbonolide and 9-Dihydro-5-O-mycaminosyl narbonolide. J Antibiotics 29:1203–1208

    CAS  Google Scholar 

  • Majer J, Corcoran JW (1973) Macrolide biosynthesis in Streptomyces Venezuelae. Fed Proc 32:468

    Google Scholar 

  • Majer J, Martin JR, Corcoran JW (1974) Erythromycin D, properties and structure. 14th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, Calif. Abstract # 200

    Google Scholar 

  • Majer J, McAlpine JB, Egan RS, Corcoran JW (1976) Antibiotic glycosides. VII 10,11-dihydropicromycin: Another metabolite of Streptomyces Venezuelae. J Antibiot 29:769–770

    PubMed  CAS  Google Scholar 

  • Majer J, Martin JR, Egan RS, Corcoran JW (1977) Antibiotic glycosides VIII. Erythromycin D, a new macrolide antibiotic. J Am Chem Soc 99:1620–1622

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Egan RS (1970) 5,6-Dideoxy-5-oxoerythronolide B, a shunt metabolite of erythromycin biosynthesis. Biochemistry 9:3439–3445

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Goldstein AW (1970) Final steps in erythromycin biosynthesis. In: Progress in antimicrobial and antitumor chemotherapy, Univ. Tokyo Press, pp 1112–1116. Tokyo

    Google Scholar 

  • Martin JR, Perun TJ (1968) Studies on the biosynthesis of the erythromycins. III. Isolation and structure of 5-Deoxy-5-Oxoerythronolide B, a shunt metabolite of erythromycin biosynthesis.Biochemistry 7:1728–1733

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Rosenbrook W (1967) Studies on the biosynthesis of the erythromycins. II. Isolation and structure of a biosynthetic intermediate, 6-Deoxyerythronolide B. Biochemistry 6:435–440

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Perun TJ, Girolami RL (1966) Studies on the biosynthesis of the erythromycins. I. Isolation and structure of an intermediate glycoside, 3-α-L-mycarosylerythronolide B. Biochemistry 5:2852–2856

    Article  PubMed  CAS  Google Scholar 

  • Martin JR, Perun TJ, Egan RS (1972) (8S)-8-Hydroxy-5,6-Dideoxy-5-oxoerythronolide B, a shunt metabolite of erythromycin biosynthesis. Tetrahedron 28:2937–2948

    Google Scholar 

  • Martin JR, Egan RS, Goldstein AW, Collum P (1975) Extension of the erythromycin biosynthetic pathway: Isolation and structure of erythromycin E, Tetrahedron 31:1985–1989

    Article  CAS  Google Scholar 

  • Masamune S, Bates GS, Corcoran JW (1977) Macrolides. Recent progress in chemistry and biochemistry. Angew Chem (Int Ed Engl) 16:585–607

    Article  CAS  Google Scholar 

  • Nishikiori T, Wiegand RJ, Martens MG, Corcoran JW (1978) Further characterization of the erythranolide C-6 hydroxylase of Streptomyces erythreus. Fed Proc 37:1721

    Google Scholar 

  • Nourse JG, Roberts JD (1975) Nuclear magnetic resonance spectroscopy. Carbon-13 spectra of some macrolide antibiotics and derivatives, substituent and conformational effects. J Am Chem Soc 97:4584–4594

    Article  PubMed  CAS  Google Scholar 

  • Ōmura S, Takeshima H, Nakagawa A, Miyazawa T (1976) The biosynthesis of picromycin using 13C-enriched precursors. J Antibiot 29:316-317

    Google Scholar 

  • Pape H, Brillinger GU (1973) Stoffwechselprodukt von Microorganismus. 113. Mitteilung. Biosynthese von Thymidin diphospho-mycarose durch ein Zellfreie System aus Streptomyces rimosus. Arch Microbiol 88:25

    Article  CAS  Google Scholar 

  • Pape H, Grisebach H (1965) Untersuchungen über Nucleotidzucker und freie Nucleotide in S. erythreus. Biochem Z 343:154–175

    PubMed  CAS  Google Scholar 

  • Perun TJ (1971) The chemistry and conformation of erythromycin. In: Mitsuhashi S (ed) Drug action and drug resistance in bacteria. 1. Macrolide antibiotics and lincomycin, pp 123–152. Univ Tokyo Press, Tokyo

    Google Scholar 

  • Raczyńska-Bojanowska K, Ruczaj Z, Ostrowska-Krysiak B, Roszkowski J, Gaworowska-Michalik J, Sawnor-Korszyńska D (1970) Precursors and control in erythromycin biosynthesis. Acta Microbiol Pol Ser B 2(19): 103–110

    Google Scholar 

  • Raczyńska-Bojanowska K, Rafalski A, Ostrowska-Krysiak B (1976) Carboxylation of propionyl-Co A in erythromycin biosynthesis. Acta Biochem Pol 17:331–338

    Google Scholar 

  • Raczyńska-Bojanowska K, Ruczaj Z, Sawnor-Korszyńska D, Rafalski A (1973) Limiting reactions in activation of acyl units in biosynthesis of macrolide antibiotics. Antimicrob Agents Chemother 3:162–167

    PubMed  Google Scholar 

  • Rossi A, Corcoran JW (1973) Identification of a multienzyme complex synthesizing fatty acids in the actinomycete Streptomyces erythreus. Biochem Biophys Res Commun 50:597–602

    Article  PubMed  CAS  Google Scholar 

  • Ruczaj Z, Sawnor-Korszyńska D, Raczyńska-Bojanowska K (1969) Propionate and acetate kinase in Streptomyces. Bull Acad Pol Sci 17:531–533

    CAS  Google Scholar 

  • Ruettinger RT, Olson ST, Boyer RF Jr, Coon MJ (1974) Identification of the ω-hydroxylase of Pseudomonas Oleovorans as a nonheme iron protein requiring phospholipid for catalytic activity. Biochem Biophys Res Commun 57:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Scott AI, Beadling LC, Georgopapadakou NH, Subbarayan CR (1974) Biosynthesis of polyketides. Purification and inhibition studies of 6-Methylsalicylic acid synthase. Bioorg Chem 3:238–248

    Article  CAS  Google Scholar 

  • Spížek J, Chick M, Corcoran JW (1966) The biogenetic relationship of the erythromycins and the lactone of erythromycin B. Antimicrob Agents Chemother 1965:138–143

    Google Scholar 

  • Tardrew PL, Nyman MA (1964) Hypocholesterolemic agent M-850 and method of preparation,US Patent 3, 127, 315

    Google Scholar 

  • Terui Y, Tori K, Nagashima K, Tsuji N (1975) C-l3 nuclear magnetic resonance spectra of erythromycins. Tetrahedron Lett 2583–2586

    Google Scholar 

  • Thang TT, Lukacs G, Ōmura S, Bartner P, Boxler DL, Brambilla R, Mallams AK, Morton JB, Reichert P, Sancilio FD, Surprenant H, Tomalesky G (1978) Megalomicins. 6. Tertiary glycosidic macrolide antibiotics. A structural revision by carbon-13 nuclear magnetic resonance and X-ray crystallography. J Am Chem Soc 100:663–666

    Article  Google Scholar 

  • Tyson CA, Lipscomb JD, Gunsalus IC (1972) The roles of putidaredoxin and P450Cam in methylene hydroxylation. J Biol Chem 247:5777–5784

    PubMed  CAS  Google Scholar 

  • Vaněk Z, Majer J (1967) Macrolide antibiotics. In: Gottlieb D, Shaw PD (eds) Antibiotics II. Biosynthesis, pp 154–188. Springer, Berlin Heidelberg New Y

    Google Scholar 

  • Vygantas AM, Corcoran JW (1974) Hydroxylation of 6-Deoxyerythronolide B by a soluble enzyme system from Streptomyces Erythreus. Fed Proc 33:1233

    Google Scholar 

  • Wawszkiewicz EJ, Lynen F (1964) Propionyl-Co A dependent H14C0 3 exchange into methylmalonyl-Co A in extracts of Streptomyces erythraeus. Biochem Z 340:213–227

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Corcoran, J.W. (1981). Biochemical Mechanisms in the Biosynthesis of the Erythromycins. In: Corcoran, J.W. (eds) Biosynthesis. Antibiotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67724-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67724-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67726-7

  • Online ISBN: 978-3-642-67724-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics