Biosynthesis pp 295-312 | Cite as

Biosynthesis of the Mitomycins

  • Ulfert Hornemann
Part of the Antibiotics book series (ANTIBIOTICS, volume 4)


The mitomycins and porfiromycin (Fig. 1) constitute a complex of anticancer antibiotics which are produced by Streptomyces caespitosus (Hata et al., 1956), Streptomyces ardus sp. n (DeBoer et al., 1960) Streptomyces verticillatus (Lefemine etal., 1962) and Streptomyces michiganensis (Wolf et al., 1975). Their structures have been determined by chemical, physicochemical, and X-ray methods (Webb etal., 1962a, 1962b; Stevens etal., 1965; Tulinsky and Van den Hende, 1967; Yahashi and Matsubara, 1976). Mitomycin A (Ia) (Tulinsky and Van den Hende, 1967) and Mitomycin B (Ib) (Yahashi and Matsubara, 1976) differ stereochemically at C-9. The structure of mitiromycin (II), a biologically inactive close relative, has been reported (Morton et al., 1970). The mitomycins and the Streptomyces metabolite (S)-2,3-dicarboxyaziridine (III) (Naganawa etal., 1975) are unique among naturally occurring metabolites owing to the presence of an aziridine ring. A related ring system, an azirine ring, occurs in the Streptomyces aureus antibiotic azirinomycin (IV)Miller etal., 1971


Pyruvic Acid Shikimic Acid Phosphate Dikinase Shikimic Acid Pathway Aziridine Ring 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhtar MH, Begleiter A, Johnson D, Lown JW, McLaughlin L, Sim S-K (1975) Studies related to antitumor antibiotics. VI. Correlation of covalent cross-linking of DNA by bifunctional aziridinoquinones with their antineoplastic activity. Can J Chem 53:2891–2905CrossRefGoogle Scholar
  2. Bezanson GS, Vining LC (1971) Studies on the biosynthesis of mitomycin C by Streptomyces verticillatus. Can J Biochem 49:911–918PubMedCrossRefGoogle Scholar
  3. Brewer SJ, Boyle TT, Turner MK (1977) The carbamoylation of the 3-hydroxymethyl group of 7α-methoxy-7β-(5-D-aminoadipamido)-3-hydroxymethylceph-3-em-4-carboxcylic acid (desacetyl-7α-methoxycephalosporin C) by homogenates of Streptomyces clavuligerus. Biochem Soc Trans 5:1026–1029PubMedGoogle Scholar
  4. Crooke ST, Bradner WT (1976) Mitomycin C: a review. Cancer Treat Rev 3:121–139PubMedCrossRefGoogle Scholar
  5. DeBoer C, Dietz A, Lummis NE, Savage GM (1960) Porfiromycin, a new antibiotic. I. Discovery and biological activities. Antimicrob Agents Ann 17–22Google Scholar
  6. Fukuyama T, Nakatsubo F, Cocuzza AJ, Kishi Y (1977) Synthetic studies toward mitomycins. III. Total syntheses of mitomycins A and C. Tetrahedron Lett 4295–4298Google Scholar
  7. Gabriel O, Lindquist LC (1968) Biological mechanisms involved in the formation of deoxy sugars. IV. Enzymatic conversion of thymidine diphosphoglucose-4T to thymidine diphospho-4-keto-6-deoxyglucose-6T. J Biol Chem 243:1479–1484PubMedGoogle Scholar
  8. Ghisalba O, Nuesch J (1978) A genetic approach to the biosynthesis of the rifamycin chromophore in Nocardia mediterranei. I. Isolation and characterization of a pentose-excreting auxotrophic mutant of Norcardia mediterranei with drastically reduced rifamycin production. J Antibiot 31:202–214PubMedGoogle Scholar
  9. Haber A, Johnson RD, Rinehart Jr KL (1977) Biosynthetic origin of the C2 units of geldanamycin and distribution of label from D-[6-13C]glucose. J Am Chem Soc 99:3541–3544PubMedCrossRefGoogle Scholar
  10. Hata T, Sano Y, Sugawara R, Matsumae A, Kanamori K, Shima T, Hochi T (1956) Mitomycin, a new antibiotic from Streptomyces. I. J Antibiot 9:141–146PubMedGoogle Scholar
  11. Hornemann U, Aikman MJ (1973) Mitomycin biosynthesis by Streptomyces verticillatus. Incorporation of the amino group of D-[15N]glucosamine into the aziridine ring of mitomycin B. Chem Commun 88–89Google Scholar
  12. Hornemann U, Cloyd JC (1971) Studies on the biosynthesis of the mitomycin antibiotics by Streptomyces verticillatus. Chem Commun 301–302Google Scholar
  13. Hornemann U, Kehrer JP, Nunez CS, Ranieri RL (1974a) D-Glucosamine and L-citrulline, precursors in mitomycin biosynthesis by Streptomyces verticillatus. J Am Chem Soc 96:320–322PubMedCrossRefGoogle Scholar
  14. Hornemann U, Kehrer JP, Nunez CS, Ranieri RL, Ho YK (1974b) Precursors in mitomycin biosynthesis by Streptomyces verticillatus. Dev Ind Microbiol 15:82–92Google Scholar
  15. Hornemann U, Kehrer JP, Eggert JH (1974c) Pyruvic acid and D-glucose as precursors in mitomycin biosynthesis by Streptomyces verticillatus. Chem Commun 1045–1046Google Scholar
  16. Hornemann U, Eggert JH (1975) Utilization of the intact carbamoyl group of L-(NH4CO-13C, 15N]citrulline in mitomycin biosynthesis by Streptomyces verticillatus. J Antibiot 28:841–843PubMedGoogle Scholar
  17. Hornemann U, Ho YK, Mackey Jr JK, Srivastava SC (1976) Studies on the mode of action of the mitomycin antibiotics. Reversible conversion of mitomycin C into sodium-7-aminomitosane-9a-sulfonate. J Am Chem Soc 98:7069–PubMedCrossRefGoogle Scholar
  18. Kersten H (1975) Mechanism of action of mitomycins. In: Handb Exp Pharmacol 38:47–64Google Scholar
  19. Kinoshita S, Uzu K, Nakano K, Shimizu M, Takahashi T (1971) Mitomycin derivatives. I. Preparation of mitosane and mitosene compounds and their biological activities. J Med Chem 14:103–109PubMedCrossRefGoogle Scholar
  20. Kirsch EJ (1967) Mitomycins. In: Gottlieb D, Shaw PD (ed) Antibiotics, Biosynthesis, vol II, pp 66–76. Springer, Berlin Heidelberg NewGoogle Scholar
  21. Kirsch EJ, Korshalla JD (1964) Influence of biological methylation on the biosynthesis of mitomycin A. J Bacteriol 87:247–255PubMedGoogle Scholar
  22. Lefemine DV, Dann M, Barbatschi F, Hausmann WK, Zbinovsky V, Monnikendam P, Adam J, Bohonos N (1962) Isolation and characterization of mitiromycin and of other antibiotics produced by Streptomyces verticillatus. J Am Chem Soc 84:3184–3185CrossRefGoogle Scholar
  23. Lin AJ, Shansky CW, Sartorelli AC (1974) Potential bioreductive alkylating agents. 3. Synthesis and antineoplastic activity of acetoxymethyl and corresponding ethyl carbamate derivatives of benzoquinones. J Med Chem 17:558–561PubMedCrossRefGoogle Scholar
  24. Lipsett MN, Weissbach A (1965) The site of alkylation of nucleic acids by mitomycin. Biochemistry 4:206–211CrossRefGoogle Scholar
  25. Lown JW, Weir G (1978) Studies related to antitumor antibiotics. XIV. Reactions of mitomycin B with DNA. Can J Biochem 56:296–304CrossRefGoogle Scholar
  26. Maitra US, Sprinson DB (1978) 5-Dehydro-3-deoxy-D-arabino-heptulosonic acid-7-phosphate. J Biol Chem 253:5426–5430PubMedGoogle Scholar
  27. Miller TW, Tristram EW, Wolf FJ (1971) Azirinomycin. II. Isolation and chemical characterization as 3-methyl-2(2H)-azirine carboxylic acid. J Antibiot 24:48–50PubMedGoogle Scholar
  28. Morton GO, Van Lear GE, Fulmor W (1970) The structure of mitiromycin. J Am Chem Soc 92:2588–2590PubMedCrossRefGoogle Scholar
  29. Naganawa H, Usui N, Takita T, Hamada M, Umezawa H (1975) S-2,3-dicarboxy-aziridine, a new metabolite from a streptomyces. J Antibiot 28:828–829PubMedGoogle Scholar
  30. Nakatsubo F, Fukuyama T, Cocuzza AJ, Kishi Y (1977) Synthetic studies toward mitomycins. 2. Total synthesis of dl-porfiromycin. J Am Chem Soc 99:8115–8116CrossRefGoogle Scholar
  31. Nelsestuen GL, Kirkwood S (1971) The mechanism of action of the enzyme uridine diphosphoglucose 4-epimerase. Proof of an oxidation-reduction mechanism with direct transfer of hydrogen between substrate and the β-position of the enzyme-bound pyridine nucleotide. J Biol Chem 246:7533–7543Google Scholar
  32. Nishikohori K, Fukui S (1975) Biosynthesis of mitomcyin in Streptomyces caespitosus. Relation of intracellular vitamin B12 level to mitomycin synthesis and enzymatic methylation of a demethylated derivative of mitomycin. Eur J Appl Microbiol 1:129–145CrossRefGoogle Scholar
  33. Otsuji N, Murayama I (1972) Deoxyribonucleic acid damage by monofunctional mitomycins and its repair in Escherichia coli. J Bacteriol 109:475–483PubMedGoogle Scholar
  34. Patrick JB, Williams RP, Meyer WE, Fulmor W, Cosulich DB, Broschard RW, Webb JS (1964) Aziridinomitosenes: a new class of antibiotics related to the mitomycins. J Am Chem Soc 86:1889–1890CrossRefGoogle Scholar
  35. Redman KL, Hornemann U (1978) Interaction of pyruvate, phosphate dikinase, pyruvate kinase, alanine dehydrogenase and phosphoenolpyruvate carboxylase from Streptomyces verticillatus with Cibaron Blue 3G-A-Sepharose. Abstr Joint Central-Great Lakes Reg Meet Am Chem Soc, Indianapolis, Indiana, BIOL-16Google Scholar
  36. Snipes CE, Chang CJ, Floss HG (1979) Biosynthesis of the antibiotic granaticin. J Am Chem Soc 101:701–706CrossRefGoogle Scholar
  37. Srinivasan PR, Shigeura HT, Sprecher M, Sprinson DB, Davis BD (1956) The biosynthesis of shikimic acid from D-glucose. J Biol Chem 220:477–497Google Scholar
  38. Stevens CL, Taylor KG, Munk ME, Marshall WS, Noll K, Shah GD, Shah LG, Uzu K (1965) Chemistry and structure of mitomycin C. J Med Chem 8:1–10PubMedCrossRefGoogle Scholar
  39. Szybalski W, Iyer VN (1964) Crosslinking of DNA by enzymatically or chemically activated mitomycins and porfiromycins, bifunctionally “alkylating” antibiotics. Fed Proc 23:946–957PubMedGoogle Scholar
  40. Szybalski W, Iyer VN (1967) The mitomycins and porfiromycin. In: Gottlieb D, Shaw PD (ed) Antibiotics. Mechanism of Action, Vol I, pp 211–245. Springer, Berlin Heidelberg New YorkGoogle Scholar
  41. Taylor WG, Leadbetter G, Fost DL, Remers WA (1977) Mitomycin antibiotics. Synthesis and activity of 1,2-disubstituted mitosenes. J Med Chem 20:138–141PubMedCrossRefGoogle Scholar
  42. Thoai NV, Thome-Bean F, Olomucki A (1966) Induction et spécificité des enzymes de la nouvelle voie catabolique de l’arginine. Biochim Biophys Acta 115:73–80CrossRefGoogle Scholar
  43. Tomasz M, Mercado CM, Olson J, Chatterjie N (1974) The mode of interaction of mitomycin C with deoxyribonucleic acid and other polynucleotides in vitro. Biochemistry 13:4878–4887PubMedCrossRefGoogle Scholar
  44. Tulinski A, Van den Hende JH (1967) The crystal and molecular structure of N-brosylmitomycin A. J Am Chem Soc 89:2905–2911CrossRefGoogle Scholar
  45. Van Lear GE (1970) Mass spectrometric studies of antibiotics. I. Mass spectra of mitomycin antibiotics. Tetrahedron 26:2587–2597PubMedCrossRefGoogle Scholar
  46. Webb JS, Cosulich DB, Mowat JH, Patrick JB, Broschard RW, Meyer WE, Williams RP, Wolf CF, Fulmor W, Pidacks C, Lancaster JE (1962a) The structures of mitomycins A, B and C and porfiromycin. Part I. J Am Chem Soc 84:3185–3186CrossRefGoogle Scholar
  47. Webb JS, Cosulich DB, Mowat JH, Patrick JB, Broschard RW, Meyer WE, Williams RP, Wolf CF, Fulmor W, Pidacks C, Lancaster JE (1962b) The structures of mitomycins A, B and C and poriformycin. Part II. J Am Chem Soc 84:3186–3188Google Scholar
  48. Weller DD, Rinehart Jr KL (1978) Biosynthesis of the antitumor antibiotic pactamycin. A methionine-derived ethyl group and a C7N unit. J Am Chem Soc 100:6757–6760CrossRefGoogle Scholar
  49. White RJ, Martinelli E (1974) Ansamycin biogenesis: Incorporation of [1-13C]glucose and [1-13C]glycerate into the chromophore of rifamycin S. FEBS Lett 49:233–236PubMedCrossRefGoogle Scholar
  50. Wiley PF, Elrod DW, Marshall VP (1978) Biosynthesis of the anthracycline antibiotics nogalamycin and steffimycin B. J Org Chem 43:3457–3461CrossRefGoogle Scholar
  51. Wolf G, Wörth J, Achenbach H (1975) Mitomycin und ein neues Phenoxazon-Pigment aus Streptomyces michiganensis. Stoffwechselprodukte von Mikroorganismen. Arch Mikrobiol 106:245–259Google Scholar
  52. Wood HG, O’Brien WE, Michaels G (1977) Properties of carboxytransphosphorylase; pyruvate, phosphate dikinase; pyrophosphate phosphofructokinase and pyrophosphate-acetate kinase and their roles in the metabolism of inorganic pyrophosphate. In: Meister A (ed) Advances in enzymology, pp 85–155. Wiley and Sons, New YorkGoogle Scholar
  53. Yahashi R, Matsubara I (1976) The molecular structure of 7-demethoxy-7-p-bromoanilino mitomycin B. J Antibiot 29:104–106 and correction notice published in J Antibiot 31: issue of June 1978 last pagePubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1981

Authors and Affiliations

  • Ulfert Hornemann

There are no affiliations available

Personalised recommendations