Skip to main content

Biosynthesis of the Mitomycins

  • Chapter
Biosynthesis

Part of the book series: Antibiotics ((ANTIBIOTICS,volume 4))

Abstract

The mitomycins and porfiromycin (Fig. 1) constitute a complex of anticancer antibiotics which are produced by Streptomyces caespitosus (Hata et al., 1956), Streptomyces ardus sp. n (DeBoer et al., 1960) Streptomyces verticillatus (Lefemine etal., 1962) and Streptomyces michiganensis (Wolf et al., 1975). Their structures have been determined by chemical, physicochemical, and X-ray methods (Webb etal., 1962a, 1962b; Stevens etal., 1965; Tulinsky and Van den Hende, 1967; Yahashi and Matsubara, 1976). Mitomycin A (Ia) (Tulinsky and Van den Hende, 1967) and Mitomycin B (Ib) (Yahashi and Matsubara, 1976) differ stereochemically at C-9. The structure of mitiromycin (II), a biologically inactive close relative, has been reported (Morton et al., 1970). The mitomycins and the Streptomyces metabolite (S)-2,3-dicarboxyaziridine (III) (Naganawa etal., 1975) are unique among naturally occurring metabolites owing to the presence of an aziridine ring. A related ring system, an azirine ring, occurs in the Streptomyces aureus antibiotic azirinomycin (IV)Miller etal., 1971

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhtar MH, Begleiter A, Johnson D, Lown JW, McLaughlin L, Sim S-K (1975) Studies related to antitumor antibiotics. VI. Correlation of covalent cross-linking of DNA by bifunctional aziridinoquinones with their antineoplastic activity. Can J Chem 53:2891–2905

    Article  CAS  Google Scholar 

  • Bezanson GS, Vining LC (1971) Studies on the biosynthesis of mitomycin C by Streptomyces verticillatus. Can J Biochem 49:911–918

    Article  PubMed  CAS  Google Scholar 

  • Brewer SJ, Boyle TT, Turner MK (1977) The carbamoylation of the 3-hydroxymethyl group of 7α-methoxy-7β-(5-D-aminoadipamido)-3-hydroxymethylceph-3-em-4-carboxcylic acid (desacetyl-7α-methoxycephalosporin C) by homogenates of Streptomyces clavuligerus. Biochem Soc Trans 5:1026–1029

    PubMed  CAS  Google Scholar 

  • Crooke ST, Bradner WT (1976) Mitomycin C: a review. Cancer Treat Rev 3:121–139

    Article  PubMed  CAS  Google Scholar 

  • DeBoer C, Dietz A, Lummis NE, Savage GM (1960) Porfiromycin, a new antibiotic. I. Discovery and biological activities. Antimicrob Agents Ann 17–22

    Google Scholar 

  • Fukuyama T, Nakatsubo F, Cocuzza AJ, Kishi Y (1977) Synthetic studies toward mitomycins. III. Total syntheses of mitomycins A and C. Tetrahedron Lett 4295–4298

    Google Scholar 

  • Gabriel O, Lindquist LC (1968) Biological mechanisms involved in the formation of deoxy sugars. IV. Enzymatic conversion of thymidine diphosphoglucose-4T to thymidine diphospho-4-keto-6-deoxyglucose-6T. J Biol Chem 243:1479–1484

    PubMed  CAS  Google Scholar 

  • Ghisalba O, Nuesch J (1978) A genetic approach to the biosynthesis of the rifamycin chromophore in Nocardia mediterranei. I. Isolation and characterization of a pentose-excreting auxotrophic mutant of Norcardia mediterranei with drastically reduced rifamycin production. J Antibiot 31:202–214

    PubMed  CAS  Google Scholar 

  • Haber A, Johnson RD, Rinehart Jr KL (1977) Biosynthetic origin of the C2 units of geldanamycin and distribution of label from D-[6-13C]glucose. J Am Chem Soc 99:3541–3544

    Article  PubMed  CAS  Google Scholar 

  • Hata T, Sano Y, Sugawara R, Matsumae A, Kanamori K, Shima T, Hochi T (1956) Mitomycin, a new antibiotic from Streptomyces. I. J Antibiot 9:141–146

    PubMed  CAS  Google Scholar 

  • Hornemann U, Aikman MJ (1973) Mitomycin biosynthesis by Streptomyces verticillatus. Incorporation of the amino group of D-[15N]glucosamine into the aziridine ring of mitomycin B. Chem Commun 88–89

    Google Scholar 

  • Hornemann U, Cloyd JC (1971) Studies on the biosynthesis of the mitomycin antibiotics by Streptomyces verticillatus. Chem Commun 301–302

    Google Scholar 

  • Hornemann U, Kehrer JP, Nunez CS, Ranieri RL (1974a) D-Glucosamine and L-citrulline, precursors in mitomycin biosynthesis by Streptomyces verticillatus. J Am Chem Soc 96:320–322

    Article  PubMed  CAS  Google Scholar 

  • Hornemann U, Kehrer JP, Nunez CS, Ranieri RL, Ho YK (1974b) Precursors in mitomycin biosynthesis by Streptomyces verticillatus. Dev Ind Microbiol 15:82–92

    CAS  Google Scholar 

  • Hornemann U, Kehrer JP, Eggert JH (1974c) Pyruvic acid and D-glucose as precursors in mitomycin biosynthesis by Streptomyces verticillatus. Chem Commun 1045–1046

    Google Scholar 

  • Hornemann U, Eggert JH (1975) Utilization of the intact carbamoyl group of L-(NH4CO-13C, 15N]citrulline in mitomycin biosynthesis by Streptomyces verticillatus. J Antibiot 28:841–843

    PubMed  CAS  Google Scholar 

  • Hornemann U, Ho YK, Mackey Jr JK, Srivastava SC (1976) Studies on the mode of action of the mitomycin antibiotics. Reversible conversion of mitomycin C into sodium-7-aminomitosane-9a-sulfonate. J Am Chem Soc 98:7069–

    Article  PubMed  CAS  Google Scholar 

  • Kersten H (1975) Mechanism of action of mitomycins. In: Handb Exp Pharmacol 38:47–64

    CAS  Google Scholar 

  • Kinoshita S, Uzu K, Nakano K, Shimizu M, Takahashi T (1971) Mitomycin derivatives. I. Preparation of mitosane and mitosene compounds and their biological activities. J Med Chem 14:103–109

    Article  PubMed  CAS  Google Scholar 

  • Kirsch EJ (1967) Mitomycins. In: Gottlieb D, Shaw PD (ed) Antibiotics, Biosynthesis, vol II, pp 66–76. Springer, Berlin Heidelberg New

    Google Scholar 

  • Kirsch EJ, Korshalla JD (1964) Influence of biological methylation on the biosynthesis of mitomycin A. J Bacteriol 87:247–255

    PubMed  CAS  Google Scholar 

  • Lefemine DV, Dann M, Barbatschi F, Hausmann WK, Zbinovsky V, Monnikendam P, Adam J, Bohonos N (1962) Isolation and characterization of mitiromycin and of other antibiotics produced by Streptomyces verticillatus. J Am Chem Soc 84:3184–3185

    Article  CAS  Google Scholar 

  • Lin AJ, Shansky CW, Sartorelli AC (1974) Potential bioreductive alkylating agents. 3. Synthesis and antineoplastic activity of acetoxymethyl and corresponding ethyl carbamate derivatives of benzoquinones. J Med Chem 17:558–561

    Article  PubMed  CAS  Google Scholar 

  • Lipsett MN, Weissbach A (1965) The site of alkylation of nucleic acids by mitomycin. Biochemistry 4:206–211

    Article  CAS  Google Scholar 

  • Lown JW, Weir G (1978) Studies related to antitumor antibiotics. XIV. Reactions of mitomycin B with DNA. Can J Biochem 56:296–304

    Article  CAS  Google Scholar 

  • Maitra US, Sprinson DB (1978) 5-Dehydro-3-deoxy-D-arabino-heptulosonic acid-7-phosphate. J Biol Chem 253:5426–5430

    PubMed  CAS  Google Scholar 

  • Miller TW, Tristram EW, Wolf FJ (1971) Azirinomycin. II. Isolation and chemical characterization as 3-methyl-2(2H)-azirine carboxylic acid. J Antibiot 24:48–50

    PubMed  CAS  Google Scholar 

  • Morton GO, Van Lear GE, Fulmor W (1970) The structure of mitiromycin. J Am Chem Soc 92:2588–2590

    Article  PubMed  CAS  Google Scholar 

  • Naganawa H, Usui N, Takita T, Hamada M, Umezawa H (1975) S-2,3-dicarboxy-aziridine, a new metabolite from a streptomyces. J Antibiot 28:828–829

    PubMed  CAS  Google Scholar 

  • Nakatsubo F, Fukuyama T, Cocuzza AJ, Kishi Y (1977) Synthetic studies toward mitomycins. 2. Total synthesis of dl-porfiromycin. J Am Chem Soc 99:8115–8116

    Article  CAS  Google Scholar 

  • Nelsestuen GL, Kirkwood S (1971) The mechanism of action of the enzyme uridine diphosphoglucose 4-epimerase. Proof of an oxidation-reduction mechanism with direct transfer of hydrogen between substrate and the β-position of the enzyme-bound pyridine nucleotide. J Biol Chem 246:7533–7543

    CAS  Google Scholar 

  • Nishikohori K, Fukui S (1975) Biosynthesis of mitomcyin in Streptomyces caespitosus. Relation of intracellular vitamin B12 level to mitomycin synthesis and enzymatic methylation of a demethylated derivative of mitomycin. Eur J Appl Microbiol 1:129–145

    Article  Google Scholar 

  • Otsuji N, Murayama I (1972) Deoxyribonucleic acid damage by monofunctional mitomycins and its repair in Escherichia coli. J Bacteriol 109:475–483

    PubMed  CAS  Google Scholar 

  • Patrick JB, Williams RP, Meyer WE, Fulmor W, Cosulich DB, Broschard RW, Webb JS (1964) Aziridinomitosenes: a new class of antibiotics related to the mitomycins. J Am Chem Soc 86:1889–1890

    Article  CAS  Google Scholar 

  • Redman KL, Hornemann U (1978) Interaction of pyruvate, phosphate dikinase, pyruvate kinase, alanine dehydrogenase and phosphoenolpyruvate carboxylase from Streptomyces verticillatus with Cibaron Blue 3G-A-Sepharose. Abstr Joint Central-Great Lakes Reg Meet Am Chem Soc, Indianapolis, Indiana, BIOL-16

    Google Scholar 

  • Snipes CE, Chang CJ, Floss HG (1979) Biosynthesis of the antibiotic granaticin. J Am Chem Soc 101:701–706

    Article  CAS  Google Scholar 

  • Srinivasan PR, Shigeura HT, Sprecher M, Sprinson DB, Davis BD (1956) The biosynthesis of shikimic acid from D-glucose. J Biol Chem 220:477–497

    Google Scholar 

  • Stevens CL, Taylor KG, Munk ME, Marshall WS, Noll K, Shah GD, Shah LG, Uzu K (1965) Chemistry and structure of mitomycin C. J Med Chem 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Szybalski W, Iyer VN (1964) Crosslinking of DNA by enzymatically or chemically activated mitomycins and porfiromycins, bifunctionally “alkylating” antibiotics. Fed Proc 23:946–957

    PubMed  CAS  Google Scholar 

  • Szybalski W, Iyer VN (1967) The mitomycins and porfiromycin. In: Gottlieb D, Shaw PD (ed) Antibiotics. Mechanism of Action, Vol I, pp 211–245. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Taylor WG, Leadbetter G, Fost DL, Remers WA (1977) Mitomycin antibiotics. Synthesis and activity of 1,2-disubstituted mitosenes. J Med Chem 20:138–141

    Article  PubMed  CAS  Google Scholar 

  • Thoai NV, Thome-Bean F, Olomucki A (1966) Induction et spécificité des enzymes de la nouvelle voie catabolique de l’arginine. Biochim Biophys Acta 115:73–80

    Article  Google Scholar 

  • Tomasz M, Mercado CM, Olson J, Chatterjie N (1974) The mode of interaction of mitomycin C with deoxyribonucleic acid and other polynucleotides in vitro. Biochemistry 13:4878–4887

    Article  PubMed  CAS  Google Scholar 

  • Tulinski A, Van den Hende JH (1967) The crystal and molecular structure of N-brosylmitomycin A. J Am Chem Soc 89:2905–2911

    Article  Google Scholar 

  • Van Lear GE (1970) Mass spectrometric studies of antibiotics. I. Mass spectra of mitomycin antibiotics. Tetrahedron 26:2587–2597

    Article  PubMed  Google Scholar 

  • Webb JS, Cosulich DB, Mowat JH, Patrick JB, Broschard RW, Meyer WE, Williams RP, Wolf CF, Fulmor W, Pidacks C, Lancaster JE (1962a) The structures of mitomycins A, B and C and porfiromycin. Part I. J Am Chem Soc 84:3185–3186

    Article  CAS  Google Scholar 

  • Webb JS, Cosulich DB, Mowat JH, Patrick JB, Broschard RW, Meyer WE, Williams RP, Wolf CF, Fulmor W, Pidacks C, Lancaster JE (1962b) The structures of mitomycins A, B and C and poriformycin. Part II. J Am Chem Soc 84:3186–3188

    Google Scholar 

  • Weller DD, Rinehart Jr KL (1978) Biosynthesis of the antitumor antibiotic pactamycin. A methionine-derived ethyl group and a C7N unit. J Am Chem Soc 100:6757–6760

    Article  CAS  Google Scholar 

  • White RJ, Martinelli E (1974) Ansamycin biogenesis: Incorporation of [1-13C]glucose and [1-13C]glycerate into the chromophore of rifamycin S. FEBS Lett 49:233–236

    Article  PubMed  CAS  Google Scholar 

  • Wiley PF, Elrod DW, Marshall VP (1978) Biosynthesis of the anthracycline antibiotics nogalamycin and steffimycin B. J Org Chem 43:3457–3461

    Article  CAS  Google Scholar 

  • Wolf G, Wörth J, Achenbach H (1975) Mitomycin und ein neues Phenoxazon-Pigment aus Streptomyces michiganensis. Stoffwechselprodukte von Mikroorganismen. Arch Mikrobiol 106:245–259

    CAS  Google Scholar 

  • Wood HG, O’Brien WE, Michaels G (1977) Properties of carboxytransphosphorylase; pyruvate, phosphate dikinase; pyrophosphate phosphofructokinase and pyrophosphate-acetate kinase and their roles in the metabolism of inorganic pyrophosphate. In: Meister A (ed) Advances in enzymology, pp 85–155. Wiley and Sons, New York

    Google Scholar 

  • Yahashi R, Matsubara I (1976) The molecular structure of 7-demethoxy-7-p-bromoanilino mitomycin B. J Antibiot 29:104–106 and correction notice published in J Antibiot 31: issue of June 1978 last page

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Hornemann, U. (1981). Biosynthesis of the Mitomycins. In: Corcoran, J.W. (eds) Biosynthesis. Antibiotics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67724-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67724-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67726-7

  • Online ISBN: 978-3-642-67724-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics