Advertisement

The Mechanism of Transmembrane Auxin Transport and Its Relation to the Chemiosmotic Hypothesis of the Polar Transport of Auxin

  • P. H. Rubery
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

The coordinated development of plants requires and reflects a controlled distribution of growth substances which, by interaction with receptors, bring about the biochemical and biophysical changes that culminate in morphogenesis. Transport is a central factor influencing cellular hormone concentration and hence the proportion of occupied receptors. Polar transport in a preferred morphologically defined direction has been most extensively studied and characterized for auxin although abscisic acid, gibberellins and perhaps cytokinins may behave similarly in some instances (1). The “chemiosmotic” hypothesis of polar auxin transport was proposed independently by Rubery and Sheldrake (2) and by Raven (3). It has recently been reviewed by Goldsmith (1). In this paper I shall discuss this new hypothesis together with the theoretical arguments and experimental data that led to its formulation. The key considerations are the mechanism and energetics of transmembrane auxin movement and the basis and maintenance of the cellular asymmetry underlying the polarity of the tissue as a whole.

Keywords

Auxin Transport Polar Auxin Transport Polar Transport Accumulation Ratio Unstirred Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldsmith, M.H.M.: Annu. Rev. Plant Physiol. 28, 439–478 (1977)CrossRefGoogle Scholar
  2. 2.
    Rubery, P.H., Sheldrake, A.R.: Planta 118, 101–121 (1974)CrossRefGoogle Scholar
  3. 3.
    Raven, J.A.: New Phytol. 74, 163–172 (1975)CrossRefGoogle Scholar
  4. 4.
    Rubery, P.H., Sheldrake, A.R.: Nature (Lond.) New Biol. 224, 285–288 (1973)Google Scholar
  5. 5.
    Rubery, P.H.: Planta 135, 275–283 (1977)CrossRefGoogle Scholar
  6. 6.
    Rubery, P.H.: Planta 142, 203–206 (1978)CrossRefGoogle Scholar
  7. 7.
    Rubery, P.H.: Planta 144, 173–178 (1979)CrossRefGoogle Scholar
  8. 8.
    Rubery, P.H.: Plant Sci. Lett. 14, 365–371 (1979)CrossRefGoogle Scholar
  9. 9.
    Davies, P.J., Rubery, P.H.: Planta 142, 211–219 (1978)CrossRefGoogle Scholar
  10. 10.
    Gutknecht, J., Tosteson, D.C.: Science 182, 1258–1261 (1973)PubMedCrossRefGoogle Scholar
  11. 11.
    Albaum, H.G., Kaiser, S., Nestler, H.A.: Am. J. Bot. 24, 513–518 (1937)CrossRefGoogle Scholar
  12. 12.
    Sutter, E.: Ber. Schweiz. Bot. Ges. 54, 197–244 (1944)Google Scholar
  13. 13.
    Leopold, A.C., Hall, O.F.: Plant Physiol. 41, 1476–1480 (1960)CrossRefGoogle Scholar
  14. 14.
    De La Fuente, R.K., Leopold, A.C.: Plant Physiol. 41, 1481–1484 (1960)CrossRefGoogle Scholar
  15. 15.
    Raven, J.A.: New Phytol. 82, 285–291 (1979)CrossRefGoogle Scholar
  16. 16.
    Smith, F.A., Raven, J.A.: Encycl. Plant Physiol. New Ser. A 2, 317–346 (1976)Google Scholar
  17. 17.
    Cande, W.Z., Ray, P.M.: Planta 129, 43–52 (1976)CrossRefGoogle Scholar
  18. 18.
    Sheldrake, A.R.: Planta 145, 113–117 (1979)CrossRefGoogle Scholar
  19. 19.
    Juniper, B.E.: Annu. Rev. Plant Physiol. 27, 385–406 (1976)CrossRefGoogle Scholar
  20. 20.
    Stein, W.D., Honig, B.: Mol. Cell Biochem. 15, 27–44 (1977)PubMedCrossRefGoogle Scholar
  21. 21.
    Cross, J.W., Briggs, W.R.: Plant Physiol. 62, 152–157 (1978)PubMedCrossRefGoogle Scholar
  22. 22.
    Dohrmann, U., Hertel, R., Kowalik, H.: Planta 140, 97–106 (1978)CrossRefGoogle Scholar
  23. 23.
    Jacobs, M., Hertel, R.: Planta 142, 1–10 (1978)CrossRefGoogle Scholar
  24. 24.
    Thomson, K.-S., Hertel, R., Muller, S., Tavares, J.E.: Planta 109, 337–352 (1973)CrossRefGoogle Scholar
  25. 25.
    Trillmich, K., Michalke, W.: Planta 145, 119–127 (1979)CrossRefGoogle Scholar
  26. 26.
    Ray, P.M., Dohrmann, U., Hertel, R.: Plant Physiol. 60, 585–591 (1977)PubMedCrossRefGoogle Scholar
  27. 27.
    Venis, M.A., Watson, P.J.: Planta 142, 103–107 (1978)CrossRefGoogle Scholar
  28. 28.
    Dohrmann, U., Hertel, R., Pesci, P., Cocucci, S.M., Marré, E., Randazzo, G., Ballio, A.: Plant Sci. Lett. 9, 291–299(1977)CrossRefGoogle Scholar
  29. 29.
    Ho, M.K., Guidotti, G.: J. Biol. Chem. 250, 675–683 (1975)PubMedGoogle Scholar
  30. 30.
    Hertel, R., Flory, R.: Planta 82, 123–140 (1968)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • P. H. Rubery
    • 1
  1. 1.Department of BiochemistryUniversity of CambridgeCambridgeUK

Personalised recommendations