Skip to main content

Methods for Averaging of Single Molecules and Lattice-Fragments

  • Conference paper

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The Fourier averaging methods that have been developed to suppress the noise due to the support-film structure, negative stain, and variations of the specimen [10, 2] require a periodic arrangement of the molecule or molecule aggregate; the Fourier transform is extremely powerful in detecting such patterns embedded in noise. After the two-dimensional reciprocal lattice has been determined, no further information is needed for the averaging. The reciprocal lattice uniquely defines the real-space lattice vectors, i.e., the relative translations between the repeats of the unit lattice in the image. After having deter-mined the lattice vectors, one could in principle proceed by repeatedly superposing the image on itself, each time shifted by a multiple combination of the lattice vectors [13]. The convenience of the Fourier filtering method makes this method of averaging obselete, but it is useful for illustrating the basic similarity between Fourier and direct methods (see also [18]).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Crowther RA, DeRosier DJ, Klug A (1970) The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc R Soc London Ser A 317: 319–340

    Article  Google Scholar 

  2. Erickson HP, Klug A (1970) The Fourier transform of an electron micrograph: effects of defocusing and aberrations, and implications for the use of underfocus contrast enhancement. Ber Bunsenges Phys Chem 74: 1129–1137

    CAS  Google Scholar 

  3. Frank J (1975) A practical resolution criterion in optics and electron microscopy. Optik 43: 25–34

    Google Scholar 

  4. Frank J (1978) Reconstruction of non-periodic objects using correlation methods. Proc 9th Int Congr Electron Microsc, vol III, pp 87–93. Toronto

    Google Scholar 

  5. Frank J, Bussler P, Langer R, Hoppe W (1970) Einige Erfahrungen mit der rechnerischen Analyse und Synthese von elektronenmikroskopischen Aufnahmen hoher Auflösung. Ber Bunsenges Phys Chem 74: 1105–1115

    CAS  Google Scholar 

  6. Frank J, Goldfarb W, Kessel M (1978) Image reconstruction of low and high dose micrographs of negatively stained glutamine synthetase. Proc 9th Int Congr Electron Microsc, vol II, pp 8–9. Toronto

    Google Scholar 

  7. Frank J, Goldfarb W, Eisenberg D, Baker TS (1978) Reconstruction of glutamine synthetase using Computer averaging. Ultramicroscopy 3: 283–290

    Article  PubMed  CAS  Google Scholar 

  8. Frank J, Goldfarb W, Eisenberg D, Baker TS (1979) Addendum to Reconstruction of glutamine synthetase using Computer averaging. Ultramicroscopy 4: 247

    CAS  Google Scholar 

  9. Hoppe W, Grill B (1977) Prospects of three-dimensional high resolution electron microscopy of non-periodic struetures. Ultramicroscopy 2: 153–168

    Article  PubMed  CAS  Google Scholar 

  10. Klug A, Berger JE (1964) An optical method for the analysis of periodicities in electron micrographs, and some observations on the mechanism of negative staining. J Mol Biol 10: 565–569

    Article  PubMed  CAS  Google Scholar 

  11. Langer R, Frank J, Feltynowski A, Hoppe W (1970) Anwendung des Bilddifferenzverfahrens auf die Untersuchung von Strukturänderungen dünner Kohlefolien bei Elektronenbestrahlung. Ber Bunsenges Phys Chem 74: 1120–1126

    CAS  Google Scholar 

  12. MacGillavry CH (1965) Symmetry aspects of M.C. Escher’s periodic drawings, p 5. A Oosthoek’s Uitgeversmaatschappij NV, Utrecht (Plate Ia)

    Google Scholar 

  13. Markham R, Frey S, Hills GJ (1963) Methods for the enhancement of image detail and aecentu- ation of structure in electron microscopy. Virology 20: 88–102

    Article  Google Scholar 

  14. Ottensmeyer FP, Andrew JW, Bazett-Jones DP, Chan ASK, Hewitt J (1977) Signal to noise enhancement in dark field electron micrographs of Vasopressin: filtering of arrays of images in re- ciprocal Space. J Microsc 109: 259–268

    Article  PubMed  CAS  Google Scholar 

  15. Saxton WO (1974) Computer techniques for image proeessing in electron microscopy. Proc 8th Int Congr Electron Microsc, vol I, pp 314–315. Canberra

    Google Scholar 

  16. Saxton WO (1980) Matching and averaging fragmented lattices. This volume

    Google Scholar 

  17. Saxton WO, Frank J (1977) Motif detection in quantum noise limited electron micrographs by cross-correlation. Ultramicroscopy 2: 219–227

    Article  PubMed  CAS  Google Scholar 

  18. Smith PR, Aebi U (1973) Appendix to A study of the structure of the T-layer of Bacillus brevis. J Supramol Struct 1: 516–522

    Google Scholar 

  19. Tarn K-Ch, Perez-Mendez V, Macdonald B (1979) 3-D object reconstruction in emission and transmission tomography with limited angular input. IEEE Trans Nucl Sei NS-26:2792–2805

    Google Scholar 

  20. Unwin PNT, Henderson R (1975) Molecular strueture determination by electron microscopy of unstained crystalline specimens. J Mol Biol 94: 425–440

    Article  PubMed  CAS  Google Scholar 

  21. Lugt Vander A (1964) Signal detection by complex spatial filtering. IEEE Trans Inf Theory IT- 10: 139–145

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frank, J., Goldfarb, W. (1980). Methods for Averaging of Single Molecules and Lattice-Fragments. In: Baumeister, W., Vogell, W. (eds) Electron Microscopy at Molecular Dimensions. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67688-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67688-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67690-1

  • Online ISBN: 978-3-642-67688-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics