Compact Posets and Semilattices



As the title of the chapter indicates, we now turn our attention from the principally algebraic properties of continuous lattices to the position these lattices hold in topological algebra as certain compact semilattices. Indeed, as the Fundamental Theorem 3.4 shows, continuous lattices are exactly the compact semilattices with small semilattices in the Lawson topology. Thus, continuous lattices not only comprise an intrinsically important subcategory of the category of compact semilattices but also form the most well-understood category of compact semilattices. In fact there are only two known examples of compact semilattices which are not continuous lattices; these are presented in Section 4. The paucity of such examples attests to the unknown nature of compact semilattices in general.


Maximal Chain Compact Hausdorff Space Continuous Lattice Compact Element Algebraic Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  1. 1.Fachbereich MathematikTechnische Hochschule DarmstadtDarmstadtGermany
  2. 2.Department of MathematicsTulane UniversityNew OrleansUSA
  3. 3.Department of MathematicsLouisiana State UniversityBaton RougeUSA
  4. 4.Merton CollegeOxfordGreat Britain

Personalised recommendations