Studies on the Regulation of Diffusion Chamber Granulopoiesis

  • P. Quesenberry
  • R. Sullivan
  • A. Fountebouni
  • L. Levitt
  • E. Niskanen
  • M. Symann
  • F. C. Monette
  • K. Zuckerman
  • M. Ryan


We have evaluated the role of colony-stimulating activity (CSA) and stem cells in diffusion chamber (DC) myelopoiesis. CF1 host mice were implanted with DC with 0.5 x 106 normal marrow cells and then injected for 3–4 days intravenously with 5 μg Salmonella typhosa endotoxin or saline. There were no significant increases in DC myelopoiesis, but significant increases in host animal total tibial proliferative granulocytes on day 4 and suggestive increases in nonproliferative granulocytes on day 7 of DC culture. Further studies utilizing progressively increasing doses of intravenous endotoxin in irradiated or normal host mice implanted with DC with normal marrow showed: (1) a lack of correlation of serum CSA or inhibitor level with DC myelopoiesis; (2) elevations of CSA levels within DC relative to serum levels in all groups; and (3) a general inverse correlation of DC myelopoiesis with marrow cellularity.

Further studies evaluated the DC growth of murine marrow depleted of CFU-S by in vitro exposure to absorbed mouse brain antiserum plus complement. There was little effect of this treatment on DC-differentiated or stem cell recovery. These results raise questions with regard to the nature of the DC stem cell and the actual effect of mouse brain antisera on murine hemopoietic stem cells.

In toto, the above suggests that DC cell growth may, in part, be regulated by a negative feedback based on marrow cellularity. The identity of the DC stem cell and the role of CSA in regulating DC myelopoiesis remain open questions.


Marrow Cell Fetal Liver Diffusion Chamber Culture Normal Seron Host Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, S.S., Kuznetsky, R.D., Trobough, F.E., Jr.: Anti-CFU-S activity of rabbit anti-mouse brain serum: Mechanism of action. In: Experimental hematology today. Baum, S.J., Ledney, G.D. (eds.), p. 23. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  2. 2.
    Algire, G.H., Borders, M.L., Evans, V.J.: Studies on heterografts in diffusion chambers in mice. J. Natl. Cancer Inst. 20, 1187 (1958)PubMedGoogle Scholar
  3. 3.
    Benestad, H.B.: Formation of granulocytes and macrophages in diffusion chamber cultures of mouse blood leucocytes. Scand. J. Haematol. 7, 279 (1970)PubMedCrossRefGoogle Scholar
  4. 4.
    Bøyum, A., Carsten, A.L., Laerum, O.D., Cronkite, E.P.: Kinetics of cell proliferation of murine bone marrow cells cultured in diffusion chambers: effect of hypoxia, bleeding, erythropoietin injections, polycythemia, and irradiation of the host. Blood 40, 174 (1972)PubMedGoogle Scholar
  5. 5.
    Bøyum, A., Lovhaug, D., Boecker, W.R.: Regulation of bone marrow cell growth in diffusion chambers: The effect of adding normal and leukemic (CML) polymorphonuclear granulocytes. Blood 48, 373 (1976)PubMedGoogle Scholar
  6. 6.
    Bradley, T.R., Metcalf, D.: The growth of mouse bone marrow cells in vitro. Aust. J. Exp. Biol. Med. Sci. 44, 287 (1966)PubMedCrossRefGoogle Scholar
  7. 7.
    Bradley, T.R., Sumner, M.A.: Stimulation of mouse bone marrow colony growth in vitro by conditioned medium. Aust. J. Exp. Biol. Med. Sci. 46, 607 (1968)PubMedCrossRefGoogle Scholar
  8. 8.
    Jacobsen, N.: Proliferation of diffusion chamber colony-forming units (CFU-D) in cultures of normal human bone marrow in diffusion chambers in mice. Blood 49, 415 (1977)PubMedGoogle Scholar
  9. 9.
    Løvhaug, D., Bøyum, A.: Regulation of bone marrow cell growth in diffusion chambers: the effect of granulocyte extracts. Cell Tissue Kinet. 10, 137 (1977)PubMedGoogle Scholar
  10. 10.
    McVittie, T.J., McCarthy, K.F.: Inhibition of granulopoiesis in diffusion chambers by a granulocyte chalone. Exp. Hematol. 2, 182 (1974)Google Scholar
  11. 11.
    Monette, F.C: Antibodies against pluripotent stem cells: Their use in studying stem cell function. Blood Cells 5, 175–190 (1978)Google Scholar
  12. 12.
    Pluznick, D.H., Sachs, L.: The cloning of normal “mast” cells in tissue culture. J. Cell. Comp. Physiol. 66, 319 (1965)CrossRefGoogle Scholar
  13. 13.
    Quesenberry, P., Morley, A., Stohlman, F. Jr., Richard, K., Howard, D., Smith, M.: Effect of endotoxin on granulopoiesis and colony-stimulating factor. N. Engl. J. Med. 286, 227 (1972)PubMedCrossRefGoogle Scholar
  14. 14.
    Quesenberry, P.J., Morley, A., Miller, M., Rickard, K., Howard, D., Stohlman, F. Jr.: Effect of endotoxin on granulopoiesis and the in vitro colony-forming cell. Blood 41, 391 (1973)PubMedGoogle Scholar
  15. 15.
    Quesenberry, P.J., Bealmear, P., Ryan, M., Stohlman, F. Jr.: Serum colony-stimulating and inhibiting factors in irradiated germ-free and conventional mice. Br. J. Haematol. 28, 531 (1974)CrossRefGoogle Scholar
  16. 16.
    Quesenberry, P.J., Niskanen, E., Symann, M., Howard, D., Ryan, M., Halperin, J., Stohlman, F. Jr.: Growth of stem cell concentrates in diffusion chambers (DC). Cell Tissue Kinet. 7, 337 (1974)PubMedGoogle Scholar
  17. 17.
    Quesenberry, P.J., Halperin, J., Ryan, M., Stohlman, F. Jr.: Tolerance to the granulocyte-releasing and colony-stimulating factor elevating effects of endotoxin. Blood 45, 789 (1975)PubMedGoogle Scholar
  18. 18.
    Quesenberry, P.J., Levitt, L., Monette, F., Eichacker, P.Q., Zuckerman, K., Sullivan, R., Ryan, M.: The use of stem cell assays to monitor the proliferative potential of bone marrow cells. Exp. Hematol. 7, 210 (1979)PubMedGoogle Scholar
  19. 19.
    Rothstein, G., Hugl, E.H., Bishop, C.R., Athens, J.W., Ashenbrucker, H.E.: Stimulation of granulocytopoiesis by a diffusible factor in vivo. J. Clin. Invest. 50, 2004 (1971)PubMedCrossRefGoogle Scholar
  20. 20.
    Rothstein, G., Hugl, E.H., Chervenick, P.A., Athens, J.W., MacFarlane, J.: Humoral stimulators of granulocyte production. Blood 7, 73 (1973)Google Scholar
  21. 21.
    Rothstein, G., Nagy, M.N., Athens, J.W., MacFarlane, J.L.: The effect of marrow components upon granulocytopoiesis. In: Hemopoiesis in culture. Robinson, W. (ed.), p. 160. DHEW Publication No. (NIH) 74–205. Washington, D.C: U.S. Gov. Print. Off. 1974Google Scholar
  22. 22.
    Symann, M., Quesenberry, P., Fontebuoni, A., Howard, D., Ryan, M., Stohlman, F. Jr.: Fetal hemopoiesis in diffusion chamber cultures. III. The effect of neutropenia. Blood 48, 283 (1976)PubMedGoogle Scholar
  23. 23.
    Till, J.E., McCulloch, E.A.: A direct measurement of the radiation sensitivity of normal bone marrow cells. Radiat. Res. 14, 213 (1961)PubMedCrossRefGoogle Scholar
  24. 24.
    Tyler, W.S., Niskanen, E., Stohlman, F. Jr., Keane, J., Howard, D.: The effect of neutropenia on myeloid growth and the stem celll in an in-vivo culture system. Blood 40, 634 (1972)PubMedGoogle Scholar
  25. 25.
    Van den Engh, CJ., Golub, E.S.: Antigenic differences between hemopoietic stem cells and myeloid progenitors. J. Exp. Med. 139, 1621 (1974)PubMedCrossRefGoogle Scholar
  26. 26.
    Van den Engh, G., Platenburg, M.: Suppression of CFU-S activity by rabbit anti-mouse brain serum can be overcome by treatment with papain. Exp. Hematol. 6, 627 (1978)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • P. Quesenberry
  • R. Sullivan
  • A. Fountebouni
  • L. Levitt
  • E. Niskanen
  • M. Symann
  • F. C. Monette
  • K. Zuckerman
  • M. Ryan

There are no affiliations available

Personalised recommendations