Advertisement

Dynamic Emission Transaxial Tomography for Positron Emitters

  • T. F. Budinger
  • S. E. Derenzo
  • R. H. Huesman
  • J. L. Cahoon
  • Y. Yano
Conference paper

Abstract

We present a new stationary imaging device which provides complete transverse sections of the concentration of positron emitters anywhere in the body with a resolution less than 8 mm FWHM and a data collection interval as short as one second. The Donner 280-crystal ring provides the equivalent of 140 views of 105 samples per view and consists of 280 rectangular NaI (Tl) (8 mm x 30 mm x 50 mm) crystals mounted on a ring of 92-cm diameter. Data are obtained from 14,700 lines of position through the patient port without motion of the detector assembly or patient; thus truly dynamic transverse section information can be obtained with a time resolution limited only by available statistics. This makes possible first pass flow or gated cardiac studies and quantitation of radionuclide concentration in smaller volumes than heretofore reported. This article gives the historical background, special design, and fabrication features of the device, and a discussion of the data-handling methods and system performance.

Keywords

Transverse Section Point Spread Function Scintillation Camera Patient Port Line Spread Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wagner HN (1978) Images of the future. J Nucl Med 19: 599–605PubMedGoogle Scholar
  2. 2.
    Hevesy G (1962) Adventures in radioisotope research. In: The collected papers of G. Hevesy in two volumes. Pergamon Press, LondonGoogle Scholar
  3. 3.
    Tobias CA, Lawrence JH, Roughton FJW, Root WS, Gregersen MI (1945) The elimination of carbon monoxide from the human body with reference to the possible conversion of CO to C02. Am J Physiol 145: 253–263PubMedGoogle Scholar
  4. 4.
    Myers WG (1978) Fifth anniversary of the symbol of the Society of Nuclear Medicine. J Nucl Med 19: 606PubMedGoogle Scholar
  5. 5.
    Wrenn FR, Good ML, Handler P (1951) The use of positron-emitting radioisotopes for the localization of brain tumors. Science 113: 525–527PubMedCrossRefGoogle Scholar
  6. 6.
    Sweet WH (1951) Uses of nuclear disintegrations in the diagnosis and treatment of brain tumors. N Engl J Med 245: 875PubMedCrossRefGoogle Scholar
  7. 7.
    Brownell GL, Sweet WH (1953) Localization of brain tumors with positron emitters. Nucleonics 11: 40Google Scholar
  8. 8.
    Anger HO, Rosenthal DJ (1959) Scintillation camera and positron camera. In: Medical radioisotope scanning. Vienna, The International Atomic Energy Agency and the World Health Organization, 1959, pp 59–82Google Scholar
  9. 9.
    Ter-Pogossian MM, Wagner HN, Jr (1966) A new look at the cyclotron for making short-lived isotopes. Nucleonics 24: 50–56Google Scholar
  10. 10.
    Winchell HS, Winstead MD (1971) Visualization of radioactivity in the dog following administration of various 11C carboxylates. In: Horst W (ed) Frontiers of nuclear medicine. Springer, Berlin,Heidelberg,New York, pp 161–170Google Scholar
  11. 11.
    Rankowitz S, Robertson JS, Higinbotham WA, et al. (1962) Positron scanner for locating brain tumors. IRE Int Conv Rec 10: 49–56Google Scholar
  12. 12.
    Robertson JS, Marr RB, Rosenblum B, et al. (1973) Thirty-two crystal positron transverse section detector. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Society of Nuclear Medicine, New York, pp 142–153Google Scholar
  13. 13.
    Kuhl DE, Edwards RQ (1963) Image separation radioisotope scanning. Radiology 80: 653–661Google Scholar
  14. 14.
    Kuhl DE, Edwards RQ, Ricci AR, Reivich M (1973) Quantitative section scanning using orthogonal tangent correction. J Nucl Med 14: 196–200PubMedGoogle Scholar
  15. 15.
    Oldendorf WH (1961) Isolated flying spot detection of radiodensity discontinuities — displaying the internal structural pattern of a complex object. IRE Trans Bio-Med Electron BME 8: 68–72CrossRefGoogle Scholar
  16. 16.
    Anger HO (1967) The scintillation camera for radioisotope localization. In: Hoffman G, Sheer KE (eds) Radioisotope in der Lokalisations-diagnostik. Schattauer, Stuttgart, pp 18–21Google Scholar
  17. 17.
    Muehllehner G, Wetzel RA (1971) Section imaging by computer calculation. J Nucl Med 12: 79–87Google Scholar
  18. 18.
    Todd-Pokropek AE (1972) The formation and display of section scans. In: Proceedings of Symposium of American Congress of Radiology, 1971. Excerpta Medica, Amsterdam, p 545Google Scholar
  19. 19.
    Myers MJ, Keyes WI, Mallard JR (1972) An analysis of tomographic scanning systems. In: Medical radioisotope scintigraphy, vol 1. IAEA, SM-164/48, Vienna, pp 331–345Google Scholar
  20. 20.
    Bowley AR, Taylor CG, Causer DA, et al. (1973) A radioisotope scanner for rectilinear, arc, transverse section and longitudinal section scanning. ( ASS - The Aberdeen Section Scanner ). Br J Radiol 46: 262–271PubMedCrossRefGoogle Scholar
  21. 21.
    Tanaka E (1973) Multi-crystal section imaging device and its data processing. In: Proceedings of the Congress of Radiology, Madrid. Excerpta Medica, Amsterdam, p 81Google Scholar
  22. 22.
    Anger HO (1973) Multiple plane tomographic scanner. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Society of Nuclear Medicine, New York, pp 2–15Google Scholar
  23. 23.
    Chesler DA (1971) Three-dimensional activity distribution from multiple positron scintigraphs. J Nucl Med 12: 347–348Google Scholar
  24. 24.
    Chesler DA (1973) Positron tomography and three dimensional reconstruction techniques. In: Freedman GS (ed) Tomographic imaging in nuclear medicine. Society of Nuclear Medicine, New York, pp 176–183Google Scholar
  25. 25.
    Tretiak OJ, Eden M, Simon W (1969) Internal structures from x-ray images. In: Proceedings of 8th International Conference on Medical and Biological Engineering, Chicago. Session 12–1Google Scholar
  26. 26.
    Kuhl ED, Edwards RQ, Ricci AR, et al. (1976) The MARK IV system for radionuclide computed tomography of the brain. Radiology 121: 405–413PubMedGoogle Scholar
  27. 27.
    Gordon R, Herman GT (1974) Three dimensional reconstruction from projections: A review of algorithms. Int Rev Cytol 38: 111–151Google Scholar
  28. 28.
    Budinger TF, Gullberg GT (1974) Three-dimensional reconstruction in nuclear medicine by iterative least-squares and Fourier transform techniques. IEEE Trans Nucl Sci NS-21(3): 2–20Google Scholar
  29. 29.
    Oppenheim BE (1974) More accurate algorithms for iterative three-dimension reconstruction. IEEE Trans Nucl Sci NS-21(3): 72–77Google Scholar
  30. 30.
    Kay DB, Keyes JW, Simon W (1974) Fourier transform techniques for tomographic image reconstruction. J Nucl Med 15: 981–986PubMedGoogle Scholar
  31. 31.
    Todd-Pokropek AE (1975) Reconstruction of images from their projections. In: Metz CE, Pizer SM, Brownell GL (eds) Information processing in scintigraphy. ERDA Tech. Inf. Ctr. Conf-730-687. Springfield, pp 67–79Google Scholar
  32. 32.
    Genna S, Pang SC, Burrows BA (1976) Analysis of an accurate gamma camera design for transaxial reconstruction. In: International Symposium on Medical Radionuclide Imaging, vol 1. IAEA, Vienna, pp 323–339Google Scholar
  33. 33.
    Stoddard HF, Union Carbide, Norwood, MA, USAGoogle Scholar
  34. 34.
    Keyes JW, Orlandea N, Heetderks WJ, Leonard PF, Rogers WL (1977) The Humongotron - a scintillation camera transaxial tomograph. J Nucl Med 18: 381–387PubMedGoogle Scholar
  35. 35.
    Jaszezak RJ, Murphy PH, Huard D, Burdine JA (1977) Radionuclide emission computed tomography of the head with 99MTc and a scintillation camera. J Nucl Med 18: 373–380Google Scholar
  36. 36.
    Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A positron-emission transaxial tomograph for nuclear medicine imaging ( PETT ). Radiology 114: 89–98Google Scholar
  37. 37.
    Phelps ME, Hoffman EJ, Mullani NA, Ter-Pogossian MM (1975) Application of annihilation coincidence detection to transaxial reconstruction tomography. J Nucl Med 16: 210–224PubMedGoogle Scholar
  38. 38.
    Hoffman EJ, Phelps ME, Mullani NA, et al. (1976) Design and performance characteristics of a whole-body positron transaxial tomograph. J Nucl Med 17: 493–502Google Scholar
  39. 39.
    Mullani NA, Higgins CS, Hood JT, Currie CM, Pett IV (1978) Design analysis and performance characteristics. IEEE Trans Nucl Sci NS-25(1): 180–183Google Scholar
  40. 40.
    Phelps ME, Hoffman EJ, Huang SC, Kuhl DE (1978) ECAT: A new computerized tomographic imaging system for positron-emitting radiopharmaceuticals. J Nucl Med 19: 635–647Google Scholar
  41. 41.
    Cho ZH, Chan JK, Eriksson L (1976) Circular ring transverse axial positron camera for 3-dimensional reconstruction of radionuclides distribution. IEEE Trans Nucl Sci NS-23(1): 613–622Google Scholar
  42. 42.
    Cho ZH, Cohen MB, Singh M, et al. (1977) Performance and evaluation of the circular ring transverse axial positron camera (CRTAPC). IEEE Trans Nucl Sci NS- 24 (1): 530–543Google Scholar
  43. 43.
    Bohm Chr, Eriksson L, Bergstrom M, Litton J, Sundman R, Singh M (1978) A computer assisted ring detector positron camera system for reconstruction tomography of the brain. IEEE Trans Nucl Sci NS-25(1): 624–637Google Scholar
  44. 44.
    Thompson CJ, Yamamoto YL, Meyer E (1979) Positome II: A high efficiency positron imaging device for dynamic brain studies. IEEE Trans Nucl Sci NS-26(1): 583–589Google Scholar
  45. 45.
    Brownell GL, Burnham CA, Chesler DA, et al. (1977) Transverse section imaging of radionuclide distributions in heart, lung and brain. In: Ter-Pogossian MM, Phelps ME, Brownell GS (eds) Reconstruction tomography in diagnostic radiology and nuclear medicine. University Park, Baltimore, pp 293–307Google Scholar
  46. 46.
    Brownell GL, Correia JA, Zamenhof RG (1978) Positron instrumentation. In: Lawrence JH, Budinger TF (ed) Recent advances in nuclear medicineGoogle Scholar
  47. 47.
    Muehllehner G (1975) Positron camera with extended counting rate capability. J Nucl Med 16: 653–657PubMedGoogle Scholar
  48. 48.
    Muehllehner G, Buschin MP, Dudek JH (1976) Performance parameters of a positron imaging camera. IEEE Trans Nucl Sci NS-23(1): 528–537Google Scholar
  49. 49.
    Muehllehner G, Atkins F, Harper PV (1977) Positron camera with longitudinal and transverse tomographic ability. In: Medical radionuclide imaging, vol I. IAEA, Vienna, pp 291–307Google Scholar
  50. 50.
    Lim CB, Chu D, Kaufman L, et al. (1975) Initial characterization of a multiwire proportional chamber positron camera. IEEE Trans Nucl Sci NS-22(1): 388–394Google Scholar
  51. 51.
    Chang LT, MacDonald G, Perez-Mendez V (1976) Axial tomography in three dimensional image reconstruction. IEEE, Trans Nucl Sci NS-23(1): 568–572Google Scholar
  52. 52.
    Derenzo SE, Zaklad H, Budinger TF (1975) Analytical study of a high-resolution positron ring detector system for transaxial reconstruction tomography. J Nucl Med 16: 1116–1173Google Scholar
  53. 53.
    Derenzo SE, Budinger TF, Cahoon J, et al. (1977) High resolution computed tomo¬graphy of positron emitters. IEEE Nucl Sci NS-24(1): 544–558Google Scholar
  54. 54.
    Wolf AP, Redvanly CS (1977) Carbon-11 and radiopharmaceuticals. Int J Appl Radiat Isot 28: 29–48PubMedCrossRefGoogle Scholar
  55. 55.
    Welch MJ, Wagner SJ (1978) Preparation of positron-emitting radiopharmaceuticals. In: Lawrence JH, Budinger TF (ed) Recent advances in nuclear medicine, pp 51–69Google Scholar
  56. 56.
    Budinger TF, Derenzo SE, Gullberg GT, Greenberg WL, Huesman RH (1977) Emission computer assisted tomography with single-photon and positron annihilation photon emitters. J Comput Assist Tomogr 1: 131–145PubMedCrossRefGoogle Scholar
  57. 57.
    Huesman RH (1977) The effects of a finite number of projection angles and finite lateral sampling of projections on the propagation of statistical errors in transverse section reconstruction. Phys Med Biol 22: 511–521PubMedCrossRefGoogle Scholar
  58. 58.
    Budinger TF, Greenberg WL, Derenzo SE, Gullberg GT, Huesman RH (1978) Quantitative potentials of dynamic emission of computed tomography. J Nucl Med 19: 309–315PubMedGoogle Scholar
  59. 59.
    Burnham CA, Alpert NM, Hoop B, Jr, Brownell GL (1977) Correction of positron scinigrams for degradation due to random coincidences. J Nucl Med 18: 304Google Scholar
  60. 60.
    De Graaf CN, van Rijk PP (1977) High temporal and high phase resolution construction techniques for cardiac motion imaging: Theoretical and experimental comparison. In: Medical radionuclide imaging. IAEA, Vienna, pp 377–384Google Scholar
  61. 61.
    Leger FA, Vallie J ( 1977 ECG gated radioisotope angiocardiography. A new digital technique. In: Medical radionuclide imaging, Vol I. AEA, Vienna, pp 385–395Google Scholar
  62. 62.
    Budinger TF, Cahoon JL, Derenzo SE, Gullberg GT, Moyer BR, Yano Y (1977) Three dimensional imaging of the myocardium with radionuclides. Radiology 125: 433–439PubMedGoogle Scholar
  63. 63.
    Huesman RH, Gullberg GT, Greenberg WL, Budinger TF (1977) Users manual - Donner algorithms for reconstruction tomography. Lawrence Berkeley Laboratory Publication, Berkeley, PUB-214Google Scholar
  64. 64.
    Marr RB (1974) On the reconstruction of a function on a circular domain from a sampling of its line integrals. J Math Anal Appl 45: 357–374CrossRefGoogle Scholar
  65. 65.
    Kaihara S, Natarajan TK, Wagner HN, Jr, Maynard CD (1969) Construction of a functional image from regional rate constants. J Nucl Med 10: 347Google Scholar
  66. 66.
    Tsui E, Budinger TF (1978) Transverse section imaging of mean clearance time. Phys Med Biol 23: 644–653PubMedCrossRefGoogle Scholar
  67. 67.
    Atkins F, Muehllehner G, Harper PV (1978) Positron emission computed tomography using large area detectors. Inf Proc Med Imagy 0RNV/BCTIC-2: 195–213Google Scholar
  68. 68.
    Derenzo SE, Budinger TF, Cahoon JL, Greenberg WL, Huesman RH, Vuletich T (1979) The Donner 280-crystal high resolution positron tomograph. IEEE Trans Nucl Sci NS-26(2): 2790–2793Google Scholar
  69. 69.
    Budinger TF, Derenzo SE, Gullberg GT, Huesman RH (1979) Trends and prospects for circular ring positron cameras. IEEE Trans Nucl Sci NS-26(2): 2742–2745Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • T. F. Budinger
    • 1
    • 2
  • S. E. Derenzo
    • 1
    • 2
  • R. H. Huesman
    • 1
    • 2
  • J. L. Cahoon
    • 1
    • 2
  • Y. Yano
    • 1
    • 2
  1. 1.Donner LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations