Skip to main content

Mechanisms of Facilitated CO2 and H+ Diffusion in Protein Solutions

  • Conference paper
Biophysics and Physiology of Carbon Dioxide

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Facilitated diffusion of CO2 under steady-state conditions is based on two simultaneous processes (a) diffusion of HCO 3 and (b) an equivalent H+ flux that is brought about by a facilitated H+ diffusion. We have previously shown that, in this latter process, proteins and other buffers can function as proton carriers in such a powerful way that facilitated H+ fluxes at neutral pH values are 1000–10,000 times greater than the fluxes of free protons (Gros and Moll, 1974; Gros et al., 1976). Inside cells, where soluble proteins and other mobile buffers are present, proton fluxes should almost exclusively occur by such a facilitated transport process. Our main aim in this study was to understand the mechanisms underlying these facilitated proton fluxes, and we have used the measurement of facilitated CO2 diffusion as a tool to obtain quantitative information on proton transport in protein solutions.

Supported by the Deutsche Forschungsgemeinschaft under Gr 489/2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson SR, Brunori M, Weber G (1970) Fluorescence studies of aplysia and sperm whale apomyoglobins. Biochemistry 9: 4723–4729

    Article  Google Scholar 

  • Gros G (1976) Die erleichterte Diffusion von CO2 in Proteinlösungen. Habilitationsschrift, Universität Regensburg

    Google Scholar 

  • Gros G (1978) Concentration dependence of the self-diffusion of human and Lumbricus terrestris hemoglobin. Biophys J 22: 453–468

    Article  Google Scholar 

  • Gros G, Moll W (1971) The diffusion of carbon dioxide in erythrocytes and hemoglobin solutions. Pfliigers Arch 324: 249–266

    Article  Google Scholar 

  • Gros G, Moll W (1974) Facilitated diffusion of CO2 across albumin solutions. J Gen Physiol 64: 356–371

    Article  Google Scholar 

  • Gros G, Moll W, Hoppe H, Gros H (1976) Proton transport by phosphate diffusion — a mechanism of facilitated CO2 transfer. J Gen Physiol 67: 773–790

    Article  Google Scholar 

  • Gros G, Lavalette D, Moll W, Amand B, Pochon F, Gros H (1980) Manuscript in preparation Keller KH, Canales ER, Yum SI (1971) Tracer and mutual diffusion coefficients of proteins. J Phys Chem 75: 379–387

    Google Scholar 

  • Lavalette D, Amand D, Pochon F (1977) Rotational relaxation of 70S ribosomes by a depolarization method using triplet probes. Proc Nati Acad Sci USA 74: 1407–1411

    Article  ADS  Google Scholar 

  • Levin Ö (1963) Electron microscope observations on some 60s erythrocruorins and their split products. J Mol Biol 6: 95–101

    Article  Google Scholar 

  • Lindstrom TR, Koenig SH, Boussios T, Bertles JG (1976) Intermolecular interactions of oxygenated sickle hemoglobin molecules in cells and cell-free solutions. Biophys J 16: 679–689

    Article  Google Scholar 

  • Meldon JH, de Koning J, Stroeve P (1978) Electrical potentials induced by CO2 gradients in protein solutions and their role in CO2 transport. Bioelectrochem Bioenerg 5: 77–87

    Article  Google Scholar 

  • Moll W (1962) Die Carrier-Funktion des Hämoglobins beim Sauerstoff-Transport im Erythrocyten. Pflügers Arch 275: 412–419

    Article  Google Scholar 

  • Moll W (1966) The diffusion coefficient of haemoglobin. Respir Physiol 1: 357–365

    Article  Google Scholar 

  • Riveros-Moreno V, Wittenberg JB (1972) The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions. J Biol Chem 247: 895–901

    Google Scholar 

  • Vinogradov SN, Shlom JM, Hall BC, Muzukami H (1977) The dissociation of Lumbricus terrestris hemoglobin: a model of its subunit structure. Biochim Biophys Acta 492: 136–155

    Google Scholar 

  • Wyman J (1966) Facilitated diffusion and the possible role of myoglobin as a transport mechanism. J Biol Chem 241: 115–121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gros, G., Gros, H., Lavalette, D., Amand, B., Pochon, F. (1980). Mechanisms of Facilitated CO2 and H+ Diffusion in Protein Solutions. In: Bauer, C., Gros, G., Bartels, H. (eds) Biophysics and Physiology of Carbon Dioxide. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-67572-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-67572-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-67574-4

  • Online ISBN: 978-3-642-67572-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics