Advertisement

Primary Structure of Carbonic Anhydrases

  • L. E. Henderson
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

In 1928, studies on the rate of escape of carbon dioxide from hemolyzed blood led to the recognition of a red cell substance catalyzing the reversible hydration of CO2 [12]. By 1932, the substance was shown to be an enzyme and given the name carbonic anhydrase [26, 27]. In the following 10 years the enzyme was partially purified [28], shown to be a zinc-containing enzyme [15, 16] having a molecular weight of about 30,000 [33] and to contain one zinc ion per enzyme molecule [37]. World War II and its aftermath interrupted research on carbonic anhydrase for almost 20 years, but in the early 60’s researchers in Sweden [23, 30] reported several homogenous preparations of the enzyme which differed in electrophoretic mobility and specific activity. These observations were quickly confirmed by others [18, 34, 35] with the resulting realization that human erythrocytes contained several different enzyme forms catalyzing the reversible hydration of carbon dioxide.

Keywords

Carbonic Anhydrase Complete Amino Acid Sequence Human Carbonic Anhydrase Reversible Hydration Swedish Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson B, Nyman PO, Strid L (1969) Primary structure studies on human carbonic anhydrase B and its active site. In: Forster RE, Edsall JT, Otis AB, Roughton FJW (eds) CO2: Chemical, biochemical, and physiological aspects. National Aeronautics and Space Administration, NASA Sp-188 Washington DC, pp 109–114Google Scholar
  2. 2.
    Anderson B, Nyman PO, Strid L (1972) Amino acid sequence of human erythrocyte carbonic anhydrase B. Biochem Biophys Res Commun 48: 670–677CrossRefGoogle Scholar
  3. 3.
    Bradbury SL (1969) The carbomymethylation of human carbonic anhydrase B. I. The nature of the reaction. J Biol Chem 244: 2002–2009.Google Scholar
  4. 3(1).
    Bradbury SL (1969) The carbomymethylation of human carbonic anhydrase B. II. The amino acid sequence around a reactive histidine residue. J Biol Chem 244: 2010–2016Google Scholar
  5. 4.
    Carlson U, Henderson LE, Nyman PO, Samuelsson T (1974) Studies on the influence of Carboxyl-terminal amino acid residues on the activity and stability of human erythrocyte carbonic anhydrase B. FEBS Lett 48: 167–171CrossRefGoogle Scholar
  6. 5.
    Filippi-Foveau D, Sciaky M, Limozin N, Dalmasso C, Laurent-Tabusse G (1976) Structure primaire de l’anhydrase carbonique erythrocytaire bovine CI. I. Peptides trypsiques. Biochimie 58: 1057–1070Google Scholar
  7. 6.
    Foveau D, Sciaky M, Laurent G (1974) New data on the chemical relation between human B and C and bovine CI erythrocyte carbonic anhydrases. CR Acad Sci Paris Ser D 278: 959–962Google Scholar
  8. 7.
    Firaud N, Marriq G, Laurent-Tabusse G (1974) Structure primaire de l’anhydrase carbonique erythrocytaire B humaine: III. Sequence des fragments ICNBr et III CNBr (residus 149–26o) Biochimie 56: 1031–1044Google Scholar
  9. 8.
    Göthe PO, Nyman PO (1972) Inactivation of human erythrocyte carbonic anhydrase by bromopyruvate. FEBS Lett 21: 159–164CrossRefGoogle Scholar
  10. 9.
    Henderson LE, Henricksson D, Nyman PO, Strid L (1972) On the primary structure of the B and C isoenzymes of human erythrocyte carbonic anhydrase. In: Rorth M, Astrup P (eds) Oxygen affinity of hemoglobin and red cell acid-base status. Alfred Benzon Symposium IV, Munksgard, Copenhagen and Academic Press, London New York, pp 341–352Google Scholar
  11. 10.
    Henderson LE, Henricksson D, Nyman PO (1973) Primary structure of human erythrocyte carbonic anhydrase C. Biochem Biophys Res Commun 52: 1388–1394CrossRefGoogle Scholar
  12. 11.
    Henderson LE, Henricksson D, Nyman PO (1976) Primary structure of human carbonic anhydrase C. J Biol Chem 251: 5457–5463Google Scholar
  13. 12.
    Henriques OM (1928) Die Bindungsweise des Kohlendioxyds im Blute. Biochem Z 200: 1–24Google Scholar
  14. 13.
    Kannan KK, Liljas A, Waara I, Bergsten P-C, Lovgren S, Strandberg B, Bengtsson U, Carlbom U, Fridborg K, Järup L, Petef M (1971) Crystal structure of human erythrocyte carbonic anhydrase C. VI. The three-dimensional structure at high resolution in relation to other mammalian carbonic anhydrases. Cold Spring Harbor Symp Quant Biol 36: 221–231Google Scholar
  15. 14.
    Kannan KK, Notstrand B, Fridborg K, Lövgren S, Ohlsson A, Petef M (1975) Crystral structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2 Aresolution. Proc Naft Acad Sci USA 72: 51–55ADSCrossRefGoogle Scholar
  16. 15.
    Keilin D, Mann T (1939) Carbonic anhydrase. Nature (London) 144: 442–443ADSCrossRefGoogle Scholar
  17. 16.
    Keilin D, Mann T (1940) Carbonic anhydrase. Purification and nature of the enzyme. Biochem J 34: 1163–1176Google Scholar
  18. 17.
    Laurent B, Derrien Y (1969) Investigations of the structure of human and bovine carbonic anhydrases. In: Forster RE, Edsall JT, Otis AB, Roughton FJW (eds) CO2: Chemical, biochemical, and physiological aspects. National Aeronautics and Space Administration, NASA SP-188, Washington DC, pp 115–120Google Scholar
  19. 18.
    Laurent G, Chanel M, Castay M, Nahom D, Marriq C, Derrien Y (1962) Identification of erythrocyte Y, Xl and X2 proteins with human carbonic anhydrase. C R Soc Biol 156: 1461–1464Google Scholar
  20. 19.
    Laurent G, Marriq C, Garcom D, Luccioni F, Derrien Y (1967) Sur les anhydrases carboniques erythrocytaires humaines: VI. Enchainement N-terminal de l’enzyme B. Bull Soc Chim Biol 49: 1035–1058Google Scholar
  21. 20.
    Liljas A, Kannan KK, Bergsten PC, Waara I, Fridborg SL, Strandberg B, Carlbom U, Järup L, Lovgren S, Petef M (1972) Crystal structure of human carbonic anhydrase C. Nature New Biol 235: 131–137Google Scholar
  22. 21.
    Lin KTD, Deutsch HF (1973) Human carbonic anhydrase. XI. The complete primary structure of carbonic anhydrase B. J Biol Chem 248: 1885–1893Google Scholar
  23. 22.
    Link KTD, Deutsch HF (1974) Human carbonic anhydrase. XII. The complete primary structure of the C isozyme. J Biol Chem 249: 2329–2337Google Scholar
  24. 23.
    Lindskog S (1960) Purification and properties of bovine erythrocyte carbonic anhydrase. Biochem Biophys Acta 39: 218–226CrossRefGoogle Scholar
  25. 24.
    Lindskog S, Henderson LE, Kannan KK, Liljas A, Nyman PO, Strandberg B (1971) Carbonic anhydrase. In: Boyer PD (ed) The enzymes, 3rd edn, vol 5, pp 587–665Google Scholar
  26. 25.
    Marriq C, Sciaky M, Giraud N, Foveau D, Laurent-Tabusse G (1974) Structure primaire de l’anhydrase carbonique erythrocytaire B humaine: H. Clivage par le bromure de cyanogene et sequence des residue 1–148. Biochimie 55: 1361–1379CrossRefGoogle Scholar
  27. 26.
    Meldrum NU, Roughton FJW (1932) Some properties of carbonic anhydrase, the carbon dioxide enzyme present in blood. J Physiol (London) 75: 15–16Google Scholar
  28. 27.
    Meldrum NU, Roughton FJW (1932) Discussion on recent advances in the study of enzymes and their action. Proc R Soc Bull 296–297Google Scholar
  29. 28.
    Meldrum NU, Roughton FJW (1933) Carbonic anhydrase; its preparation and properties. J Physiol (London) 80: 113–142Google Scholar
  30. 29.
    Notstrand B, Vaara I, Kannan KK (1975) Structural relation of human erythrocyte carbonic anhydrase isoenzymes B and C. In: Market C (ed) Isozymes, molecular structure. Proc 3rd Int Symp Isozymes. Adacemic Press, London New York, pp 575–599Google Scholar
  31. 30.
    Nyman PO (1961) Purification and properties of carbonic anhydrase from human erythrocytes. Biochim Biophys Acta 52: 1–12CrossRefGoogle Scholar
  32. 31.
    Nyman PO, Strid L, Westermark G (1968) Carboxyl-terminal region of human and bovine erythrocyte carbonic anhydrases. 1. Amino acid sequences of terminal cynogen bromide fragments. Eur J Biochem 6: 172–189Google Scholar
  33. 32.
    Nyman PO, Lindskog S (1964) Amino acid composition of various forms of bovine and human erythrocyte carbonic anhydrase. Biochim Biophys Acta 85: 141–151Google Scholar
  34. 33.
    Petermann ML, Hakala NV (1942) Molecular kinetic and electrophoretic studies on carbonic anhydrase. J Biol Chem 145: 701–705Google Scholar
  35. 34.
    Rickli EE, Edsall JT (1962) Zinc binding and the sulfhydryl group of human carbonic anhydrase. J Biol Chem 237: pc 258Google Scholar
  36. 35.
    Rickli EE, Ghanzanfar SAS, Gibbons BH, Edsall JT (1964) Carbonic anhydrase from human erythrocytes: Preparation and properties of two enzymes. J Biol Chem 239: 1065–1078Google Scholar
  37. 36.
    Sciaky M, Limozin N, Filippi-Foveau D, Gulian JM, Laurent-Tabusse G (1976) Primary structure of bovine erythrocyte carbonic anhydrase CI: II. Complete amino acid sequence. Biochimie 58: 1071–1082Google Scholar
  38. 37.
    Scott DA, Fisher AM (1942) Carbonic anhydrase. J Biol Chem 144: 371–381Google Scholar
  39. 38.
    Strid L (1973) Personal communicationGoogle Scholar
  40. 39.
    Tanis RJ, Ferrell RE, Tashian RE (1974) Amino acid sequence of sheep carbonic anhydrase C. Biochim Biophys Acta 371: 534–548Google Scholar
  41. 40.
    Whitney PL (1970) Inhibition and modification of human carbonic anhydrase B with bromo-acetate and iodoacetate. Eur J Biochem 16: 126–136CrossRefGoogle Scholar
  42. 41.
    Whitney PL, Fölsch G, Nyman PO, Malmström BG (1967) Inhibition of human erythrocyte carbonic anhydrase B by chloroacetyl sulfonamides with labeling of the active site. J Biol Chem 242: 4206–4211Google Scholar
  43. 42.
    Whitney PL, Nyman PO, Malmström BG (1967) Inhibition and chemical modification of human erythrocyte carbonic anhydrase B. J Biol Chem 242: 4212–4220Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • L. E. Henderson
    • 1
  1. 1.Biological Carcinogenesis ProgramFrederick Cancer Research CenterFrederickUSA

Personalised recommendations