Advertisement

Biochemical Effects of Neuroleptic Drugs

  • G. Bartholini
  • K. G. Lloyd
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 55 / 1)

Abstract

The biochemical effects of the neuroleptic drugs can be divided according to the following criteria:
  1. a)

    Changes induced by all of these compounds independently of the brain structure upon which they act. These changes, e.g., alteration of DA turnover, are qualitatively similar in all of the DA-rich brain areas and can be considered as common basic effects of neuroleptic compounds.

     
  2. b)

    Changes induced by all of the neuroleptic drugs but specific for a given brain structure e.g., alteration of acetylcholine (ACh) or γ-aminobutyric acid (GABA) turnover. The preferential occurrence of these changes in specific brain areas is probably explained by the neuronal network proper to each region.

     
  3. c)

    The above-mentioned effects are typical for all “classical” neuroleptic compounds which differ only in their relative potency (on biochemical and behavioural parameters) and, thus, share a similar pharmacological profile. In contrast, some compounds, which will be referred to as “atypical” neuroleptics, differ from classical drugs as they show a peculiar pharmacological spectrum.

     

Keywords

Tyrosine Hydroxylase Substantia Nigra Limbic System Neuroleptic Drug Dopamine Turnover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G.K., Bunney, B.S.: Central dopaminergic neurons: neurophysiological identification and response to drugs. In: Frontiers in catecholamine research. Usdin, E., Snyder, S.H., (eds.), pp. 643–648. New York: Pergamon Press 1973Google Scholar
  2. Aghajanian, G.K., Bunney, B.S.: Dopaminergic and nondopaminergic neurons in the substantia nigra: differential responses to putative transmitters. In: Neuropsychopharmacology. Boisser, J.R., Hippius, H., Pichot, P., (eds.), pp. 444–452. Amsterdam: Excerpta Medica 1975Google Scholar
  3. Agid, Y., Guyenet, P., Glowinski, J., Beaujouan, J. C., Javoy, F.: Inhibitory influence of the nigrostriatal dopamine system on the striatal cholinergic neurons in the rat. Brain Res. 86, 488–492 (1975)PubMedGoogle Scholar
  4. Andén, N.E.: Adrenergic mechanisms. Ann. Rev. Pharmacol. 9, 119–134 (1969)PubMedGoogle Scholar
  5. Andén, N.E.: Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptic and anti-acetylcholine drugs. J. Pharm. Pharmacol. 24, 905–906 (1972)PubMedGoogle Scholar
  6. Andén, N.E.: Effects of oxotremorine and physostigmine on the turnover of dopamine in the corpus striatum and the limbic system. J. Pharm. Pharmacol. 26, 738–740 (1974)PubMedGoogle Scholar
  7. Andén, N.E., Bedard, P.: Influences of cholinergic mechanisms on the function and turnover of brain dopamine. J. Pharm. Pharmacol. 23, 460–462 (1971)PubMedGoogle Scholar
  8. Andén, N.E., Stock, G.: Inhibitory effect of γ-hydroxybutyric acid and γ-aminobutyric acid on the dopamine cells in the substantia nigra. Naunyn-Schmiedeberg’s Arch. Pharmacol. 279, 890–892 (1973)Google Scholar
  9. Andén, N.E., Wachtel, H.: Some effects of GABA and GABA-like drug on cerebral catecholamine mechanisms. In: Interactions between putative neurotransmitters in the brain. S. Garattini, J.F. Pujol, R. Samanin (eds.) pp. 161–173, New York: Raven Press 1978Google Scholar
  10. Andén, N.E., Butcher, S.G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of brain dopamine and noradrenaline after neuroleptics. Eur. J. Pharmacol. 11, 303–314(1970)PubMedGoogle Scholar
  11. Asper, H., Baggiolini, M., Burki, H.R., Lauener, H., Ruch, W., Stille, G.: Tolerance phenomena with neuroleptics: catalepsy, apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol. Eur. J. Pharmacol. 22, 287–294 (1973)PubMedGoogle Scholar
  12. Bartholini, G.: Differential effect of neuroleptic drugs on dopamine turnover in the extrapyramidal and limbic system. J. Pharm. Pharmacol. 28, 429–443 (1976)PubMedGoogle Scholar
  13. Bartholini, G., Pletscher, A.: Drugs affecting monoamines in the basal ganglia. In: Advances in biochemical psychopharmacology. Costa, E., Iversen, L.L., Paoletti, R., (eds.), Vol.6, pp. 135–148. New York: Raven Press 1972Google Scholar
  14. Bartholini, G., Stadler, H.: Evidence for an intrastriatal gabaergic influence on dopamine neurons of the cat. Neurophamacology 16, 343–347 (1977)Google Scholar
  15. Bartholini, G. Stadler, H., Lloyd, K.G.: Cholinergicdopaminergic interregulations within the extrapyramidal system. In: Cholinergic mechanisms, P.G. Waser (Eds) pp. 411–418 New York: Raven Press 1975 aGoogle Scholar
  16. Bartholini, G., Keller, H.H., Pletscher, A.: Drug-induced changes of dopamine turnover in striatum and limbic system of the rat. J. Pharm. Pharmacol. 27, 439–442 (1975 b)PubMedGoogle Scholar
  17. Bartholini, G., Stadler, H., Gadea-Ciria, M., Lloyd, K.G.: The use of the push-pull cannula to estimate the dynamics of acetylcholine and catecholamines within various brain areas. Neuropharmacology 15, 515–519 (1976 a)PubMedGoogle Scholar
  18. Bartholini, G., Stadler, H., Gadea-Ciria, M., Lloyd, K.G.: The effect of antipsychotic drugs on the release of neurotransmitters in various brain areas. In: Antipsychotic drugs: pharmacodynamics and pharmacokinetics, Sedvall, G., Uvnas, B., Zotterman, Y., (eds.), pp. 105–116. Oxford: Pergamon Press 1976 bGoogle Scholar
  19. Bartholini, G., Stadler, H., Gadea-Ciria, M., Lloyd, K.G.: Interaction of dopaminergic and cholinergic neurons in the extrapyramidal and limbic systems. In: Advances in biochemical psychopharmacology. Costa, E., Gessa, G.L., (eds.), Vol.16, pp. 391–395. New York: Raven Press 1977Google Scholar
  20. Bartholini, G., Scatton, B., Zivkovic, B., Lloyd, K.G.: On the mode of action of SL 76002, a new GABA receptor agonist. In: GABA-Neurotransmitters Krogsgaard, I., Larsen, P., Scheel-Krûger, J., Kofod, H. (eds.), pp. 326–339. Copenhagen: Munksgaard 1979Google Scholar
  21. Beckmann, H., Frische, M., Ruther, E., Zimmer, R.: Baclofen (para-chlorophenyl-GABA) in schizophrenia. Pharmakopsychiatry 10, 26–31 (1977)Google Scholar
  22. Biggio, G., Casu, M., Corda, M.G., Vernaleone, F., Gessa, G.L.: Effect of muscimol, a gaba-mimetic agent, on dopamine metabolism in the mouse brain. Life Sci 21, 525–532 (1977)PubMedGoogle Scholar
  23. Bird, E.D., Mackay, A.V.P., Rayner, C.N., Iversen, L.L.: Reduced glutamic-acid-decarboxyl-ase activity of post-mortem brain in Huntingdon’s chorea. Lancet 1, 1090–1092 (1973)PubMedGoogle Scholar
  24. Bird, E.D., Barnes, J., Iversen, L.L., Spokes, E.G., Mackay, A.V.P., Shepherd, M.: Increased brain dopamine and reduced glutamic decarboxylase and choline acetyltransferase activity in schizophrenia and related psychoses. Lancet 2, 1157–1159 (1977)PubMedGoogle Scholar
  25. Bird, E.D., Spokes, E.G., Barnes, S., Mackay, A.V.P., Iversen, L.L., Shepherd, M.: Glutamic acid decarboxylase in schizophrenia. Lancet 7, 156 (1978)Google Scholar
  26. Bowers, M.B., Rozitis, A.: Regional differences in homovanillic acid concentrations after acute and chronic administration of antipsychotic drugs. J. Pharm. Pharmacol. 26, 743–745 (1974)PubMedGoogle Scholar
  27. Bowers, M.B., Rozitis, A.: Brain homovanillic acid: regional changes over time with antipsychotic drugs. Eur. J. Pharmacol. 39, 109–115 (1976)PubMedGoogle Scholar
  28. Briley, M.: Unpublished results (1978)Google Scholar
  29. Bunney, B.S., Aghajanian, G.K.: Evidence for drug actions on both pre- and postsynaptic catecholamine receptors in the CNS. In: Pre- and postsynaptic receptors, Usdin, E., Bunney, W.E. Jr. (eds.), pp. 89–120. New York: Dekker 1975Google Scholar
  30. Bunney, B.S., Aghajanian, G.K.: Mesolimbic and mesocortical dopaminergic systems: physiology and pharmacology. In: Psychopharmacology: A generation of progress. Lipton, M.A., Di Mascio, A., Killam, K.F., (eds.), pp. 159–169. New York: Raven Press 1978Google Scholar
  31. Burki, H.R., Ruch, W., Asper, H., Baggiolini,; M., Stille, G.: Effect of single and repeated administration of clozapine on the metabolism of dopamine and noradrenaline in the brain of the rat. Eur. J. Pharmacol. 27, 180–190 (1974)PubMedGoogle Scholar
  32. Burt, D.R., Enna, S.J., Creese, I., Snyder, S.H.: Dopamine receptor binding in the corpus striatum of mammalian brain. Proc. Natl. Acad. Sci. USA 72, 4655–4659 (1975)PubMedGoogle Scholar
  33. Burt, D.R., Creese, I., Snyder, S.H.: Antischizophrenic drugs: chronic treatment elevates dopamine receptors binding in brain. Science 196, 326–328 (1977)PubMedGoogle Scholar
  34. Carlsson, A.: Receptor-mediated control of dopamine metabolism. In: Pre- and postsynaptic receptors. Usdin, E., Bunney, W.E., Jr. (eds.), pp. 49–63. New York: Dekker 1975Google Scholar
  35. Carlsson, A., Lindqvist, M.: Effect of chlorpromazine and haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. (Kbh.) 20, 140–144 (1963)Google Scholar
  36. Chase, T.N., Tamminga, C.A.: GABA system participation in human motor, cognitive and endocrine function. In: GABA-Neurotransmitters. Krogsgaard-Larsen, P., Scheel-Kriiger, J., Kofod, H. (eds.), pp. 283–294. Copenhagen: Munksgaard 1979Google Scholar
  37. Cheney, D.L., Racagni, G., Zsilla, G., Costa, E.: Differences in the action of various drugs on striatal acetylcholine and choline content in rats killed by decapitation or microwave radiation. J. Pharm. Pharmacol. 28, 75–77 (1976)PubMedGoogle Scholar
  38. Cheramy, A., Nieoullon, A., Glowinski, J.: Effects of peripheral and local administration of pictrotoxin on the release of newly synthesized 3H-dopamine in the caudate nucleus of the cat. Naunyn-Schmiedeberg’s Arch. Pharmacol. 297, 31–37 (1977)Google Scholar
  39. Clement-Cormier, Y., Robison, G.A.: Adenylate cyclase from various dopaminergic areas of the brain and the action of antipsychotic drugs. Biochem. Pharmacol. 26, 1719–1722 (1977)Google Scholar
  40. Consolo, S., Ladinsky, H., Bianchi, S.: Decrease in rat striatum acetylcholine levels by some direct- and indirectacting dopaminergic antagonists. Eur. J. Pharmacol. 33, 345–351 (1975)PubMedGoogle Scholar
  41. Coyle, J.T., Schwartz, R., Bennett, J.P., Campochiaro, P.: Clinical, neuropathologic and pharmacological aspects of Huntington’s disease: correlates with a new animal model. Prog. Neuropsychopharmacol. 1, 13–30 (1977)Google Scholar
  42. Creese, I., Burt, D.R., Snyder, S.H.: Dopamine receptor binding: differentiation of agonist and antagonist states with 3H-dopamine and 3H-haloperidol. Life Sci. 17, 993–1002 (1975)Google Scholar
  43. Creese, I., Schwartz, R., Coyle, J.T., Snyder, S.H.: Differential localization of dopamine receptor 3H-haloperidol binding and adenylate cyclase. Soc. Neurosci. Abstr. 3, 454 (1977)Google Scholar
  44. Crossman, A.R., Walker, R.J., Woodruff, G.N.: Picrotoxin antagonism of γ-aminobutyric acid inhibitory responses and synaptic inhibition in the rat substantia nigra. Br. J. Pharmacol. 49, 696–698 (1973)PubMedGoogle Scholar
  45. Crossman, A.R., Walker, R.J., Woodruff, G.N.: Pharmacological studies on single neurones in the substantia nigra of the rat. Br. J. Pharmacol. 51, 137–138P (1974)Google Scholar
  46. Da Prada, M., Pletscher, A.: On the mechanism of chlorpromazine in-induced changes of cerebral homovanillic acid levels. J. Pharm. Pharmacol. 18, 628–630 (1966)PubMedGoogle Scholar
  47. Davis, K.L., Hollister, L.E., Berger, P.A., Barchas, J.D.: Cholinergic imbalance hypothesis of psychoses and movement disorders: strategies for evaluation. Psychopharmacol. Commun. 1, 533–543 (1975)Google Scholar
  48. De Silva, L., Huang, C.Y.: Deanol in tardive dyskinesia. Br. Med. J. 3, 466 (1975)PubMedGoogle Scholar
  49. Donlon, P.T., Stenson, R.L.: Neuroleptic induced extrapyramidal symptoms. Dis. Nerv. Syst. 37, 629–635 (1976)PubMedGoogle Scholar
  50. Dray, A., Gonye, T.J.: Effects of caudate stimulation and microiontophoretically applied substances on neurones in the rat substantia nigra. J. Physiol. (Lond.) 246, 88–89P (1975)Google Scholar
  51. Dray, A., Straughan, D.W.: Synaptic mechanisms in the substantia nigra. J. Pharm. Pharmacol. 28, 400–405 (1976)PubMedGoogle Scholar
  52. Dunstan, R., Jackson, D.M.: The demonstration of a change in responsiveness of mice to physostigmine and atropine after withdrawal from long-term haloperidol pretreatment. J. Neurol. Transm. 40, 181–189 (1977)Google Scholar
  53. Enna, S.J., Snyder, S.H.: Properties of γ-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fractions. Brain Res. 100, 81–97 (1975)PubMedGoogle Scholar
  54. Ezrin-Waters, C., Seeman, P.: Tolerance to haloperidol catalepsy. Eur. J. Pharmacol. 41, 321–327 (1977)PubMedGoogle Scholar
  55. Feltz, P.: γ-aminobutyric acid and a caudato-nigral inhibition. Can. J. Physiol. Pharmacol. 49, 1113–1115(1971)PubMedGoogle Scholar
  56. Fibiger, H.C., Grewaal, D.S.: Neurochemical evidence for denervation supersensitivity: the effect of unilateral substantia nigra lesions on apomorphine-induced increases in neostriatal acetylcholine levels. Life Sci. 15, 57–63 (1974)PubMedGoogle Scholar
  57. Fredericksen, P.K.: Baclofen in the treatment of schizophrenia. Lancet, 1, 702–703 (1975)Google Scholar
  58. Freedman, A.M., Kaplan, H.I., Sadlock, B.J.: Modern Synopsis of Psychiatry, Vol. II, pp. 978 – 979 Baltimore: Williams & Wilkins 1976Google Scholar
  59. Fuxe, K., Hokfelt, T., Ljungdahl, A., Agnati, L., Johansson, O., Perez de la Mora, M: Evidence for an inhibitory GABAergic control of the meso-limbic dopamine neurons: possibility of improving treatment of schizophrenia by combined treatment with neuroleptics and GABAergic drugs. Med. Biol. 53, 177–183 (1975)PubMedGoogle Scholar
  60. Gerlach, J., Koppelhus, P., Helweg, E., Morand, A.: Clozapine and haloperidol in a single-blind cross-over trial: therapeutic and biochemical aspects in the treatment of schizophrenia. Acta Psychiatr. Scand. 50, 410–424 (1974)PubMedGoogle Scholar
  61. Gessa, G.L., Tagliamonte, A.: Effect of methadone and dextromoramide on dopamine metabolism: comparison with haloperidol and amphetamine. Neuropharmacology 14, 913–920 (1975PubMedGoogle Scholar
  62. Gey, K.F., Pletscher, A.: Influence of chlorpromazine and chlorprothixine on the cerebral metabolism of 5-hydroxytryptamine, norepinephrine and dopamine. J. Pharmacol. Exp. Ther. 133, 18–24 (1961)PubMedGoogle Scholar
  63. Gianutsos, G., Moore, K.E.: Dopaminergic supersensitivity in striatum and olfactory tubercle following chronic administration of haloperidol or clozapine. Life Sci. 20, 1585–1592 (1977)PubMedGoogle Scholar
  64. Greenblatt, D.J., Shader, R.I.: Anticholinergics. N. Engl. J. Med. 288, 1215–1219 (1973)Google Scholar
  65. Guyenet, P.G., Agid, Y., Javoy, F., Beaujouan, J.C., Rossier, J., Glowinski, J.: Effects of dopaminergic receptor agonists and antagonists on the activity of the neostriatal cholinergic system. Brain Res. 84, 227–244 (1975)PubMedGoogle Scholar
  66. Henry, J.L., Ben-Ari, Y.: Actions of the p-chlorophenyl derivative of GABA, lioresal, on nociceptive and nonnociceptive units in the spinal cord of the cat. Brain Res. 117, 540–544 (1976)PubMedGoogle Scholar
  67. Hökfelt, T., Ljungdahl, A., Perez de la Mora, M., Fuxe, K.: Further evidence that apomorphine increases GABA turnover in the DA cell body rich and DA nerve terminal rich areas of the brain. Neurosci. Lett 2, 239–242 (1976)PubMedGoogle Scholar
  68. Hornykiewicz, O.: Dopamine (3-hydroxytryptamine) and brain function. Pharmacol. Rev. 18, 925–962 (1966)PubMedGoogle Scholar
  69. Iversen, L.L.: Catecholamine-sensitive adenylate cyclases in nervous tissues. J. Neurochem. 29, 5–12 (1977)PubMedGoogle Scholar
  70. Jackson, D.M., Anden, N.E., Engel, J., Liljequist, S.: The effect of long-term penfluridol treatment on the sensitivity of the dopamine receptors in the nucleus accumbens and in the corpus striatum. Psychopharmacologia 45, 151–155; (1975)PubMedGoogle Scholar
  71. Janssen, P.: Pharmacological aspects. In: Neuro-psychopharmacology. Bente, D., Bradley, P.B. (eds.), Vol.4, pp. 151–159 Amsterdam: Elsevier 1965Google Scholar
  72. Javoy, F., Hamon, M., Glowinski, J.: Disposition of newly synthetized amines in cell bodies and terminals of central catecholaminergic neurons. (I) Effect of amphetamine and thioproperazine on the metabolism of CA in the caudate nucleus, the substantia nigra and the ventromedial nucleus of the hypothalamus. Eur. J. Pharmacol. 10, 178–188 (1970)PubMedGoogle Scholar
  73. Javoy, F., Agid, Y., Boucet, D., Glowinski, J.: Changes in neostriatal DA metabolism after car-bachol or atropine microinjection into the substantia nigra. Brain Res. 68, 253–260 (1974)PubMedGoogle Scholar
  74. Javoy, F., Agid, Y., Glowinski, J.: Oxotremorine- and atropine-induced changes of dopamine metabolism in the rat striatum. J. Pharm. Pharmacol 27, 677–681 (1975)PubMedGoogle Scholar
  75. Jenner, P., Elliott, P.N.C., Clow, A., Reavill, C., Marsden, C.D.: A comparison of ‘in vitro’ and ‘in vivo’ dopamine receptor antagonism produced by substituted benzamide drugs. J. Pharm. Pharmacol. 30, 46–48 (1978)PubMedGoogle Scholar
  76. Julou, L., Scatton, B., Glowinski, J.: Acute and chronic treatment with neuroleptics: similarities and differences in their action of nigrastriatal, mesolimbic and mesocortical dopaminergic neurons. In: Advances in biochemical psychopharmacology. Costa, E., Gessa, G.L., (eds.), Vol. 16 pp. 617–624. New York: Raven Press 1977Google Scholar
  77. Kaariainen, I.: Effects of aminooxyacetic acid and baclofen on the catalepsy and on the increase of mesolimbic and striatal dopamine turnover induced by haloperidol in rats. Acta Pharmacol. Toxicol. (Kbh.) 39, 393–400 (1976)Google Scholar
  78. Kataoka, K., Bak, I. J., Hassler, R., Kim, J.J., Wagner, A.: L-glutamate decarboxylase and choline acetyltransferase activity in the substantia nigra and the striatum after surgical interruption of the strio-nigral fibres of the baboon. Exp. Brain Res. 19, 217–227 (1974)Google Scholar
  79. Kebabian, J.W., Saavedra, J.M.: Dopamine-sensitive adenylate cyclase occurs in a region of substantia nigra containing dopaminergic dendrites. Science 193, 686–685 (1976)Google Scholar
  80. Kehr, W.: 3-methoxytyramine as an indicator of impulse-induced dopamine release in rat brain in vivo. Naunyn-Schmiedeberg’s Arch. Pharmacol. 293, 209–215 (1976)Google Scholar
  81. Kettler, R., Bartholini, G. and Pletscher, A.: In vivo enhancement of tyrosine hydroxylation in rat striatum by tetrahydrobioterin. Nature 249, 476–478 (1974)PubMedGoogle Scholar
  82. Kim, J.S., Hassler, R.: Effects of acute haloperidol on the γ-aminobutyric acid system in rat striatum and substantia nigra. Brain Res. 88, 150–153 (1975)PubMedGoogle Scholar
  83. Klawans, H.L., Rubovits, R.: Effect of cholinergic and anticholinergic agents on tardive dyskinesia. J. Neurol. Neurosurg. Psychiatry 27, 941–947 (1974)Google Scholar
  84. Kreuger, B.K., Forn, J., Greengard, P.: Dopamine sensitive adenylate cyclase and protein phosphorylation in the rat caudate nucleus. In: Pre- and postsynaptic receptors. Usdin, E., Bunney, W.E.Jr. (eds.), pp. 123–146. New York: Dekker 1975Google Scholar
  85. Krnjevic, K.: Effects of substance P on central neurons in cats. In: Substance P. Von Euler, U.S., Perlow, B. (eds.), pp. 217–230. New York: Raven Press 1977Google Scholar
  86. Laduron, P., De Bie, K., Leysen, J.: Specific effect of haloperidol on dopamine turnover in the frontal cortex. Naunyn-Schmiedeberg’s Arch. Pharmacol. 296, 183–185 (1977)Google Scholar
  87. Ladinsky, H., Consolo, S., Bianchi, S., Ghezzi, D., Samanin, R.: Link between dopaminergic and cholinergic neurons in the striatum as evidenced by pharmacological biochemical and lesion studies. In: Interactions between putative neurotransmitters in the brain. Garattini, S., Pujol, J.F., Samanin, R. (eds.) pp. 3–21. New York: Raven Press 1978Google Scholar
  88. Laverty, R., Sharman, D.F.: Modification by drugs of the metabolism of 3,4-dihydroxyphenyl-ethylamine, noradrenaline and 5-hydroxytryptamine in the brain. Br. J. Pharmacol. 24, 759–772 (1965)Google Scholar
  89. Leysen, J.E., Niemegeers, C.J.E., Tollenaere, J.P., Laduron, P.M.: Serotonergic component of neuroleptic receptors. Nature 272, 168–171 (1978)PubMedGoogle Scholar
  90. Lloyd, K.G.: Neurotransmitter interactions related to central dopamine neurons. In: Essays in neurochemistry and neuropharmacology. Youdim, M.B.H., Lovenberg, W., Sharman, D.F., Lagnado, J.P. (eds.) Vol.III, pp. 129–207. New York: Wiley 1978aGoogle Scholar
  91. Lloyd, K.G.: Observations concerning neurotransmitter interaction in schizophrenia. In: Cho-linergic-monoaminergic interactions in the brain. Butcher, L.L. (ed.), pp. 363–392. New York: Academic Press 1978bGoogle Scholar
  92. Lloyd, K.G.: The biochemical pharmacology of the limbic system: Neuroleptic drugs. In: Limbic mechanisms, Livingston, K.E., Hornykiewicz, O. (eds.) pp. 262–305. New York: Plenum Press 1978cGoogle Scholar
  93. Lloyd, K.G., Bartholini, G.: The effects of drugs on the release of endogenous catecholamines into the perfusate of discrete brain areas of the cat in vivo. Experientia 31, 560–562 (1975)PubMedGoogle Scholar
  94. Lloyd, K.G., Dreksler, S.: 3H-GABA binding to membranes prepared from post-mortem human brain: pharmacological and pathological investigations. In: Amino acids as chemical transmitters. Fonnum, F. (ed.), pp. 457–466. New York: Plenum Press 1978Google Scholar
  95. Lloyd, K.G., Hornykiewicz, O.: L-glutamic acid decarboxylase in Parkinson’s disease: Effect of L-dopa therapy. Nature 243, 521–523 (1973)PubMedGoogle Scholar
  96. Lloyd, K.G., Hornykiewicz, O.: Effect of chronic neuroleptic or L-dopa administration on GA-BA levels in the rat substantia nigra. Life Sci. 21, 1489–1496 (1977)PubMedGoogle Scholar
  97. Lloyd, K.G., Worms, P.: Sustained GABA receptor stimulation and chronic neuroleptic effects. In: Long-term effects of neuroleptics. Cattabeni, F., Racagni, G., Spano, P.F. (eds.). New York: Raven Press 1980 (in press)Google Scholar
  98. Lloyd, K.G., Shemen, L., Hornykiewicz, O.: Distribution of high affinity sodium-independent (3H)-γ-aminobutyric acid (3H) GABA binding in the human brain: Alterations in Parkinson’s disease. Brain Res. 127, 269–278 (1977a)Google Scholar
  99. Lloyd, K.G., Shibuya, M., Davidson, L., Hornykiewicz, O.: Chronic neuroleptic therapy: Tolerance and GABA systems. In: Advances in biochemical psychopharmacology. Costa, E., Gessa, G.L. (eds.), Vol. 16, pp. 409–415. New York: Raven Press 1977bGoogle Scholar
  100. Lloyd, K.G., Worms, P., Deportere, H., Bartholini, G.: Pharmacological profile of SL 76002, a new GABA-mimetic drug. In: GABA-Neurotransmitters. Krogsgaard-Larsen, P., Scheel-Krûger, J., Kofod, H. (eds.), pp. 308–325. Copenhagen: Munksgaard 1979Google Scholar
  101. Lovenberg, W., Bruckwick, E.A.: Mechanisms of receptor mediated regulation of catecholamine synthesis in brain. In: Pre- and post-synaptic receptors. Usdin, E., Bunney, W.E.Jr. (eds.), pp. 149–168. New York: Dekker 1975Google Scholar
  102. Maggi, A., Cattabeni, F., Bruno, F., Racagni, G.: Haloperidol and clozapine: specificity of action on GABA in the nigrostriatal system. Brain Res. 133, 382–385 (1977)PubMedGoogle Scholar
  103. Mantovani, P., Pepeu, G.: Influence of dopamine agonists on cholinergic mechanisms in the cerebral cortex. In: Interactions between putative transmitters in the brain. Garattini, S., Pujol, J.F., Samanin, R. (eds.) pp. 53–59 New York: Raven Press 1978Google Scholar
  104. Mao, C.C., Costa, E.: Biochemical pharmacology of GABA transmission. In: Psychopharmacology: a generation of progress, Lipton, M.A., Di Mascio, A., Killam, K.F. (eds.) pp. 307–318 New York: Raven Press 1978Google Scholar
  105. Mao, C.C., Cheney, D.L., Marco, E., Revuelta, A., Costa, E.: Turnover times of γ-amino-butyric acid and acetylcholine in nucleus caudatus, nucleus accumbens, globus pallidus and substantia nigra: effects of repeated administration of haloperidol. Brain Res. 132, 375–379 (1977a)PubMedGoogle Scholar
  106. Mao, C.C., Marco, E., Revuelta, A., Bertilson, L., Costa, E.: The turnover rate of γ-amino-butyric acid in the nuclei of the telencephalon: implications in the pharmacology of antipsychotics and of a minor tranquilizer. Biol. Psychiatry 2, 359–371 (1977b)Google Scholar
  107. Maruyama, S., Kawasaki, T.: Further electrophysiological evidence for the GABA-like effect of droperidol in the Purkinje cells of the cat cerebellum. Jpn. J. Pharmacol. 26, 765–767 (1976)PubMedGoogle Scholar
  108. McClelland, H.A., Blessed, G., Bhate, S., Ali, N., Clarke, P. A.: The abrupt withdrawal of antiparkinsonian drugs in schizophrenic patients. Br. J. Psychiatry 124, 151–159 (1974)PubMedGoogle Scholar
  109. McGeer, E.G., McGeer, P.L.: GABA-containing neurons in schizophrenia, Huntington’s chorea and normal aging. In: GABA-neurotransmitters. Krogsgaard-Larsen, P., Scheel-Krûger, J., Kofod, H. (eds.), pp. 340–356. Copenhagen: Munksgaard 1979Google Scholar
  110. McGeer, E.G., Fibiger, H.C., McGeer, P.L., Brooke, S.: Temporal changes in amine synthesizing enzymes of rat extrapyramidal system after hemitransection of 6-Hydroxydopamine administration. Brain Res. 52, 289–300 (1973)PubMedGoogle Scholar
  111. McGeer, P.L., McGeer, E.G., Fibiger, H.C.: Choline acetylase and glutamic acid decarboxylase in Huntington’s chorea. Neurology 23, 912–917 (1975)Google Scholar
  112. Miller, R.J., Hiley, C.R.: Anti-muscarinic properties of neuroleptics and drug-induced Parkinsonism. Nature 248, 596–597 (1974)PubMedGoogle Scholar
  113. Morselli, P., Bossi, L., Henry, J.F., Zarifian, E., Bartholini, G.: Preliminary observations on the action of SL 76002, a new GABA mimetic compound, in neuropsychiatric disorders. In: GABA and other inhibitory neurotransmitters. Usdin, E., Fielding, S., Lai, H. (eds.). New York: Ankho Inc., in press, 1980Google Scholar
  114. Nyback, H., Sedvall, G.: Further studies on the accumulation and disappearence of catecholamines formed from tyrosine-14C in mouse brain. Effect of some phenothiazine analogues. Eur. J. Pharmacol. 10, 193–205 (1970)PubMedGoogle Scholar
  115. Nyback, H., Wiesel, F.A., Sedvall, G.: Receptor regulation of dopamine turnover. In: Frontiers in catecholamine research, Usdin, E., Snyder, S.H. (eds.), pp. 601–604. Oxford l’ergamon Press 1973Google Scholar
  116. O’Keefe, R., Sharman, D.F., Vogt, M.: Effect of drugs used in psychoses on cerebral dopamine metabolism. Br. J. Pharmacol. 38, 287–304 (1970)Google Scholar
  117. Pepeu, G.: The release of acetylcholine from the brain: an approach to the study of control mechanisms. Prog. Neurobiol. 2, 257–288 (1974)Google Scholar
  118. Perez de la Mora, M., Fuxe, K., Hokfelt, T., Ljungdahl, A.: Effect of apomorphine on the GA-BA turnover in the DA cell group rich area of the mesencephalon. Evidence for the involvement of an inhibitory GABAergic feedback control of the ascending DA neurons. Neurosci. Lett. 1, 109–114 (1975)PubMedGoogle Scholar
  119. Persson, R.: Drug induced changes in 3H-catecholamine accumulation after 3H-tyrosine. Acta Pharmacol. Toxicol. (Kbh) 28, 378–390 (1970)Google Scholar
  120. Phillipson, O.T., Emson, P.C., Horn, A.S., Jessell, T.: Evidence concerning the anatomical location of the dopamine stimulated adenylate cyclase in the substantia nigra. Brain Res. 136, 45–58 (1977)PubMedGoogle Scholar
  121. Pletscher, A., Bartholini, G., Da Prada, M.: Influence of drugs on monoamines in the basal ganglia. In: Monoamines, noyaux gris et syndrome de Parkinson. De Ajuriaguerra, J. (ed.), pp. 73–84. Paris: Masson 1971Google Scholar
  122. Post, R.M., Goodwin, F.K.: Time-dependent effects of phenothiazines on dopamine turnover in psychiatric patients. Science 190, 488–489 (1975)PubMedGoogle Scholar
  123. Roth, R.H., Nowycky, M.C.: Dopaminergic neurons: effects elicited by γ-hydroxybutyrate are reversed by pictrotoxin. Biochem. Pharmacol. 26, 2079–2082 (1977)PubMedGoogle Scholar
  124. Roth, R.H., Walters, J.R., Aghajanian, G.K.: Effect of impulse flow on the release and synthesis of dopamine in the rat striatum. In: Frontiers in catecholamine research. Usdin, E., Snyder, S.H. (eds.), pp. 567–574. Oxford: Pergamon Press 1973Google Scholar
  125. Roth, R.H., Walters, J.R., Murrin, L.C. and Morgenroth, V.H.: Dopamine neurons: role of impulse flow and presynaptic receptors in the regulation of tyrosine hydroxylase. In: Pre-and postsynaptic receptors, Usdin, E., Bunney, W.E.Jr. (eds.), pp. 5–46 New York: Dekker 1975Google Scholar
  126. Sayers, A.C., Burki, H.R.: Antiacetylcholine activity of psychoactive drugs: a comparison of the (3H)-quinuclidinyl benzilate binding assay with conventional methods. J. Pharm. Pharmacol. 28, 252–253 (1976)PubMedGoogle Scholar
  127. Sayers, A.C., Burki, H.R., Ruch, W., Asper, H.: Neuroleptic-induced hypersensitivity of striatal dopamine receptor in the rat as a model of tardive dyskinesias. Effects of clozapine, haloperidol, loxapine and chlorpromazine. Psychopharmacologia 41, 97–104 (1975)PubMedGoogle Scholar
  128. Scatton, B.: Differential regional development of tolerance to increase in dopamine turnover upon repeated neuroleptic administration. Eur. J. Pharmacol. 46, 363–369 (1977)PubMedGoogle Scholar
  129. Scatton, B., Garret, C, Julou, L.: Acute and subacute effects of neuroleptics on dopamine synthesis and release in the rat striatum. Naunyn-Schmiedeberg’s Arch. Pharmacol. 289, 419 – 434 (1975)Google Scholar
  130. Scatton, B., Bischoff, S., Dedek, J., Korf, J.: Regional effects of neuroleptics on dopamine metabolism and dopamine sensitive adenylate cyclase activity. Eur. J. Pharmacol. 44, 287–292 (1977)PubMedGoogle Scholar
  131. Scatton, B., Worms, P., Zivkovic, B., Depoortere, H., Dedek, J. and Bartholini, G.: On the neuropharmacological spectra of ‘classical’ (haloperidol and ‘atypical’ benzamide derivatives) neuroleptics. In: Sulpiride and other benzamides. Spano, P.F. (ed.), pp. 53–67. New York: Raven Press 1980Google Scholar
  132. Seeman, P.: Antischizophrenic drugs — membrane receptor sites of action. Biochem. Pharmacol. 26, 1741–1748 (1977)Google Scholar
  133. Seeman, P., Lee, T.: Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188, 1217–1219 (1975)PubMedGoogle Scholar
  134. Seeman, P., Lee, T., Chau-Wong, M., Tedesco, J., Wong, K.: Dopamine receptors in human and calf brains using (3H)-apomorphine and an antipsychotic drug. Proc. Natl. Acad. Sci. USA 73, 4354–4358 (1976a)PubMedGoogle Scholar
  135. Seeman, P., Lee, T., Chau-Wong, M., Wong, K.: Antipsychotic drug doses and neuroleptic/ dopamine receptors. Science 261, 717–719 (1976b)Google Scholar
  136. Sethy, V.H., Van Woert, M.H.: Modification of striatal acetylcholine concentration by dopamine receptor agonists and antagonists. Res. Commun. Chem. Pathol. Pharmacol. 8, 13–28 (1974a)PubMedGoogle Scholar
  137. Sethy, V.H., Van Woert, M.H.: Regulation of striatal acetylcholine concentration by dopamine receptors. Nature 251, 529–530 (1974b)PubMedGoogle Scholar
  138. Shute, C.C.D., Lewis, P.R.: The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 20, 497–520 (1967)Google Scholar
  139. Simke, J.P., Saelens, J.K.: Evidence for a cholinergic fiber tract connecting the thalamus with the head of the striatum of the rat. Brain Res. 126, 487–495 (1977)PubMedGoogle Scholar
  140. Smith, R.C., Davis, J.M.: Behavioral supersensitivity to apomorphine and amphetamine after chronic high dose haloperidol treatment. Psychopharmacol. Commun. 1, 285–293 (1975)PubMedGoogle Scholar
  141. Snyder, S.H., Greenberg, D., Yamamura, H.I.: Antischizophrenic drugs and brain cholinergic receptors. Arch. Gen. Psychiatry 31, 58–61 (1974)PubMedGoogle Scholar
  142. Snyder, S.H., Burt, D.R., Creese, E.: The dopamine receptor of mammalian brain: direct demonstration of binding to agonist and antagonist states. Soc. Neurosci. Symp. 1, 28–49 (1976)Google Scholar
  143. Stadler, H., Lloyd, K.G., Gadea-Ciria, M., Bartholini, G.: Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorphine. Brain Res. 55, 476–480 (1973)PubMedGoogle Scholar
  144. Stawarz, R.J., Hill, H., Robison, S.E., Setler, P., Dingell, J.V., Sulser, F.: On the significance of the increase in homovanillic acid (HVA) caused by antipsychotic drugs in corpus striatum and limbic forebrain. Psychopharmacologia 43, 125–130 (1975)PubMedGoogle Scholar
  145. Tarsy, D., Baldessarini, R.J.: Pharmacologically induced behavioral supersensitivity to apomorphine. Nature New Biol. 245, 262–263 (1973)PubMedGoogle Scholar
  146. Trabucchi, M., Longoni, R., Fresia, P., Spano, R.F.: Sulpiride: a study of the effects on dopamine receptors in rat neostriatum and limbic forebrain. Life Sci. 17, 1551–1556 (1976)Google Scholar
  147. Van Praag, H.M.: The significance of dopamine for the mode of action of neuroleptics and the pathogenesis of schizophrenia. Br. J. Psychiatry 130, 463–474 (1977)PubMedGoogle Scholar
  148. Von Voigtlander, P.F., Boukma, S.J., Johnson, G.A.: Dopaminergic denervation supersensitivity and dopamine stimulated adenyl cyclase activity. Neuropharmacology 12, 1081–1086 (1973)Google Scholar
  149. Von Voigtlander, P.F., Losey, E.G., Trenzenberg, H.J.: Increased sensitivity to dopaminergic agents after chronic neuroleptic treatment. J. Pharmacol. Exp. Ther. 193, 88–94 (1975)Google Scholar
  150. Waldmeier, P.C., Maitre, L.: Clozapine: reduction of the initial dopamine turnover increased by repeated treatment. Eur. J. Pharmacol. 38, 197–203 (1976a)PubMedGoogle Scholar
  151. Waldmeier, P.C., Maitre, L.: On the relevance of preferential increases of mesolimbic versus striatal dopamine turnover for the production of antipsychotic activity of psychotropic drugs. J. Neurochem. 27, 589–597 (1976b)PubMedGoogle Scholar
  152. Westerink, B.H.C., Korf, J.: Turnover of acid dopamine metabolites in striatal and mesolimbic tissue of the rat brain. Eur. J. Pharmacol. 37, 249–255 (1975a)Google Scholar
  153. Westerink, B.H.C., Korf, J.: Influence of drugs on striatal and limbic homovanillic acid concentration in the rat brain. Eur. J. Pharmacol. 33, 31–40 (1975b)PubMedGoogle Scholar
  154. Westerink, B.H.C., Korf, J.: Regional rat brain levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid: concurrent fluorometric measurement and influence of drugs. Eur. J. Pharmacol. 281–291 (1976)Google Scholar
  155. Yarbrough, G.G.: Supersensitivity of caudate neurones after repeated administration of haloperidol. Eur. J. Pharmacol. 31, 367–369 (1975)PubMedGoogle Scholar
  156. York, D.I.: Dopamine receptor blockade — a central action of chlorpromazine on striatal neurons. Brain Res. 37, 91–101 (1971)Google Scholar
  157. Zirkle, C.L., Kaiser, C.: Antipsychotic agents (tricyclic). In: Psychopharmacological agents. Gordon, M., (ed.), pp. 39–128. New York: Academic Press 1974Google Scholar
  158. Zivkovic, B., Guidotti, A., Costa, E.: Effects of neuroleptics on striatal tyrosine hydroxylase: changes in affinity for the pteridine cofactor. Molec. Pharmacol. 10, 727–735 (1974)Google Scholar
  159. Zivkovic, B., Guidotti, A., Revuelta, A., Costa, E.: Effects of thioridazine, clozapine and other antipsychotics on the kinetic state of tyrosine hydroxylase and on the turnover rate of dopamine in striatum and nucleus accumbens. J. Pharmacol. Exp. Ther. 194, 36–46 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • G. Bartholini
  • K. G. Lloyd

There are no affiliations available

Personalised recommendations