Advertisement

Neurophysiological Properties of Neuroleptic Agents in Animals

  • I. Jurna
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 55 / 1)

Abstract

When one tries to give an account of the action of neuroleptic agents on neurons in the central nervous system, it seems reasonable to start from the principle that drugs such as reserpine or CPZ impair impulse transmission at synapses where monoamines act as transmitter substances. Reserpine depletes NA from sympathetically innervated tissues (for literature see Carlsson et al., 1957b; Carlsson, 1966), and diminishes or abolishes the effect of electrical or chemical stimulation of adrenergic nerves due to lack of the transmitter (Bertler et al., 1956; Bertler et al., 1958; Muscholl and Vogt, 1957, 1958, Trendelenburg and Gravenstein, 1958). There is better time correlation between the depression of adrenergic impulse transmission and a reduced tissue uptake of NA than between the disturbed nerve function and the reduced NA levels in the tissues (Andén et al., 19641). Similarly, reserpine decreases the content of NA, DA, and 5HT in the brain and spinal cord (Shore and Brodie, 1957; Shore et al., 1957; Carlsson, 1959,1965; Andén et al., 1967b) and inhibits the accumulation of NA in the brain when the amine is administered into the lateral ventricles (Glowinski and Axelrod, 1965, 1966). It is now generally accepted that changes in central nervous functions produced by reserpine are due to lack of the monoamines as transmitters (Carlsson, 1964), i.e., reserpine acts presynaptically in inhibiting monoaminergic impulse transmission. However, there is considerable disagreement when an attempt is made to correlate central effects in terms of changes in animal behavior with the impairment of the function of a particular monoaminergic transmitter.

Keywords

Substantia Nigra Adenylate Cyclase Caudate Nucleus Ergot Alkaloid Neuroleptic Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G.K., Bunney, B.S.: Central dopaminergic neurons: neurophysiological identification and responses to drugs. In: Frontiers in Catecholamine Research, Snyder, S.H., Usdin, E., Eds., pp. 643–648, Pergamon Press, New York (1973)Google Scholar
  2. Aghajanian, G.K., Bunney, B.S.: Dopamine “autoreceptors”: pharmacological characterization by microionotophoretic single cell recording studies. Naunyn Schmiedebergs Arch. Pharmacol. 297, 1–7 (1977)PubMedGoogle Scholar
  3. Agid, Y., Guyenet, P., Glowinski, J., Beaujouan, J.C., Javoy, F.: Inhibitory influence of the nigrostriatal dopamine system on the striatal cholinergic neurons in the rat. Brain Res. 86, 488–492 (1975)PubMedGoogle Scholar
  4. Ahlman, H., Grillner, S., Udo, M.: The effect of 5-HTP on the static fusimotor activity and the tonic stretch reflex of an extensor muscle. Brain Res. 27, 393–396 (1971)PubMedGoogle Scholar
  5. Ahn, H.S., Gardner, E., Makman, M.H.: Anterior pituitary adenylate cyclase: stimulation by dopamine and other monoamines. Eur. J. Pharmacol. 53, 313–317 (1979)PubMedGoogle Scholar
  6. Andén, N.-E.: Antipsychotic drugs and catecholamine synapses. J. Psychiatr. Res. 77, 97–104 (1974)Google Scholar
  7. Andén, N.-E., Bédard, P.: Influences of cholinergic mechanisms on the function and turnover of brain dopamine. J. Pharm. Pharmacol. 23, 460–462 (1971)PubMedGoogle Scholar
  8. Andén, N.-E., Stock, G.: Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J. Pharm. Pharmacol. 25, 346–348 (1973)PubMedGoogle Scholar
  9. Andén, N.-E., Lundberg, A., Rosengren, E., Vyklicky, L.: The effect of DOPA on spinal reflexes from the FRA (flexor reflex afférents). Experientia 79, 654–655 (1963)Google Scholar
  10. Andén, N.-E., Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.-Å., Larsson, K.: Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci. 3, 523–530 (1964a)PubMedGoogle Scholar
  11. Andén, N.-E., Carlsson, A., Hillarp, N.-Â., Magnusson, T.: 5-Hydroxytryptamine release by nerve stimulation of the spinal cord. Life Sci. 3, 473–478 (1964 b)PubMedGoogle Scholar
  12. Andén, N.-E., Häggendal, J., Magnusson, T., Rosengren, E.: The time course of the disappearance of noradrenaline and 5-hydroxytryptamine in the spinal cord after transection. Acta Physiol. Scand. 62, 115–118 (1964c)PubMedGoogle Scholar
  13. Andén, N.-E., Jukes, M.G.M., Lundberg, A.: Spinal reflexes and monoamine liberation. Nature 202, 1222–1223 (1964d)PubMedGoogle Scholar
  14. Andén, N.-E., Jukes, M.G.M., Lundberg, A., Vyklicky, L.: A new spinal flexor reflex. Nature 202, 1344–1345 (1964 e)PubMedGoogle Scholar
  15. Andén, N.-E., Magnusson, T., Waldeck, B.: Correlation between noradrenaline uptake and adrenergic nerve function after reserpine treatment. Life Sci. 3, 19–25 (1964f)PubMedGoogle Scholar
  16. Andén, N.-E., Roos, B.-E., Werdenius, B.: Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sci. 3, 149–158 (1964g)Google Scholar
  17. Andén, N.-E., Carlsson, A., Hillarp, N.-Â., Magnusson, T.: Noradrenaline release by nerve stimulation of the spinal cord. Life Sci. 4129–132 (1965a)PubMedGoogle Scholar
  18. Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K.: Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon. Life Sci. 4, 1275–1279 (1965b)PubMedGoogle Scholar
  19. Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K.: Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat. Am. J. Anat. 116, 329–334 (1965c)PubMedGoogle Scholar
  20. Andén, N.-E., Dahlström, A., Fuxe, K., Larsson, K.: Functional role of the nigro-neostriatal dopamine neurons. Acta Pharmacol. Toxicol. 24, 263–274 (1966 a)Google Scholar
  21. Andén, N.-E., Dahlström, A., Fuxe, K., Olson, L., Ungerstedt, U.: Ascending noradrenaline neurons from the pons and the medulla oblongata. Experientia 22, 44–45 (1966 b)PubMedGoogle Scholar
  22. Andén, N.-E., Dahlström, A., Fuxe, K., Olson, L., Ungerstedt, U.: Ascending monoamine neurons to the telecephalon and diencephalon. Acta Physiol. Scand. 67, 313–326 (1966 c)Google Scholar
  23. Andén, N.-E., Jukes, M.G.M., Lundberg, A.: The effect of DOPA on the spinal cord. 2. A pharmacological analysis. Acta Physiol. Scand. 67, 387–397 (1966 d)PubMedGoogle Scholar
  24. Andén, N.-E., Jukes, M.G.M., Lundberg, A., Vyklicky, L.: The effect of DOPA on the spinal cord. 1. Influence on transmission from primary afferents. Acta Physiol. Scand. 67, 373–386 (1966e)PubMedGoogle Scholar
  25. Andén, N.-E., Jukes, M.G.M., Lundberg, A., Vyklicky, L.: The effect of DOPA on the spinal cord. 3. Depolarization evoked in the central terminals of ipsilateral la afferents by volleys in the flexor reflex afferents. Acta Physiol. Scand. 68, 322–336 (1966)Google Scholar
  26. Andén, N.-E., Corrodi, H., Fuxe, K., Hökfelt, T.: Increased impulse flow in bulbospinal noradrenaline neurons produced by catecholamine receptor blocking agents. Eur. J. Pharmacol. 2, 59–64 (1967a)PubMedGoogle Scholar
  27. Andén, N.-E., Fuxe, K., Hökfelt, T.: Effect of some drugs on central monamine nerve terminals lacking nerve impulse flow. Eur. J. Pharmacol. 7, 226–232 (1967b)Google Scholar
  28. Andén, N.-E., Rubenson, A., Fuxe, K., Hökfelt, T.: Evidence for dopamine receptor stimulation by apomorphine. J. Pharm. Pharmacol. 19, 627–629 (1967 c)PubMedGoogle Scholar
  29. Andén, N.-E., Butcher, S.G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur. J. Pharmacol. 77, 303–314 (1970a)Google Scholar
  30. Andén, N.-E., Corrodi, H., Fuxe, K., Hökfelt, B., Hökfelt, T., Rydin, C., Svensson, T.: Evidence for a central noradrenaline receptor stimulation by Clonidine. Life Sci. 9, 513–523 (1970b)PubMedGoogle Scholar
  31. Andén, N.-E., Corrodi, H., Fuxe, K., Ungerstedt, U.: Importance of nervous impulse flow for the neuroleptic induced increase in amine turnover in central dopamine neurons. Eur. J. Pharmacol. 15, 193–199 (1971)PubMedGoogle Scholar
  32. Andén, N.-E., Corrodi, H., Fuxe, K.: Effect of neuroleptic drugs on central catecholamine turnover assessed using tyrosine- and dopamine-β-hydroxylase inhibitors. J. Pharm. Pharmacol. 24, 177–182 (1972a)PubMedGoogle Scholar
  33. Andén, N.-E., Engel, J., Rubenson, A.: Mode of action of L-Dopa on central noradrenaline mechanisms. Naunyn Schmiedebergs Arch. Pharmacol. 273, 1–10 (1972b)PubMedGoogle Scholar
  34. Anderson, E.G., Holgerson, L.O.: Distribution of 5-hydroxytryptamine and norepinephrine in cat spinal cord. J. Neurochem. 13, 479–485 (1966)PubMedGoogle Scholar
  35. Anderson, E.G., Haas, H., Hösli, L.: Comparison of effects of noradrenaline and histamine with cyclic AMP on brain stem neurons. Brain Res. 49, 471–475 (1973)PubMedGoogle Scholar
  36. Angrist, B., Sathanathan, G., Wilk, S., Gershon, S.: Amphetamine psychosis: behavioral and biochemical aspects. J. Psychiatr. Res. 11, 13–23 (1974)PubMedGoogle Scholar
  37. Anlezark, G.M., Meldrum, B.S.: Effects of apomorphine, ergocornine and piribedil on audiogenic Scizures in DBA/2 mice. Br. J. Pharmacol. 53, 419–421 (1975)PubMedGoogle Scholar
  38. Anlezark, G., Pycock, C., Meldrum, B.: Ergot alkaloids as dopamine agonists: comparison in two rodent models. Eur. J. Pharmacol. 37, 295–302 (1976)PubMedGoogle Scholar
  39. Anton, A.H., Sayre, D.F.: The distribution of dopamine and dopa in various animals and a method for their determination in diverse biological material. J. Pharmacol. Exp. Ther. 145, 326–336 (1964)PubMedGoogle Scholar
  40. Arvidsson, J., Roos, B.-E., Steg, G.: Reciprocal effects on α- and γ-motoneurones of drugs influencing monoaminergic and cholinergic transmission. Acta Physiol. Scand. 67, 398–404 (1966)PubMedGoogle Scholar
  41. Arvidsson, J., Jurna, L, Steg, G.: Striatal and spinal lesions eliminating reserpine and physo-stigmine rigidity. Life Sci. 6, 2017–2020 (1967)PubMedGoogle Scholar
  42. Atweh, S., Kuhar, M.J.: Autoradiographic localization of opiate receptors in rat brain. III. The telencephalon. Brain Res. 134, 393–405 (1977)PubMedGoogle Scholar
  43. Avanzino, G.L., Bradley, P.B., Comis, S.D., Wolstencroft, J.H.: A comparison of the actions of ergothioneine and chlorpromazine applied to single neurons by two different methods. Neuropharmacology 5, 331–332 (1966)Google Scholar
  44. Axelrod, J., Whitby, L.G., Hertting, G.: Effect of psychotropic drugs on the uptake of H3-nor-epinephrine by tissues. Science 133, 383–384 (1961)PubMedGoogle Scholar
  45. Axelrod, J., Hertting, G., Potter, L.: Effect of drugs on the uptake and release of 3H-norepinephrine in the rat heart. Nature 194, 297 (1962)PubMedGoogle Scholar
  46. Baker, R.G., Anderson, E.G.: The effect of L-3,4, dihydroxyphenylalanine on spinal activity. Pharmacologist 7, 142 (1965)Google Scholar
  47. Baker, R.G., Anderson, E.G.: The effects of L-3,4-dihydroxyphenylalanine on spinal activity. J. Pharmacol. Exp. Ther. 173, 212–223 (1970a)PubMedGoogle Scholar
  48. Baker, R.G., Anderson, E.G.: The antagonism of the effects of L-3,4-dihydroxyphenylalanine on spinal reflexes by adrenergic blocking agents. J. Pharmacol. Exp. Ther. 173, 224–231 (1970 b)PubMedGoogle Scholar
  49. Baraban, J.M., Wang, R.Y., Aghajanian, G.K.: Reserpine suppression of dorsal raphe neuronal firing: mediation by adrenergic system. Eur. J. Pharmacol. 52, 27–36 (1978)PubMedGoogle Scholar
  50. Barasi, S., Roberts, M.H.T.: Responses of motoneurones to electrophoretically applied dopamine. Br. J. Pharmacol. 60, 29–34 (1977)PubMedGoogle Scholar
  51. Barbeau, A.: The pathogenesis of Parkinson’s disease: a new hypothesis. Can. Med. Assc. J. 87, 802–807 (1962)Google Scholar
  52. Barbeau, A., Sourkes, T.L.: Some biochemical aspects of extrapyramidal diseases. Rev. Can. Biol. 20, 197–203 (1961)PubMedGoogle Scholar
  53. Bartholini, G.: Differential effect of neuroleptic drugs on dopamine turnover in the extrapyramidal and limbic system. J. Pharm. Pharmacol. 28, 429–433 (1976)PubMedGoogle Scholar
  54. Bartholini, G., Pletscher, A.: Atropine-induced changes of cerebral dopamine turnover. Experi-entia 27, 1302–1303 (1971)Google Scholar
  55. Bartholini, G., Stadler, H.: Evidence for an intrastriatal GABA-ergic influence on dopamine neurones of the cat. Neuropharmacology 16, 343–347 (1977)PubMedGoogle Scholar
  56. Baruk, H., Launay, J., Berges, J.: Action des drogues psychotropes sur le comportement psychomoteur animal. In: Psychotropic Drugs. S. Garattini and V. Ghetti, Eds., pp. 160–168, Elsevier Publishing Company, Amsterdam (1957)Google Scholar
  57. Bass, A.: Über eine Wirkung des Adrenalins auf das Gehirn. Z. ges. Neurol. Psychiat. 26, 600–601 (1914)Google Scholar
  58. Beaulnes, A., Viens, G.: Catatonie et catalepsie. Rev. Can. Biol. 20, 215–220 (1961)PubMedGoogle Scholar
  59. Bein, H.J.: Zur Pharmakologie des Reserpin, eines neuen Alkaloides, aus Rauwolfia serpentina Benth. Experientia 9, 107–110 (1953)PubMedGoogle Scholar
  60. Ben-Jonathan, N., Oliver, C., Weiner, H.J., Mical, R.S., Porter, J.C.: Dopamine in hypophysial portal plasma of the rat during the estrous cycle and throughout pregnancy. Endocrinology (Phil.) 100, 452–458 (1977)Google Scholar
  61. Berger, P.A.: Medical treatment of mental illness. Science 200, 974–981 (1978)PubMedGoogle Scholar
  62. Bernhard, C.G., Skoglund, C.R.: Potential changes in spinal cord following intra-arterial administration of adrenaline and noradrenaline as compared with acetylcholine effects. Acta Physiol. Scand. 29, suppl. 106, 435–454 (1953)Google Scholar
  63. Bernhard, C.G., Skoglund, C.R., Therman, P.O.: Studies on the potential level in the ventral root under varying condition. Acta Physiol. Scand. 14, suppl. 47. pp. 1–10 (1947)Google Scholar
  64. Bernhard, C.G., Gray, J.A.B., Widén, L.: The difference in response of monosynaptic extensor and monosynaptic flexor reflexes to d-tubocurarine and adrenaline. Acta Physiol. Scand. 29, suppl. 106, 73–78 (1952)Google Scholar
  65. Bertler, Ä, Rosengren, E.: Occurence and distribution of dopamine in brain and other tissues. Experientia 75, 10–11 (1959)Google Scholar
  66. Bertler, Å, Carlsson, A., Rosengren, E.: Release by reserpine of catecholamines from rabbit’s hearts. Naturwissenschaften 43, 521 (1956)Google Scholar
  67. Bertler, Å, Carlsson, A., Lindqvist, M., Magnusson, T.: On the catecholamine levels in blood plasma after stimulation of the sympathoadrenal system. Experientia 14, 184–185 (1958)PubMedGoogle Scholar
  68. Berzewski, H., Helmchen, H., Hippius, H., Hoffmann, H., Kanowski, S.: Das klinische Wirkungsspektrum eines neuen Dibenzodiazepin-Derivates. Arzneim. Forsch. 19, 495–498 (1969)Google Scholar
  69. Besson, M J., Chéramy, A., Feltz, P., Glowinski, J.: Dopamine: spontaneous and drug-induced release from the caudate nucleus in the cat. Brain Res. 32, 407–424 (1971)PubMedGoogle Scholar
  70. Besson, M.J., Chéramy, Glowinski, J.: Effects of some psychotropic drugs on dopamine synthesis in the rat striatum. J. Pharmacol. Exp. Ther. 177, 196–205 (1971)PubMedGoogle Scholar
  71. Biegler, D., Giles, S.A., Hockman, C.H.: Dopaminergic influences on swallowing. Neuropharmacology. 16, 245–252 (1977)Google Scholar
  72. Birge, C.A., Jacobs, L.S., Hammer, CT., Daughaday, W.H.: Catecholamine inhibition of prolactin secretion by isolated rat adenohypophyses. Endocrinology 86, 120–130 (1970)PubMedGoogle Scholar
  73. Biscoe, T.J., Curtis, D.R.: Noradrenaline and inhibition of Renshaw cells. Science 151, 1230 – 1231 (1966)Google Scholar
  74. Biscoe, T.J., Straughan, D.W.: Micro-electrophoretic studies of neurones in the cat hippocampus. J. Physiol. (Lond.) 183, 341–359 (1966)Google Scholar
  75. Biscoe, T.J., Curtis, D.R., Ryall, R.W.: An investigation of catecholamine receptors of spinal interneurones. Neuropharmacology 5, 429–434 (1966)Google Scholar
  76. Bloom, F.E.: Minireview. To spritz or not to spritz: the doubtful value of aimless iontophoresis. Life Sci. 14, 1819–1834(1974)PubMedGoogle Scholar
  77. Bloom, F.E.: The role of cyclic nucleotides in central synaptic functions. Rev. Physiol. Bio-chem. Pharmacol. 74, 1–103 (1975)Google Scholar
  78. Bloom, F.E., Costa, E., Oliver, A.P., Salmoiraghi, G.C.: Caudate nucleus neurons: their responsiveness to iontophoretically administered amines and the effects of anesthetic agents. Fed. Proc. 23, 249 (1964)Google Scholar
  79. Bloom, F.E., Costa, E., Salmoiraghi, G.C.: Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis. J. Pharmacol. Exp. Ther. 150, 244–252 (1965)PubMedGoogle Scholar
  80. Bogdanksi, D.F., Weissbach, H., Udenfriend, S.: The distribution of serotonin, 5-hydroxytryp-tamine decarboxylase and monoamine oxidase in brain. J. Neurochem. 1, 272–278 (1957)Google Scholar
  81. Boggan, W.O., Sciden, L.S.: Dopa reversal of reserpine enhancement of audiogenic Scizure susceptibility in mice. Physiol. Behav. 6, 215–217 (1971)PubMedGoogle Scholar
  82. Bonvallet, M., Dell, P., Hiebel, G.: Tonus sympathique et activité électrique corticale. Electro-encephalogr. Clin. Neurophysiol. 6, 119–144 (1954)Google Scholar
  83. Bonvallet, M., Hugelin, A., Dell, P.: Milieu intérieur et activité automatique des cellules réticu-laires mésencéphaliques. J. Physiol. (Paris) 48, 403–406 (1956)Google Scholar
  84. Borison, H.L.: Role of gastrointestinal innervation in digitalis emesis. J. Pharmacol. Exp. Ther. 104, 396–403 (1952)PubMedGoogle Scholar
  85. Borison, H.L.: Area postrema: chemoreceptor trigger zone for vomiting — is that all? Life Sci. 14, 1807–1817 (1974)PubMedGoogle Scholar
  86. Borison, H.L., Brizzee, K.R.: Morphology of emetic chemoreceptor trigger zone in cat medulla oblongata. Proc. Soc. Exp. Biol. Med. 77, 38–42 (1951)PubMedGoogle Scholar
  87. Borison, H.L., Wang, S.C.: Physiology and pharmacology of vomiting. Pharmacol. Rev. 5, 193 (1953)Google Scholar
  88. Boyd, E.M., Cassell, W.A., Boyd, C.E.: Prevention of apomorphine-induced vomiting by (di-methylamino-l-n-propyl-3)-N-(2-chloro)-phenothiazine hydrochloride. Fed. Proc. 12, 303 (1953)Google Scholar
  89. Bradley, P.B.: Microelectrode approach to the neuropharmacology of the reticular formation. In: Psychotropic Drugs. S. Garattini and V. Ghetti, Eds., pp. 207–216. Elsevier Publishing Company, Amsterdam (1957)Google Scholar
  90. Bradley, P.B.: Electrophysiological evidence relating to the role of adrenaline in the central nervous system. Ciba Foundation Symposium on “Adrenergic Mechanisms”, pp. 410–420. Churchill Ltd., London (1960)Google Scholar
  91. Bradley, P.B., Elkes, J.: The effects of some drugs on the electrical activity of the brain. Brain 50,77–117(1957)Google Scholar
  92. Bradley, P.B., Hance, A.J.: The effect of chlorpromazine and methopromazine on the electrical activity of the brain in the cat. Electroencephalogr. Clin. Neurophysiol. 9, 191–215 (1957)PubMedGoogle Scholar
  93. Bradley, P.B., Key, B.J.: The effect of drugs on arousal responses produced by electrical stimulation of the reticular formation of the brain. Electroencephalogr. Clin. Neurophysiol. 10, 97–110(1958)PubMedGoogle Scholar
  94. Bradley, P.B., Mollica, A.: The effect of adrenaline and acetylcholine on single unit activity in the reticular formation of the decerebrate cat. Arch. Ital. Biol. 96, 168–186 (1958)Google Scholar
  95. Bradley, P.B., Wolstencroft, J.H.: Excitation and inhibition of brain stem neurons by noradrenaline and acetylcholine. Nature 196, 840 and 873 (1962)Google Scholar
  96. Bradley, P.B., Wolstencroft, J.H.: Actions of drugs on single neurones in the brain stem. Br. Med. Bull. 21, 15–18 (1965)PubMedGoogle Scholar
  97. Bradley, P.B., Wolstencroft, J.H., Hösli, L., Avanzino, G.L.: Neuronal basis for the central action of chlorpromazine. Nature 212, 1425–1427 (1966)PubMedGoogle Scholar
  98. Brand, E.D., Harris, T.D., Borison, H.L., Goodman, L.S.: The anti-emetic activity of 10-(γ-dimethylamino propyl)-2-chlorophenothiazine (chlorpromazine) in dog and cat. J. Pharmacol. Exp. Ther. 110, 86–92 (1954)PubMedGoogle Scholar
  99. Brodie, B.B., Shore, P.A., Silver, S.L., Pulver, R.: Potentiating action of chlorpromazine and reserpine. Nature 175, 1133–1134 (1955)PubMedGoogle Scholar
  100. Brodie, B.B., Sulser, F., Costa, E.: Theories on mechanism of action of psychotherapeutic drugs. Rev. Can. Biol. 20, 279–285 (1961)PubMedGoogle Scholar
  101. Buchwald, N.A., Price, D.D., Vernon, L., Hull, C.D: Caudate intracellular response to thalamic and cortical inputs. Exp. Neurol. 38, 311–323 (1973)PubMedGoogle Scholar
  102. Bunney, B.S., Aghajanian, G.K.: Electrophysiological effects of amphetamine on dopaminergic neurons. In: Frontiers in Catecholamine Research, S.H. Snyder, E. Usdin, Eds., pp. 957–962, Pergamon Press, Oxford (1973)Google Scholar
  103. Bunney, B.S., Aghajanian, G.K.: A comparison of the effects of chlorpromazine, 7-hy-droxychlorpromazine and chlorpromazine sulfoxide on the activity of central dopaminergic neurons. Life Sci. 15, 309–318 (1974)PubMedGoogle Scholar
  104. Bunney, B.S., Aghajanian, G.K.: d-Amphetamine-induced inhibition of central dopaminergic neurons: mediation by a striato-nigral feedback pathway. Science 192, 391–393 (1976)PubMedGoogle Scholar
  105. Bunney, B.S., Aghajanian, G.K., Roth, R.H.: Comparison of effect of L-DOPA, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nature New Biol. 245, 123–125 (1973a)PubMedGoogle Scholar
  106. Bunney, B.S., Walters, J.R., Roth, R.H., Aghajanian, G.K.: Dopaminergic neurones: effect of antipsychotic drugs and amphetamine on single cell activity. J. Pharmacol. Exp. Ther. 185, 560–571 (1973 b)PubMedGoogle Scholar
  107. Burt, D.R., Creese, I., Snyder, S.H.: Properties of [3H]haloperidol and [3H]dopamine binding associated with dopamine receptors in calf brain membranes. Mol. Pharmacol. 12, 800–812 (1976)PubMedGoogle Scholar
  108. Butcher, S.G., Butcher, L.L.: Origin and modulation of acetylcholine activity in the neostriatum. Brain Res. 71, 167–171 (1974)PubMedGoogle Scholar
  109. Butcher, L.L., Talbot, K., Bilizikjian, L.: Acetylcholinesterase neurones in dopamine-contain-ing regions of the brain. J. Neural. Transm. 37, 127–153 (1975)PubMedGoogle Scholar
  110. Calne, D.B.: Developments in the treatment of Parkinsonism. New Engl. J. Med. 295, 1433–1434 (1976)PubMedGoogle Scholar
  111. Capon, A.: Analyse de l’effect d’éveil exercé par l’adrénaline et la noradrénaline et d’autres amines sympathomimétiques sur l’électrocorticogramme du lapin non narcotisé. Arch. Int. Pharmacodyn. Ther. 127, 141–162 (1960)PubMedGoogle Scholar
  112. Carenzi, A., Gillin, J.C., Guidotti, A., Schwartz, M.A., Trabucchi, M., Wyatt, R.J.: Dopamine-sensitive adenyl cyclase in human caudate nucleus. A study in control subjects and schizophrenic patients. Arch. Gen. Psychiatry 32, 1056–1059 (1975)PubMedGoogle Scholar
  113. Carlsson, A.: The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol. Rev. 11, 490–493 (1959)PubMedGoogle Scholar
  114. Carlsson, A.: Discussion. In: Ciba Foundation Symposium on “Adrenergic Mechanisms”, p. 551, J.R. Vane, W. Wolstenholme, M. O’Connor Eds., Little, Brown & Co., Boston (1960)Google Scholar
  115. Carlsson, A.: Evidence for a role of dopamine in extrapyramidal functions. Acta Neuroveget. 26, 484–493 (1964)Google Scholar
  116. Carlsson, A.: Drugs which block the storage of 5-hydroxytryptamine and related amines. In: Handbook of Experimental Pharmacology. Vol. 19: 5-Hydroxytryptamine and Related In-dolealkylamines, O. Eichler and A. Farah, Eds., pp. 529–592, Springer-Verlag, Berlin (1965)Google Scholar
  117. Carlsson, A.: Pharmacological depletion of catecholamine stores. Pharmacol. Rev. 18, 541–549 (1966)PubMedGoogle Scholar
  118. Carlsson, A., Lindqvist, M.: Effect of chlorpromazine and haloperidol on the formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol. Toxicol. (Kbh.) 20, 140–144 (1963)Google Scholar
  119. Carlsson, A., Waldeck, B.: Inhibition of 3H-metaraminol uptake by antidepressive and related agents. J. Pharm. Pharmacol. 17, 243–244 (1965)PubMedGoogle Scholar
  120. Carlsson, A., Lindqvist, M., Magnusson, T.: 3,4-Dihydroxyphenylalanine and 5-hydroxytryp-tophan as reserpine antagonists. Nature 180, 1200 (1957a)PubMedGoogle Scholar
  121. Carlsson, A., Rosengren, E., Bertler, Â, Nilsson, J.: Effect of reserpine on the metabolism of catechol amines. In: Psychotropic Drugs. S. Garattini, V. Ghetti, Eds., pp. 363–372, Elsevier Publishing Company, Amsterdam (1957b)Google Scholar
  122. Carlsson, A., Lindqvist, M., Magnusson, T., Waldeck, B.: On the presence of 3-hydroxytyra-mine in brain. Science 127, 471 (1958)PubMedGoogle Scholar
  123. Carlsson, A., Falck, B., Hillarp, N.-Â.: Cellular localization of brain monoamines. Acta Physiol. Scand. 56, suppl. 196: 1–28 (1962)Google Scholar
  124. Carlsson, A., Magnusson, T., Rosengren, E.: 5-Hydroxytryptamine of the spinal cord normally and after transection. Experientia 19, 359 (1963)PubMedGoogle Scholar
  125. Carlsson, A., Falck, B., Fuxe, K., Hillarp, N.-A.: Cellular localization of monoamines in the spinal cord. Acta Physiol. Scand. 60, 112–119 (1964)PubMedGoogle Scholar
  126. Carlsson, A., Kehr, W., Lindqvist, M., Magnusson, T., Atack, C.V.: Regulation of monoamine metabolism in the central nervous system. Pharmacol. Rev. 24, 371–384 (1972)PubMedGoogle Scholar
  127. Caron, M.G., Raymond, V., Lefkowitz, R.J., Labrie, F.: Dopaminergic receptors in the anterior pituitary gland, correlation of [3H]-dihydroergocryptine binding with the dopaminergic control of prolactin release. J. Biol. Chem. 253, 2244–2253 (1978)PubMedGoogle Scholar
  128. Cassell, W.A., Boyd, C.E.: Prevention of apomorphine-induced vomiting by (dimethylamino-l-n-propyl-3)-N-(2-chloro)-phenothiazine hydrochloride. Fed. Proc. 12, 303 (1953)Google Scholar
  129. Cathala, H.P., Pocidalo, J.J.: Sur les effets de l’injection dans les ventricules cérébraux du chien du chlorhydrate de diméthylaminopropyl-N-chloro-phénothiazine (4560 RP). Action centrale de ce produit. C. R. Soc. Biol. (Paris) 146, 1709–1711 (1952)Google Scholar
  130. Chen, G., Ensor, C.R.: Antagonism studies on reserpine and certain CNS depressants. Proc. Soc. Exp. Biol. Med. 87, 602–608 (1954)PubMedGoogle Scholar
  131. Chen, G., Ensor, C.R., Bohner, B.: A facilitation action of reserpine on the central nervous system. Proc. Soc. Exp. Biol. Med. 86, 507–510 (1954)PubMedGoogle Scholar
  132. Chin, J.H., Smith, C.M.: Effects of some central nervous system depressants on the phasic and tonic stretch reflex. J. Pharmacol. Exp. Ther. 136, 276–283 (1962)PubMedGoogle Scholar
  133. Chiueh, C.C., Moore, K.E.: Release of endogenously synthesized catechols from the caudate nucleus by stimulation of the nigro-striatal pathway and by the administration of d-am-phetamine. Brain Res. 50, 221–225 (1973)PubMedGoogle Scholar
  134. Chiueh, C.C., Moore, K.E.: Effects of α-methyltyrosine on d-amphetamine-induced release of endogenously synthesized and exogenously administered catecholamines from the cat brain in vivo. J. Pharmacol. Exp. Ther. 190, 100–108 (1974)PubMedGoogle Scholar
  135. Clement-Cormier, Y.C., Kebabian, J.W., Petzold, G.L., Greengard, P.: Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc. Natl. Acad. Sci. USA 71, 1113–1117 (1974)PubMedGoogle Scholar
  136. Clouet, D.H.: Narcotic Drugs: Biochemical Pharmacology. Plenum Press, New York (1971)Google Scholar
  137. Clubley, M., Elliott, R.C.: Centrally active drugs and the sympathetic nervous system of rabbits and cats. Neuropharmacology 16, 609–616 (1977)PubMedGoogle Scholar
  138. Commissiong, J.W., Sedgwick, E.M.: A pharmacological study of the adrenergic mechanisms involved in the stretch reflex of the decerebrate rat. Br. J. Pharmacol. 50, 365–374 (1974)PubMedGoogle Scholar
  139. Commissiong, J.W., Sedgwick, E.M.: Dopamine and noradrenaline in human spinal cord. Lancet I 347 (1975)Google Scholar
  140. Commissiong, J.W., Gentleman, S., Neff, N.H.: Spinal cord dopaminergic neurons: evidence for an uncrossed nigrospinal pathway. Neuropharmacology 18, 565–568 (1979)PubMedGoogle Scholar
  141. Connor, J.D.: Caudate unit responses to nigral stimuli: evidence for a possible nigro-neostriatal pathway. Science 160, 899–900 (1968)PubMedGoogle Scholar
  142. Connor, J.D.: Caudate nucleus neurones: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine. J. Physiol. (Lond.) 208, 691–703 (1970)Google Scholar
  143. Cools, A.R.: The function of dopamine and its antagonism in the caudate nucleus of cats in relation to the stereotyped behaviour. Arch. Int. Pharmacodyn. Ther. 194, 259–269 (1971)PubMedGoogle Scholar
  144. Cools, A.R.: Chemical and electrical stimulation of the caudate nucleus in freely moving cats: the role of dopamine. Brain Res. 58, 437–451 (1973)PubMedGoogle Scholar
  145. Cools, A., Van Rossum, J.M.: Excitation-mediating and inhibition-mediating dopamine-recep-tors: a new concept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacology (Berlin) 45, 243–254 (1976)Google Scholar
  146. Cools, A.R., Struyker Boudier, H.A.J., Van Rossum, J.M.: Dopamine receptors: relective agonists and antagonists of functionally distinct types within the feline brain. Eur. J. Pharmacol. 37, 283–293 (1976)PubMedGoogle Scholar
  147. Cordeau, J.P., Moreau, A., Beaulnes, A., Laurin, C.: EEG and behavioural changes following microinjection of acetylcholine in the brain stem of cats. Arch. Ital. Biol. 101, 30–47 (1963)Google Scholar
  148. Corrodi, H., Fuxe, K., Hökfelt, T.: The effect of neuroleptics on the activity of central catecholamine neurones. Life Sci. 6, 761–714(1967)Google Scholar
  149. Corrodi, H., Fuxe, K., Hökfelt, T., Lidbrink, P., Ungerstedt, U.: Effect of ergot drugs on central catecholamine neurons: evidence for a stimulation of central dopamine neurons. J. Pharm. Pharmacol. 25, 409–412 (1973)PubMedGoogle Scholar
  150. Costa, E.: Effects of hallucinogenic and tranquilizing drugs on serotonin evoked uterine contractions. Proc. Soc. Exp. Biol. Med. 91, 39–41 (1956)PubMedGoogle Scholar
  151. Costa, E., Gessa, G.L., Hirsch, C., Kuntzman, R., Brodie, B.B.: On current status of serotonin as a brain neurohormone and on action of reserpine-like drugs. Ann. N. Y. Acad. Sci. 96, 118–130(1962)PubMedGoogle Scholar
  152. Costall, B., Naylor, R.J.: Specific asymmetric behaviour induced by the direct chemical stimulation of neostriatal dopaminergic mechanisms. Naunyn Schmiedebergs Arch. Pharmacol. 285, 83–98 (1974a)PubMedGoogle Scholar
  153. Costall, B., Naylor, R.J.: Mesolimbic involvement with behavioural effects indicating antipsychotic activity. Eur. J. Pharmacol. 27, 46–58 (1974b)PubMedGoogle Scholar
  154. Costall, B., Naylor, R.J.: The importance of the ascending dopaminergic systems to the extrapyramidal and mesolimbic brain areas for the cataleptic action of the neuroleptic and cholinergic agents. Neuropharmacology 13, 353–364 (1974c)PubMedGoogle Scholar
  155. Costall, B., Olley, J.E.: Cholinergic- and neuroleptic-induced catalepsy: Modification by lesions in the caudate-putamen. Neuropharmacology 10, 297–306 (1971a)PubMedGoogle Scholar
  156. Costall, B., Olley, J.E.: Cholinergic and neuroleptic induced catalepsy: modification by lesions in the globus pallidus and substantia nigra. Neuropharmacology 10, 581–594 (1971b)PubMedGoogle Scholar
  157. Costall, B., Naylor, R.J., Olley, J.E.: Catalepsy and circling behavior after intracerebral injections of neuroleptic, cholinergic and anticholinergic agents into the caudate-putamen, globus pallidus and substantia nigra of rat brain. Neuropharmacology 11, 645–663 (1972)PubMedGoogle Scholar
  158. Courvoisier, S., Fournel, J., Ducrot, R., Kolsky, M., Koetschet, P.: Propriétés pharmacodyna-miques du chlorhydrate de chloro-3 (diméthylamino-3’-propyl)-10 phénothiazine (4.560 R.P.). Etude expérimentale d’un nouveau corps utilisé dans l’anesthésie potentialisé et dans l’hibernation artificielle. Arch. Int. Pharmacodyn. Ther. 92, 305–361 (1953)PubMedGoogle Scholar
  159. Courvoisier, S., Ducrot, R., Mou, L.: Nouveaux aspects expérimentaux de l’activité centrale des dérivés de la phénothiazine. In: Psychotropic Drugs. S. Garattini, V. Ghetti, Eds., pp. 373–391, Elsevier Publishing Company, Amsterdam (1957)Google Scholar
  160. Cranmer, J.I., Brann, A.W., Bach, L.M.N.: An adrenergic basis for bulbar inhibition. Am. J. Physiol. 197, 835–838 (1959)PubMedGoogle Scholar
  161. Creese, I., Snyder, S.H.: Nigrostriatal lesions enhance striated 3H-apomorphine and 3H-spiroperidol binding. Eur. J. Pharmacol. 56, 277–281 (1979)PubMedGoogle Scholar
  162. Creese, I.N.R., Burt, D.R., Snyder, S.H.: Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 129, 481–483 (1976)Google Scholar
  163. Creese, I., Schneider, R., Snyder, S.H.: 3H-spiroperidol labels dopamine receptors in pituitary and brain. Eur. J. Pharmacol. 46, 377–381 (1977)PubMedGoogle Scholar
  164. Crossman, A.R., Walker, R.J., Woodruff, G.N.: Picrotoxin antagonism of γ-aminobutyric acid inhibitory responses and synaptic inhibition in the rat substantia nigra. Br. J. Pharmacol. 49, 696–698 (1973)PubMedGoogle Scholar
  165. Crossman, A.R., Walker, R.J., Woodruff, G.N.: Problems associated with iontophoretic studies in the caudate nucleus and substantia nigra. Neuropharmacology 13, 547–552 (1974)PubMedGoogle Scholar
  166. Crow, T.J.: What is wrong with dopaminergic transmission in schizophrenia? Trends Neurosci. 2, 52–55 (1979)Google Scholar
  167. Curtis, D.R.: The action of 3-hydroxytyramine and some tryptamine derivatives upon spinal neurones. Nature 194, 292 (1962)PubMedGoogle Scholar
  168. Curtis, D.R., Phillis, J.W., Watkins, J.C.: Cholinergic and non-cholinergic transmission in the mammalian spinal cord. J. Physiol. (Lond.) 158, 296–323 (1961)Google Scholar
  169. Dafny, N., Brown, M., Burks, T.F., Rigor, B.M.: Morphine tolerance and dependence: sensitivity of caudate nucleus neurons. Brain Res. 162, 363–368 (1979)PubMedGoogle Scholar
  170. Dahlström, A., Fuxe, K.: Experimentally induced changes in the intraneuronal amine levels of bulbospinal neurone systems. Acta Physiol. Scand. 64, suppl. 247: 1–36 (1965a)Google Scholar
  171. Dahlström, A., Fuxe, K.: Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta Physiol. Scand. 62, suppl. 232 (1965 b)Google Scholar
  172. Dahlström, A., Fuxe, K., Kernell, D., Sedvall, G.: Reduction of the monoamine stores in the terminals of bulbospinal neurones following stimulation in the medulla oblongata. Life Sci. 4, 1207–1212 (1965)PubMedGoogle Scholar
  173. Da Prada, M., Pletscher, A.: On the mechanism of chlorpromazine-induced changes of cerebral homovanillic acid levels. J. Pharm. Pharmacol. 18, 628–630 (1966 a)PubMedGoogle Scholar
  174. Da Prada, M., Pletscher, A.: Acceleration of the cerebral dopamine turnover by chlor-promazine. Experientia 22, 465–466 (1966 b)PubMedGoogle Scholar
  175. Dasgupta, S.R., Werner, G.: Inhibitory action of chlorpromazine on motor activity. Arch. Int. Pharmacodyn. Ther. 100, 409–417 (1955)PubMedGoogle Scholar
  176. Dasgupta, S.R., Mukherjee, K.L., Werner, G.: The activity of some central depressant drugs in acute decorticate and diencephalic preparations. Arch. Int. Pharmacodyn. Ther. 97, 149 – 156 (1954)PubMedGoogle Scholar
  177. Dell, P.: Intervention of an adrenergic mechanism during brain stem reticular activation. In: Ciba Foundation Symposium (General Series) on “Adrenergic Mechanisms”, pp. 393–409, G.E.W. Wolstenholme, Maeve O’Connor., Eds., Churchill, London (1961)Google Scholar
  178. De Maio, D.: Clozapine, a novel major tranquilizer. Arzneim. Forsch. 22, 919–923 (1972)Google Scholar
  179. Dengler, HJ., Spiegel, H.E., Titus, E.O.: Effects of drugs on uptake of isotopic norepinephrine by cat tissues. Nature 191, 816–817 (1961)PubMedGoogle Scholar
  180. De Robertis, E., Arnaiz, G., Alberici, M., Butcher, R., Sutherland, E.: Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex. J. Biol. Chem. 242, 3487 – 3493 (1967)Google Scholar
  181. De Schaepdryver, A.F., Piette, Y., De Launois, A.L.: Brain amines and electroshock threshold. Arch. Int. Pharmacodyn. Ther. 140, 358–367 (1962)Google Scholar
  182. Dettmar, P.W., Cowan, A., Walter, D.S.: Naloxone antagonizes behavioural effects of d-am-phetamine in mice and rats. Neuropharmacology 17, 1041–1044 (1978)PubMedGoogle Scholar
  183. De Wied, D.: Chlorpromazine and endocrine function. Pharmacol. Rev. 19, 251–288 (1967)Google Scholar
  184. Dunstan, R., Jackson, D.M.: The demonstration of a change in adrenergic receptor sensitivity in the central nervous system of mice after withdrawal from long term treatment with halo-peridol. Psychopharmacology (Berlin) 48, 105–114 (1976)Google Scholar
  185. Ellaway, P.H., Pascoe, J.E.: Blockage of a spinal pathway by chlorpromazine. J. Physiol. (Lond.) 183, 46–47 P (1966)Google Scholar
  186. Ellaway, P.H., Pascoe, J.E.: Noradrenaline as a transmitter in the spinal cord. J. Physiol. (Lond.) 197, 8–10 P (1968)Google Scholar
  187. Ellaway, P.H., Trott, J.R.: The mode of action of 5-hydroxytryptophan in facilitating a stretch reflex in the spinal cat. Exp. Brain Res. 22, 145–162 (1975)PubMedGoogle Scholar
  188. Engberg, I., Marshall, K.C.: Mechanism of noradrenaline hyperpolarization in spinal cord mo-toneurones of the cat. Acta Physiol. Scand. 83, 142–144 (1971)PubMedGoogle Scholar
  189. Engberg, I., Marshall, K.C.: Reversal potential for noradrenaline-induced hyperpolarization of spinal motoneurones of cats. J. Gen. Physiol. 61, 261 (1973)Google Scholar
  190. Engberg, I., Ryall, R.W.: The action of mono-amines upon spinal neurones. Life Sci. 4, 2223–2227 (1965)Google Scholar
  191. Engberg, I., Ryall, R.W.: The inhibitory action of noradrenaline and other monoamines on spinal neurones. J. Physiol. (Lond.) 185, 298–322 (1966)Google Scholar
  192. Engberg, I., Thaller, A.: Hyperpolarizing actions of noradrenaline in spinal motoneurones. Acta Physiol. Scand. 80, 34A–35A (1970)PubMedGoogle Scholar
  193. Engberg, I., Lundberg, A., Ryall, R.W.: Is the tonic decerebrate inhibition of reflex paths mediated by monoaminergic pathways? Acta Physiol. Scand. 72, 123–133 (1968)Google Scholar
  194. Engberg, I., Flatman, J.A., Kadzielawa, K.: The hyperpolarization of motoneurones by elec-trophoretically applied amines and other agents. Acta Physiol. Scand. 91, 3 A–4A (1974)Google Scholar
  195. Ernst, A.M.: Relation between the action of dopamine and apomorphine and their O-methyl-ated derivatives upon the CNS. Psychopharmacologia 7, 391–399 (1967)Google Scholar
  196. Esplin, D.W., Heaton, D.G.: Effects of reserpine on spinal cord synaptic transmission. J. Pharmacol. Exp. Ther. 121, 267–271 (1955)Google Scholar
  197. Fedina, L., Lundberg, A., Vyklicky, L.: The effect of a noradrenaline liberator (4,alpha-di-methyl-meta-tyramine) on reflex transmission in spinal cats. Acta Physiol. Scand. 83,495–504 (1971)PubMedGoogle Scholar
  198. Feldberg, W., Sherwood, S.L.: Injections of drugs into the lateral ventricle of the cat. J. Physiol. (Lond.) 123, 148–167 (1954)Google Scholar
  199. Fellows, E.J., Cook, L.: The comparative pharmacology of a number of phenothiazine derivatives. In: Psychotropic Drugs. S. Garattini, V. Ghetti, Eds., pp. 397–404, Elsevier Publishing Company, Amsterdam (1957)Google Scholar
  200. Feltz, P.: Dopamine, aminoacids and caudate unitary responses to nigral stimulation. J. Physiol. (Lond.) 205, 8–9 P (1969)Google Scholar
  201. Feltz, P.: Relation nigro-striatale: essai de differentiation des excitations et inhibitions par micro-iontophorèse de dopamine. J. Physiol. (Paris) 62,151 (1970)Google Scholar
  202. Feltz, P.: Monoamines and the excitatory nigro-striatal linkage. Experientia 27, 1111–1112 (1971a)Google Scholar
  203. Feltz, P.: Sensitivity to haloperidol of caudate neurones excited by nigral stimulation. Eur. J. Pharmacol. 14, 360–364 (1971b)PubMedGoogle Scholar
  204. Feltz, P.: γ-Aminobutyric acid and a caudato-nigral inhibition. Can. J. Physiol. Pharmacol. 49, 1113–1115 (1971c)PubMedGoogle Scholar
  205. Feltz, P., Albe-Fessard, D.: A study of an ascending nigrocaudate pathway. Electroence-phalogr. Clin. Neurophysiol. 33, 179–193 (1972)Google Scholar
  206. Feltz, P., De Champlain, J.: Persistence of caudate unitary responses to nigral stimulation after destruction and functional impairment of the striatal dopaminergic terminals. Brain Res. 43, 595–600 (1972 a)PubMedGoogle Scholar
  207. Feltz, P., De Champlain, J.: Enhanced sensitivity of caudate neurons to microiontophoretic injections of dopamine in 6-hydroxydopamine treated rats. Brain Res. 43, 601–605 (1972 b)PubMedGoogle Scholar
  208. Feltz, P., Mackenzie, J.S.: Properties of caudate unitary responses to repetitive nigral stimulation. Brain Res. 13, 612–616 (1969)PubMedGoogle Scholar
  209. Flach, F.: Clinical effectiveness of reserpine. Ann. N. Y. Acad. Sci. 61, 161–166 (1955)PubMedGoogle Scholar
  210. Flückiger, E., Wagner, H.R.: 2-Br-α-Ergokryptin: Beeinflussung von Fertilität und Laktation bei der Ratte. Experientia 24, 1130–1131 (1968)PubMedGoogle Scholar
  211. Fonnum, F., Grofová, I, Rinvik, E., Storm-Mathisen, J., Walberg, F.: Origin and distribution of glutamine decarboxylase in the substantia nigra of the cat. Brain Res. 71, 77–92 (1974)PubMedGoogle Scholar
  212. Forssberg, H., Grillner, S.: The locomotion of the acute spinal cat injected with Clonidine i.v. Brain Res. 50, 184–186 (1973)PubMedGoogle Scholar
  213. Frantz, A.G.: Catecholamines and the control of prolactin secretion in humans. Prog. Brain Res. 39, 311–322(1973)PubMedGoogle Scholar
  214. Frigyesi, T.L., Purpura, D.P.: Electro-physiological analysis of reciprocal caudato-nigral relations. Brain Res. 6, 440–456 (1967)PubMedGoogle Scholar
  215. Fu, T.-C., Jankowska, E., Lundberg, A.: Reciprocal Ia inhibition during the late reflexes evoked from the flexor reflex afferents after DOPA. Brain Res. 85, 99–102 (1975)PubMedGoogle Scholar
  216. Fuxe, K., Gunne, L.-M.: Depletion of the amine stores in brain catecholamine terminals on amygdaloid stimulation. Acta Physiol. Scand. 62, 493–494 (1964)PubMedGoogle Scholar
  217. Fuxe, K., Hökfelt, T., Johansson, O., Jonsson, G., Lidbrink, P., Ljungdahl, Å: The origin of the dopamine nerve terminals in limbic and frontal cortex. Evidence for meso-cortico dopamine neurons. Brain Res. 82, 349–355 (1974)Google Scholar
  218. Gaddum, J.H., Vogt, M.: Some central actions of 5-hydroxytryptamine and various antagonists. Br. J. Pharmacol. 11, 175–179 (1956)Google Scholar
  219. Gaitondé, B.B., McCarthy, L.E., Borison, H.L.: Central emetic action and toxic effects of digitalis in cats. J. Pharmacol. Exp. Ther. 147, 409–415 (1965)PubMedGoogle Scholar
  220. Gale, K., Moroni, F., Kumakura, K., Guidotti, A.: Opiate-receptors in substantia nigra: role in the regulation of striatal tyrosine hydroxylase activity. Neuropharmacology 18, 427–430 (1979)PubMedGoogle Scholar
  221. Gangloff, H., Monnier, M.: Topische Bestimmung des zerebralen Angriffs von Reserpin (Ser-pasil). Experientia 11, 404–407 (1955)PubMedGoogle Scholar
  222. Geffen, L.B., Jessell, T.M., Cuello, A.C., Iversen, L.L.: Release of dopamine from dendrites in rat substantia nigra. Nature 260, 258–260 (1976)PubMedGoogle Scholar
  223. Gérardy, J., Quinaux, N., Maeda, T., Dresse, A.: Analyse des monoamines du locus coeruleus et d’autres structures cérébrales par Chromatographie sur couche mince. Arch. Int. Pharma-codyn. Ther. 177, 492–496 (1969)Google Scholar
  224. Gey, K.F., Pletscher, A.: Effects of chlorpromazine on the metabolism of dl-2-C14-Dopa in the rat. J. Pharmacol. Exp. Ther. 145, 337–343 (1964)PubMedGoogle Scholar
  225. Glaviano, V.V., Wang, S.C.: Dual mechanism of anti-emetic action of 10 (γ-dimethylaminopro-pyl)-2-chlorphenothiazine hydrochloride (chlorpromazine) in dogs. J. Pharmacol. Exp. Ther. 114, 358–366 (1955)PubMedGoogle Scholar
  226. Glow, P.: Some aspects of the effects of acute reserpine treatment on behaviour. J. Neurol. Neurosurg. Psychiatry 22, 11–32 (1959)PubMedGoogle Scholar
  227. Glowinski, J., Axelrod, J.: Effect of drugs on the uptake, release, and metabolism of H3-nor-epinephrine in the rat brain. J. Pharmacol. Exp. Ther. 149, 43–49 (1965)PubMedGoogle Scholar
  228. Glowinski, J., Axelrod, J.: Effects of drugs on the disposition of 3H-norepinephrine in the rat brain. Pharmacol. Rev. 18, 775–785 (1966)PubMedGoogle Scholar
  229. Glowinski, J., Iversen, L.L.: Regional studies of catecholamines in the rat brain. I. The disposition of [3H] norepinephrine, [3H] dopamine and [3H] dopa in various regions of the brain. J. Neurochem. 13, 655–669 (1966)PubMedGoogle Scholar
  230. Gokhale, S.D., Gulati, O.D., Parikh, H.M.: An investigation of the adrenergic blocking action of chlorpromazine. Br. J. Pharmacol. 23, 508–520 (1964)Google Scholar
  231. Goldstein, M., Anagnoste, B., Owen, W.S., Battista, A.F.: The effects of ventromedial segmental lesions on the disposition of dopamine in the caudate nucleus of the monkey. Brain Res. 4, 298–300 (1967)PubMedGoogle Scholar
  232. Goldstein, M., Anagnoste, B., Shirron, C.: The effect of trivastal, haloperidol and dibutyryl cyclic AMP on [14C] dopamine synthesis in rat striatum. J. Pharm. Pharmacol. 25, 348–351 (1973)PubMedGoogle Scholar
  233. Goldstein, M., Lieberman, A., Battista, A.F., Lew, J.Y., Matsumoto, Y.: Experimental and clinical studies on bromocriptine in the Parkinsonism syndrome. Acta Endocrinol. (Co-penh.) 88, suppl. 216, 57–66 (1978)Google Scholar
  234. Gonzalez-Vegas, J.A.: Antagonism of dopamine-mediated inhibition in the nigro-striatal pathway: a mode of action of some catatonia-inducing drugs. Brain Res. 80, 219–228 (1974)PubMedGoogle Scholar
  235. Graham, A.W., Aghajanian, G.K.: Effects of amphetamine on single cell activity in a catecholamine nucleus, the locus coeruleus. Nature 234, 100–102 (1971)PubMedGoogle Scholar
  236. Granit, R.: Receptors and Sensory Perception. Yale University Press, New Haven (1955)Google Scholar
  237. Griffith, J.D., Cavanaugh, J., Held, J., Oates, J.A.: Dextroamphetamine, evaluation of psy-chomimetic properties in man. Arch. Gen. Psychiatry 26, 97–100 (1972)PubMedGoogle Scholar
  238. Grillner, S.: The influence of DOPA on the static and the dynamic fusimotor activity to the triceps surae of the spinal cat. Acta Physiol. Scand. 77, 490–509 (1969)PubMedGoogle Scholar
  239. Grillner, S.: Locomotion in the spinal cat. In: Control of Posture and Locomotion. R.B. Stein, K.B. Pearson, R.S. Smith, and J.B. Redford, Eds., pp. 515–535, Plenum Press, New York (1973)Google Scholar
  240. Gross, H., Langner, E.: Das Wirkungsprofil eines chemisch neuartigen Breitbandneurolepti-kums der Dibenzodiazepingruppe. Wien. Med. Wochenschr. 116, 814–816 (1966)PubMedGoogle Scholar
  241. Grossmann, W., Jurna, I., Nell, T.: The effect of reserpine and DOPA on reflex activity in the rat spinal cord. Exp. Brain Res. 22, 351–361 (1975)Google Scholar
  242. Grossmann, W., Jurna, I., Nell, T., Theres, C.: The dependence of the anti-nociceptive effect of morphine and other analgesic agents on spinal motor activity after central monoamine depletion. Eur. J. Pharmacol. 24, 67–77 (1973)PubMedGoogle Scholar
  243. Groves, P.M., Rebec, G.V., Harvey, J.A.: Alteration of the effects of (+)-amphetamine on neuronal activity in the striatum following lesions of the nigrostriatal bundle. Neuropharmacology 14, 369–376 (1975 a)PubMedGoogle Scholar
  244. Groves, P.M., Wilson, C.J., Young, S.J., Rebec, G.V.: Self-inhibition by dopaminergic neurons. An alternative to the “neuronal feedback loop” hypothesis for the mode of action of certain psychotropic drugs. Science 190, 522–529 (1975 b)PubMedGoogle Scholar
  245. Gulley, R.L., Smithberg, M.: Synapses in the rat substantia nigra. Tissue Cell 3, 691–700 (1971)PubMedGoogle Scholar
  246. Guyenet, P.G., Agid, Y., Javoy, F., Beaujouan, J.C., Rossier, J., Glowinsky, J.: Effects of dopaminergic receptor agonists and antagonists on the activity of the neo-striatal cholinergic system. Brain Res. 84, 227–244 (1975 a)PubMedGoogle Scholar
  247. Guyenet, P.G., Javoy, F., Agid, Y., Beaujouan, J.C., Glowinski, J.: Dopamine receptors and cholinergic neurons in the rat neostriatum. Adv. Neurol. 943–51 (1975 b)PubMedGoogle Scholar
  248. Gyermek, L.: Chlorpromazine: a serotonin antagonist? Lancet II: 724 (1955)Google Scholar
  249. Häggendal, J., Hamberger, B.: Quantitative in vitro studies on noradrenaline uptake and its inhibition by amphetamine, desipramine and chlorpromazine. Acta Physiol. Scand. 70, 277–280 (1967)PubMedGoogle Scholar
  250. Hamberger, B.: Reserpine-resistant uptake of catecholamines in isolated tissues of the rat. Acta Physiol. Scand. 71, 1–56 (1967)Google Scholar
  251. Harris, J.E.: Beta adrenergic receptor-mediated adenosine cyclic 3′,5′-monophosphate accumulation in the rat corpus striatum. Mol. Pharmacol. 12, 546–558 (1976)PubMedGoogle Scholar
  252. Harris, J.E., Baldessarini, R., Wheeler, S.: Stimulation of tyrosine hydroxylation in striatal syn-aptosomes by derivatives of adenosine 3′,5′-cyclic phosphate. Fed. Proc. 33, 521 (1974a)Google Scholar
  253. Harris, J.E., Morgenroth III, V.H., Roth, R.H., Baldessarini, R.J.: Regulation of catecholamine synthesis in the rat brain in vitro by cyclic AMP. Nature 252, 156–158 (1974 b)PubMedGoogle Scholar
  254. Heal, D.J., Phillips, A.G., Green, A.R.: Studies on the locomotor activity produced by injection of dibutyryl cyclic 3′5′AMP into the nucleus accumbens of rats. Neuropharmacology 17, 265–270 (1978)PubMedGoogle Scholar
  255. Heinz, G., Jurna, I.: The anti-nociceptive effect of reserpine and haloperidol mediated by the nigro-striatal system: antagonism by naloxone. Naunyn Schmiedebergs Arch. Pharmacol. 306, 97–100 (1979)PubMedGoogle Scholar
  256. Henatsch, H.D., Ingvar, D.H.: Chlorpromazin und Spastizität: Eine experimentelle elektrophy-siologische Untersuchung. Arch. Psychiatr. Z. Neurol. 195, 77–93 (1956)Google Scholar
  257. Herman, E.H., Barnes, C.D.: Evidence for an action of chlorpromazine on the spinal cord. Fed. Proc. 23, 456 (1964)Google Scholar
  258. Hernández-Peôn, R.: Central neuro-humoral transmission in sleep and wakefulness. In: Sleep Mechanisms. Progress in Brain Research, Vol. 18, pp. 96–117. Akert, K., Bally, C., Schadé, J.P., Eds., Elsevier Publishing Company, Amsterdam (1963)Google Scholar
  259. Hertting, G., Axelrod, J., Whitby, L.G.: Effect of drugs on the uptake and metabolism of H3-norepinephrine. J. Pharmacol. Exp. Ther. 134, 146–153 (1961)Google Scholar
  260. Herz, A., Gogolák, G.: Mikroelektrophoretische Untersuchungen am Septum des Kaninchens. Pflügers Arch. 285, 317–330 (1965)Google Scholar
  261. Herz, A., Nacimiento, A.: Über die Wirkung von Pharmaka auf Neurone des Hippocampus nach mikroelektrophoretischer Verabfolgung. Naunyn Schmiedebergs Arch. Pharmacol. 257,295–314(1965)Google Scholar
  262. Herz, A., Von Freytag-Loringhoven, H.: Über die synaptische Erregung im Corpus striatum und deren antagonistische Beeinflussung durch mikroelektrophoretisch verabfolgte Glutaminsäure und Gamma-Aminobuttersäure. Pflügers Arch. Ges. Physiol. 229, 167–184 (1968)Google Scholar
  263. Herz, A., Zieglgänsberger, W.: Synaptic excitation in the corpus striatum inhibited by microelectrophoretically administered dopamine. Experientia 22, 839–840 (1966)PubMedGoogle Scholar
  264. Herz, A., Zieglgänsberger, W.: The influence of microelectrophoretically applied biogenic amines, cholinomimetics and procaine on synaptic excitation in the corpus striatum. Neuropharmacology 7, 221–230 (1968)Google Scholar
  265. Hiebel, G., Bonvallet, M., Dell, P.: Action de la chlorpromazine (“Largactil”, 4560 RP) au niveau du système nerveux central. Hop. Paris 30, 2346–2353 (1954)Google Scholar
  266. Hillarp, N.- Å., Fuxe, K., Dahlström, A.: Demonstration and mapping of central neurons containing dopamine, noradrenaline, and 5-hydroxytryptamine and their reactions to psycho-pharmaca. Pharmacol. Rev. 18, 121–141(1966)Google Scholar
  267. Hilton, S.M., Zbrozyna, A.W.: Amygdaloid region for defence reactions and its efferent pathway to the brain stem. J. Physiol. (Lond.) 165, 160–173 (1963)Google Scholar
  268. Hoffer, B.J., Siggins, G.R., Bloom, F.E.: Cyclic 3′,5′-adenosine monophosphate (c-AMP) mediation of the response of rat cerebellar Purkinje cells to norepinephrine (NE): Blockade with prostaglandins. Pharmacologist 11, 238 (1969)Google Scholar
  269. Hofmann, M., Battaini, F., Tonon, G., Trabucchi, M. Spano, P.: Interaction of sulpiride and ergot derivatives on rat brain DOPAC concentration and prolactin secretion in vivo. Eur. J. Pharmacol. 56, 15–20 (1979)PubMedGoogle Scholar
  270. Hong, J.S., Yang, H.-Y.T., Costa, E.: On the location of methionine enkephalin neurons in rat striatum. Neuropharmacology 16, 451–453 (1977)PubMedGoogle Scholar
  271. Horn, A.S., Snyder, S.H.: Chlorpromazine and dopamine: conformational similarities that correlate with the antischizophrenic activity of phenothiazine drugs. Proc. Natl. Acad. Sci. USA 68, 2325–2328 (1971)PubMedGoogle Scholar
  272. Hornykiewicz, O.: Dopamine (3-hydroxytyramine) and brain function. Pharmacol. Rev. 18, 925–964 (1966)Google Scholar
  273. Huang, M., Ho, A.K.S., Daly, J.W.: Accumulation of adenosine cyclic 3′,5′-monophosphate in rat cerebral cortical slices. Stimulatory effect of alpha and beta adrenergic agents after treatment with 6-hydroxydopamine, 2,3,5-trihydroxyphenethylamine and dihydroxytryp-tamines. Mol. Pharmacol. 9, 711–717 (1973)PubMedGoogle Scholar
  274. Hudson, R.D.: Effects of chlorpromazine on spinal cord reflex mechanisms. Neuropharmacology 5, 43–58 (1966)Google Scholar
  275. Hudson, R.D., Domino, E.F.: Effects of chlorpromazine on some motor reflexes. Neuropharmacology 2, 143–162 (1963)Google Scholar
  276. Hudson, R.D., Domino, E.F.: Comparative effects of three substituted phenothiazines on the patellar reflex and mean arterial blood pressure of the rabbit. Arch. Int. Pharmacodyn. Ther. 147, 36–42 (1964)PubMedGoogle Scholar
  277. Huidobro, F.: Some pharmacological properties of chloro-3(dimethylamine-3′ propyl)10-phe-nothiazine or 4.560 R. P. Arch. Int. Pharmacodyn. Ther. 98, 308–319 (1954)PubMedGoogle Scholar
  278. Hull, C.D., Bernardi, G., Buchwald, N.A.: Intracellular responses of caudate neurons to brain stem stimulation. Brain Res. 22, 163–179 (1970)PubMedGoogle Scholar
  279. Hull, C.D., Bernardi, G., Price, D.D., Buchwald, N.A.: Intracellular responses of caudate neurons to temporaly and spatially combined stimuli. Exp. Neurol. 38, 324–336 (1973)PubMedGoogle Scholar
  280. Hyttel, J.: Effects of neuroleptics on 3H-haloperidol and 3H-cis(Z)-flupenthixol binding and on adenylate cyclase activity in vitro. Life Sci. 23, 551–556 (1978)PubMedGoogle Scholar
  281. Irwin, S., Houde, R.W., Bennet, D.R., Hendershot, L.C., Seevers, M.H.: The effects of morphine, methadone and meperidine on some reflex responses in spinal animals to nociceptive stimulation. J. Pharmacol. Exp. Ther. 101, 132–143 (1951)PubMedGoogle Scholar
  282. Iversen, L.L.: The inhibition of noradrenaline uptake by drugs. In: Advances in Drug Research. Harper, N.J., Simmonds, A.B., Eds., 2, 1–46, Academic Press, London (1965)Google Scholar
  283. Iversen, L.L.: Dopamine receptors in the brain (A dopamine-sensitive adenylate cyclase models synaptic receptors, illuminating antipsychotic drug action). Science 188, 1084–1089 (1975)PubMedGoogle Scholar
  284. Iversen, L.L.: More than one type of dopamine receptor in brain? Trends Neuro Sci. 1, V–VI (1978 a)Google Scholar
  285. Iversen, L.L.: Biochemical and pharmacological studies: the dopamine hypothesis. In: Schizophrenia: Towards a New Synthesis. J. K. Wing, Ed., Academic Press, London, pp. 89–116 (1978 b)Google Scholar
  286. Ivy, A.C., Goetzel, F.R., Harris, S.C., Burril, D.Y.: The analgesic effect of intracarotid and intravenous injection of epinephrine in dogs and of subcutaneous injection in man. Quart. Bull. Northwestern University Med. School 18, 298–306 (1944)Google Scholar
  287. Iwamoto, E., Way, L.: Circling behaviour and stereotypy induced by intranigral opiate microinjections. J. Pharmacol. Exp. Ther. 203, 347–359 (1977)PubMedGoogle Scholar
  288. Iwatsubo, K., Clouet, D.H.: Dopamine-sensitive adenylate cyclase of the caudate nucleus of rats treated with morphine or haloperidol. Biochem. Pharmacol. 24, 1499–1503 (1975)PubMedGoogle Scholar
  289. Iwatsubo, K., Clouet, D.H.: Effects of morphine and haloperidol on the electrical activity of rat nigrostriatal neurons. J. Pharmacol. Exp. Ther. 202, 429–436 (1977)PubMedGoogle Scholar
  290. Jacobowitz, D.M., Goldberg, A.M.: Determination of acetylcholine in discrete regions of the rat brain. Brain Res. 122, 575–577 (1971)Google Scholar
  291. James, T.A., Massey, S.: Evidence for a possible dopaminergic link in the action of acetylcholine in the rat substantia nigra. Neuropharmacology 17, 687–690 (1978)PubMedGoogle Scholar
  292. Jankowska, E., Jukes, M.G.M., Lund, S., Lundberg, A.: Reciprocal innervation through inter-neuronal inhibition. Nature 206, 198–199 (1965)PubMedGoogle Scholar
  293. Jankowska, E., Jukes, M.G.M., Lund, S., Lundberg, A.: The effect of dopa on the spinal cord. 5. Reciprocal organization of pathways transmitting excitatory action to alpha-mo-toneurones of flexors and extensors. Acta Physiol. Scand. 70, 369–388 (1967 a)PubMedGoogle Scholar
  294. Jankowska, E., Jukes, M.G.M., Lund, S., Lundberg, A.: The effect of DOPA on the spinal cord. 6. Halfcentre organization of interneurones transmitting effects from the flexor reflex afferents. Acta Physiol. Scand. 70, 389–402 (1967 b)PubMedGoogle Scholar
  295. Janssen, P.A.J.: The pharmacology of haloperidol. Int. J. Neuropsychiatr. 3, suppl. 1, S 10—S 18 (1967)Google Scholar
  296. Janssen, P.A.J., Allewijn, F.T.N.: The distribution of the butyrophenones haloperidol, trifluperidol, moperone, and clofluperidol in rats, and its relationship with their neuroleptic activity. Arzneim. Forsch. 19, 199–208 (1969)Google Scholar
  297. Janssen, P.A.J., Niemegeers, C.J.E., Schellekens, K.H.L.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part I: “Neuroleptic activity spectra” for rats. Arzneim. Forsch. 15, 104–117 (1965 a)Google Scholar
  298. Janssen, P.A.J., Niemegeers, C.J.E., Schellekens, K.H.L.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data? Part II: “Neuroleptic activity spectra” for dogs. Arzneim. Forsch. 15, 1196–1206 (1965 b)Google Scholar
  299. Janssen, P.A.J., Niemegeers, C.J.E., Schellekens, K.H.L., Dresse, A., Lenaerts, F.M., Pinchard, A., Schaper, W.K.A., Van Nueten, J.M., Verbruggen, F.J.: Pimozide, a chemically novel, highly potent and orally long-acting neuroleptic drug. Part I: The comparative pharmacology of pimozide, haloperidol, and chlorpromazine. Arzneim. Forsch. 18, 261–279 (1968a)Google Scholar
  300. Janssen, P.A.J., Soudijn, W., Van Wijngaarden, L, Dresse, A.: Pimozide, a chemically novel, highly potent and orally long-acting neuroleptic drug. Part III: Regional distribution of pimozide and haloperidol in the dog brain. Arzneim. Forsch. 18, 282–287 (1968 b)Google Scholar
  301. Javoy, P., Agid, Y., Bouvet, D., Glowinski, J.: Changes in neostriatal DA metabolism after car-bachol or atropine microinjections into the substantia nigra. Brain Res. 68, 253–260 (1974)PubMedGoogle Scholar
  302. Jenney, E.H.: Changes in convulsant thresholds after Rauwolfia serpentina, reserpine and veriloid. Fed. Proc. 13, 370–371 (1954)Google Scholar
  303. Jobe, P.C., Geiger, P.F., Ray, T.B., Woods, T.W., Mims, M.E.: The relative significance of spinal cord norepinephrine and 5-hydroxytryptamine in electrically induced Scizure in the rat. Neuropharmacology 77, 185–190 (1978)Google Scholar
  304. Johnson, A.M., Loew, D.M., Vigouret, J.M.: Stimulant properties of bromocriptine on central dopamine receptors in comparison to apomorphine, (+)-amphetamine and L-DOPA. Br. J. Pharmacol. 56, 59–68 (1976)PubMedGoogle Scholar
  305. Johnstone, E.C., Crow, T.J., Frith, C.D., Carney, M.W.P., Price, J.S.: Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet I: 848–851 (1978)Google Scholar
  306. Jordan, L.M., Lake, N., Phillis, J.W.: Mechanism of noradrenaline depression of cortical neurones: a species comparison. Eur. J. Pharmacol. 20, 381–384 (1972)PubMedGoogle Scholar
  307. Juorio, A.V., Sharman, D.F., Trajkov, T.: The effect of drugs on the homovanillic acid content of the corpus striatum of some rodents. Br. J. Pharmacol. 26, 385–392 (1966)Google Scholar
  308. Jurna, L: Dämpfung repetivier Aktivierungsvorgänge an der spinalen Motorik durch Morphin. In: Schmerz (Pain). R. Janzen, W.D. Keidel, A. Herz, C. Steichele, J.P. Payne and R.A.P. Burt, Eds., pp. 267–269. Stuttgart: Thieme 1972Google Scholar
  309. Jurna, I.: Striatal monoamines and reserpine and chlorpromazine rigidity. Pharmacol. Ther. [B] 2, 113–128 (1976a)Google Scholar
  310. Jurna, I.: The cholinergic rigidity. Pharmacol. Ther. [B] 2, 413–421 (1976b)Google Scholar
  311. Jurna, I., Heinz, G.: Anti-nociceptive effect of morphine, opioid analgesics and haloperidol injected into the caudate nucleus of the rat. Naunyn Schmiedebergs Arch. Pharmacol. 309, 145–151 (1979)PubMedGoogle Scholar
  312. Jurna, L, Lanzer, G.: Inhibition of the effect of reserpine on motor control by drugs which influence reserpine rigidity. Naunyn Schmiedebergs Arch. Pharmacol. 262, 309–324 (1969)Google Scholar
  313. Jurna, I., Lundberg, A.: The influence of an inhibitor of dopamine-beta-hydroxylase on the effect of DOPA on transmission in the spinal cord. In: Structure and Functions of Inhibitory Neuronal Mechanisms, pp. 215–219, C. von Euler, S. Skoglund, U. Söderberg, Eds., Pergamon Press, Oxford, New York (1968)Google Scholar
  314. Jurna, L, Regélhy, B.: The antagonism between reserpine some antiparkinson drugs in elec-troScizure. Naunyn Schmiedebergs Arch. Pharmacol. 259, 442–459 (1968)Google Scholar
  315. Jurna, I., Theres, C.: The effect of phenytoin and metamphetamine on spinal motor activity. Naunyn Schmiedebergs Arch. Pharmacol. 265, 244–259 (1969)Google Scholar
  316. Jurna, I., Theres, C., Bachmann, T.: The effect of physostigmine and tetrabenazine on spinal motor control and its inhibition by drugs which influence reserpine rigidity. Naunyn Schmiedebergs Arch. Pharmacol. 263, 427–438 (1969)Google Scholar
  317. Jurna, I., Nell, T., Schreyer, L: Motor disturbance induced by tremorine and oxotremorine. Naunyn Schmiedebergs Arch. Pharmacol. 267, 80–98 (1970)PubMedGoogle Scholar
  318. Jurna, I., Grossmann, W., Nell, T.: Depression by amantadine of drug-induced rigidity in the rat. Neuropharmacology 11, 559–564 (1972a)PubMedGoogle Scholar
  319. Jurna, I., Ruzdic, N., Nell, T., Grossmann, W.: The effect of α-methyl-p-tyrosine and substantia nigra lesions on spinal motor activity in the rat. Eur. J. Pharmacol. 20, 341–350 (1972b)PubMedGoogle Scholar
  320. Jurna, I., Grossmann, W., Theres, C.: Inhibition by morphine of repetitive activation of cat spinal motoneurons. Neuropharmacology 12, 983–993 (1973)PubMedGoogle Scholar
  321. Jurna, I., Brenner, M., Drum, P.: Abolition of spinal motor disturbance by injections of dopamine receptor agonists, atropine and GABA into the caudate nucleus. Neuropharmacology 77, 35–44 (1978a)Google Scholar
  322. Jurna, I., Heinz, G., Blinn, G., Nell, T.: The effect of substantia nigra stimulation and morphine on α-motoneurones and the tail-flick response. Eur. J. Pharmacol. 51, 239–250 (1978 b)PubMedGoogle Scholar
  323. Kaelber, W.W., Joynt, R.J.: Tremor production in cats given chlorpromazine. Proc. Soc. Exp. Biol. Med. 92, 399–402 (1956)PubMedGoogle Scholar
  324. Kalisker, A., Rutledge, C.O., Perkins, J.P.: Effect of nerve degeneration by 6-hydroxydopamine on chatecholamine-stimulated adenosine 3′,5′-monophosphate formation in rat cerebral cortex. Mol. Pharmacol. 9, 619–629 (1973)Google Scholar
  325. Kamberi, I.A., Mical, L.S., Porter, J.C.: Effect of anterior pituitary perfusion and intraventricular injection of catecholamines and indolamines in LH release. Endocrinology 87, 1–12 (1970)PubMedGoogle Scholar
  326. Karobath, M., Leitich, H.: Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. Proc. Natl. Acad. Sci. USA 77, 2915–2918 (1974)Google Scholar
  327. Kebabian, J.W.: Multiple classes of dopamine receptors in mammalian central nervous system: the involvement of dopamine-sensitive adenyl cyclase. Life Sci. 23, 479–484 (1978)PubMedGoogle Scholar
  328. Kebabian, J.W., Calne, D.B.: Multiple receptors for dopamine. Nature 277, 93–96 (1979)PubMedGoogle Scholar
  329. Kebabian, J.W., Greengard, P.: Dopamine-sensitive adenyl cyclase: possible role in synaptic transmission. Science 174, 1346–1349 (1971)PubMedGoogle Scholar
  330. Kebabian, J.W., Saavedra, J.M.: Dopamine-sensitive adenylate cyclase occurs in a region of substantia nigra containing dopaminergic dendrites. Science 193, 683–685 (1976)PubMedGoogle Scholar
  331. Kebabian, J.W., Petzold, G.L., Greengard, P.: Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the dopamine receptor. Proc. Natl. Acad. Sci. USA 69, 2145–2149 (1972)PubMedGoogle Scholar
  332. Kehr, W., Carlsson, A., Lindqvist, M., Magnusson, T., Atack, C.: Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity. J. Pharm. Pharmacol. 24, 744–747 (1972)PubMedGoogle Scholar
  333. Kelly, P.H., Miller, R.J.: The interaction of neuroleptic and muscarinic agents with central dopaminergic system. Br. J. Pharmacol. 54, 115–121 (1975)PubMedGoogle Scholar
  334. Kelly, P.H., Moore, K.E.: Mesolimbic dopaminergic neurones in the rotational model of nigro-striatal function. Nature 263, 695–696 (1976)PubMedGoogle Scholar
  335. Kelly, P.H., Moore, K.E.: Dopamine concentrations in the rat brain following injections into the substantia nigra of baclofen, γ-aminobutyric acid, y-hydroxybutyric acid, apomorphine and amphetamine. Neuropharmacology 17, 169–174 (1978)PubMedGoogle Scholar
  336. Kety, S.S., Javoy, F., Thierry, A.-M., Julou, L., Glowinski, J.: A sustained effect of electroconvulsive shock on the turnover of norepinephrine in the central nervous system of the rat. Proc. Natl. Acad. Sci. USA 58, 1249–1254 (1967)PubMedGoogle Scholar
  337. Key, B.J.: Electrocortical changes induced by perfusion of catecholamines into the brainstem reticular formation. Neuropharmacology 14, 41–51 (1975)PubMedGoogle Scholar
  338. Killam, E.K., Killam, K.F.: A comparison of the effects of reserpine and chlorpromazine to those of barbiturates on central afferent systems in the cat. J. Pharmacol. Exp. Ther. 116, 35 (1956)Google Scholar
  339. Killam, E.K., Killam, K.F., Shaw, T.: The effects of psychotherapeutic compounds on central afferent and limbic pathways. Ann. N. Y. Acad. Sci. 66, 784–805 (1957)PubMedGoogle Scholar
  340. Kim, J.-S., Hassler, R.: Effects of acute haloperidol on the gamma-aminobutyric acid system in rat striatum and substantia nigra. Brain Res. 88, 150–153 (1975)PubMedGoogle Scholar
  341. Kim, J.S., Bak, I.J., Hassler, R., Okada, Y.: Role of γ-aminobutyric acid (GABA) in the extrapyramidal motor system. 2. Some evidence for the existence of a type of GABA-rich strio-nigral neurons. Brain Res. 14, 95–104 (1971)Google Scholar
  342. King, J.L.: The cortico-spinal tract of the rat. Anat. Rec. 4, 245–252 (1910)Google Scholar
  343. Kinross-Wright, V.: Chlorpromazine and reserpine in the treatment of psychoses. Ann. N.Y. Acad. Sci. 61, 174–182 (1955)PubMedGoogle Scholar
  344. Kitai, S.T., Wagner, A., Precht, W., Ohno, T.: Nigro-caudate and caudato-nigral relationship: an electrophysiological study. Brain Res. 85, 44–48 (1975)PubMedGoogle Scholar
  345. Kitai, S.T., Sugimori, M., Kocsis, J.D.: Excitatory nature of dopamine in the nigro-caudate pathway. Exp. Brain Res. 24, 351–363 (1976)Google Scholar
  346. Klawans, H.L.: The pharmacology of Parkinsonism (a review). Dis. Nerv. Syst. 29, 805–817 (1968)PubMedGoogle Scholar
  347. Klawans, H.L., Rubovits, R.: An experimental model of tardive dykinesia. J. Neural. Transm. 33, 235–246 (1972)PubMedGoogle Scholar
  348. Kleinberg, D.L., Noel, G.L., Frantz, A.G.: Chlorpromazine stimulation and L-DOPA suppression of plasma prolactin in man. J. Clin. Endocrinol. Metab. 33, 873–876 (1971)Google Scholar
  349. Kline, N.S., Stanley, A.M.: Use of reserpine in a neuropsychiatrie hospital. Ann. N. Y. Acad. Sci. 61, 85–91 (1955)PubMedGoogle Scholar
  350. Kobinger, W.: Reversibility of a facilitatory action of reserpine on the central nervous system, by methylamphetamine. Experientia 14, 337–338 (1958)PubMedGoogle Scholar
  351. Koe, B.K., Weissman, A.: p-chlorophenylalanine: a specific depletor of brain serotonin. J. Pharmacol. Exp. Ther. 154, 499–516 (1966)PubMedGoogle Scholar
  352. Kolmodin, G.M., Skoglund, C.R.: Properties and functional differentiation of interneurons in the ventral horn of the cat’s lumbar cord as revealed by intracellular recording. Experientia 10, 505–506 (1954)PubMedGoogle Scholar
  353. Korf, J., Zieleman, M., Westerink, B.H.C.: Dopamine release in substantia nigra. Nature 260, 257–258 (1976)PubMedGoogle Scholar
  354. Kosterlitz, H.W., Collier, H.O.J., Villareal, J.E.: Agonist and Antagonist Actions of Narcotic Analgesic Drugs. Macmillan, London (1972)Google Scholar
  355. Kreindler, A., Steriade, M., Zuckermann, E., Chimon, D.: The influence of chlorpromazine upon cerebello-cortical and cerebellospinal circuits. Electroencephalogr. Clin. Neuro-physiol. 10, 515–520 (1958)Google Scholar
  356. Krnjevic, K., Phillis, J.W.: Actions of certain amines on cerebral cortical neurones. Br. J. Pharmacol. 20, 471–490 (1963)Google Scholar
  357. Kruglov, N.A., Sinitsyn, L.N.: The effect of aminozine and mepazine on the cerebellar and bulbar inhibitory mechanisms. Farmak. Toksikol. 22, 97–101 (1959)Google Scholar
  358. Kuschinsky, K., Hornykiewicz, O.: Morphine catalepsy in the rat: relation to striatal dopamine metabolism. Eur. J. Pharmacol. 19, 119–122 (1972)PubMedGoogle Scholar
  359. Laborit, H., Huguenard, P.: L’hibernation artificielle par moyens pharmacodynamiques et physiques. Presse Med. 59, 1329 (1951)PubMedGoogle Scholar
  360. Ladinsky, H., Consolo, S., Bianchi, S., Samanin, R., Ghezzi, D.: Cholinergic-dopaminergic interaction in the striatum: the effect of 6-hydroxydopamine or pimozide treatment on the increased striatal acetylcholine levels induced by apomorphine, piribedil and d-amphetamine. Brain Res. 84, 221–226 (1975)PubMedGoogle Scholar
  361. Lake, N., Jordan, L.M.: Failure to confirm cyclic AMP as second messenger for norepinephrine in rat cerebellum. Science 183, 663–664 (1974)PubMedGoogle Scholar
  362. Lake, N., Jordan, L.M., Phillis, J.W.: Mechanisms of noradrenaline action in cat cerebral cortex. Nature New Biol. 240, 249–250 (1972)PubMedGoogle Scholar
  363. Lake, N., Jordan, L.M., Phillis, J.W.: Evidence against cyclic adenosine 3′,5′-monophosphate (cAMP) mediation of noradrenaline depression of cerebral cortical neurones. Brain Res. (60,411–421 (1973)PubMedGoogle Scholar
  364. Launay, J. Despature, M.: Syndromes psycho-moteurs et syndromes extra-pyramidaux au cours de traitements prolongés par la chlorpromazine. Ann. Med. Psychol. (Paris) 114, 340–344 (1956)Google Scholar
  365. Laverty, R., Sharman, D.F.: Modification by drugs of the metabolism of 3,4-dihydroxyphenyl-ethylamine, noradrenaline and 5-hydroxytryptamine in the brain. Br. J. Pharmacol. 24, 759–772 (1965)Google Scholar
  366. Legge, K.F., Randic, M., Straughan, D.W.: The pharmacology of neurones in the pyriform cortex. Br. J. Pharmacol. 26, 87–107 (1966)Google Scholar
  367. Lee, C.-Y., Akera, T., Stolman, S., Brody, T.M.: Saturable binding of dihydromorphine and naloxon to rat brain tissue in vitro. J. Pharmacol. Exp. Ther. 194, 583–592 (1975)PubMedGoogle Scholar
  368. Lee, C.M., Wong, P.C.L., Chan, S.H.H.: The involvement of dopaminergic neurotransmission in the inhibitory effect of morphine on caudate neurone activities. Neuropharmacology 16, 571–576 (1977)PubMedGoogle Scholar
  369. Lee, T., Seeman, P., Tourtelotte, W.W., Farley, I.J., Hornykiewicz, O.: Binding of 3H-neuroleptics and 3H-apomorphine in schizophrenic brains. Nature 274, 897–900 (1978)PubMedGoogle Scholar
  370. Lee, H.K., Chai, C.Y., Chung, P.M., Wang, S.C.: Central antiemetic actions of pimozide and haloperidol in the dog. Neuropharmacology 18, 341–346 (1979)PubMedGoogle Scholar
  371. Lehmann, A.: Contribution à l’étude psycho-physiologique et neuropharmacologique de l’épi-lepsie acoustique de la souris et du rat. II. Etude expérimentale. Agressologie 5, 311–351 (1964)PubMedGoogle Scholar
  372. Lehmann, A.: Audiogenic Scizures data in mice supporting new theories of biogenic amines mechanisms in the central nervous system. Life Sci. 6, 1423–1431 (1967)PubMedGoogle Scholar
  373. Leimdorfer, A.: Über zentrale Wirkungen von Adrenalin. Wien. Klin. Wochenschr. 60, 382 – 385 (1948)PubMedGoogle Scholar
  374. Leimdorfer, A.: The action of sympathomimetic amines on the central nervous system and the blood sugar. Mechanism of action. J. Pharmacol. Exp. Ther. 98, 62–71 (1950)Google Scholar
  375. Leimdorfer, A., Metzner, W.R.T.: Analgesia and anaesthesia induced by epinephrine. Am. J. Physiol. 157, 116–121 (1949)PubMedGoogle Scholar
  376. Leonard, B.E.: Drug-induced changes in brain tyrosine hydroxylase activity in vivo. Neuropharmacology 16, 41–52(1977)Google Scholar
  377. Levin, R.M., Weiss, B.: Mechanism by which psychotropic drugs inhibit adenosine cyclic 3′,5′-monophosphate phosphodiesterase of brain. Mol. Pharmacol. 12, 581–589 (1976)PubMedGoogle Scholar
  378. Leysen, J., Laduron, P.: Differential distribution of opiate and neuroleptic receptors and the dopamine sensitive adenylate cyclase in rat brain. Life Sci. 20, 281–288 (1972)Google Scholar
  379. Lindvall, O., Björklund, A.: The organization of the ascending catecholamine neurone system in the rat brain as revealed by glyoxylic acid fluorescence method. Acta Physiol. Scand. [Suppl.] 412, 1–48 (1974)Google Scholar
  380. Lindvall, O., Björklund, A., Moore, R.Y., Stenevi, U.: Mesencephalic dopamine neurons projecting to neocortex. Brain Res. 81, 325–331 (1974)PubMedGoogle Scholar
  381. Linowiecki, A.J.: The comparative anatomy of the pyramidal tract. J. Comp. Neurol. 24, 509–530 (1914)Google Scholar
  382. Loizou, L.A.: Projections of the nucleus coeruleus in the albino rat. Brain Res. 15, 563–560 (1969)PubMedGoogle Scholar
  383. Longo, V.G., Silvestrini, B.: Effect of adrenergic and cholinergic drugs injected by intracarotid route on electrical activity of brain. Proc. Soc. Exp. Biol. Med. 95, 43–41(1957)PubMedGoogle Scholar
  384. Longo, V.G., von Berger, G.P., Bovet, D.: Action of nicotine and of the “ganglioplégiques centraux” on the electrical activity of the brain. J. Pharmacol. Exp. Ther. 111, 349–359 (1954)PubMedGoogle Scholar
  385. Lu, K.-H., Amenomori, Y., Chen, C.-L., Meites, J.: Effects of central acting drugs on serum and pituitary prolactin levels in rats. Endocrinology (Philadelphia) 87, 667–672 (1970)Google Scholar
  386. Lundberg, A.: Monoamines and spinal reflexes. In: Studies in Physiology. D.R. Curtis and A.K. Mclntyre, Eds., pp. 186–190, Springer-Verlag, Berlin (1965)Google Scholar
  387. Lynch, G.S., Lucas, PA., Deadwyler, S.A.: The demonstration of acetylcholinesterase-contain-ing neurones within the caudate nucleus of the rat. Brain Res. 45, 617–621 (1972)PubMedGoogle Scholar
  388. MacLeod, R.M.: Regulation of prolactin secretion. In: Frontiers in Neuroendocrinology, Vol. 4. L. Martini, W.F. Ganong, Eds., New York, Raven Press, pp. 169–194 (1976)Google Scholar
  389. MacLeod, R.M., Fontham, E.H., Lehmeyer, J.E.: Prolactin and growth hormone production as influenced by catecholamines. Neuroendocrinology 6, 283–294 (1970)PubMedGoogle Scholar
  390. Magnusson, T.: Effect of chronic transection on dopamine, noradrenaline and 5-hydroxytryp-tamine in the rat spinal cord. Naunyn Schmiedebergs Arch. Pharmacol. 278, 13–22 (1973)PubMedGoogle Scholar
  391. Magnusson, T., Rosengren, E.: Catecholamines of the spinal cord normally and after transection. Experientia 19, 229–230 (1963)Google Scholar
  392. Maler, L., Fibiger, H.C., McGeer, P.L.: Demonstration of the nigro striatal projection by silver staining after nigral injection of 6-hydroxydopamine. Exp. Neurol. 40, 505–515 (1973)PubMedGoogle Scholar
  393. Malhotra, C.L., Sidhu, R.K.: The anti-emetic activity of alkaloids of Rauwolfia serpentina. J. Pharmacol. Exp. Ther. 116, 123–129 (1956)PubMedGoogle Scholar
  394. Malmfors, T.: Studies on adrenergic nerves. The use of rat and mouse iris for direct observations on their physiology and pharmacology at cellular and subcellular levels. Acta Physiol. Scand. 64, Suppl. 248, 1–93 (1963)Google Scholar
  395. Mantegazzini, P., Poeck, K., Santibafiez, H.G.: The action of adrenaline and noradrenaline on the cortical electrical activity of the “encéphale isolé” cat. Arch. Ital. Biol. 97, 222–242 (1959)Google Scholar
  396. Marley, E., Vane, J.R.: Tryptamine receptors in the central nervous system. Nature 198, 441–444 (1963)Google Scholar
  397. Marsden, C.D., Milson, J., Parkes, J.D., Pycock, C., Tarsy, D.: The effect of cholinergic and anticholinergic drugs on rotational behavior in mice with destruction of one nigrostriatal pathway. J. Physiol. (Lond.) 249, 64p–65p (1975)Google Scholar
  398. Martin, W.R., Demaar, E.W.J., Unna, K.R.: Chlorpromazine: I. The action of chlorpromazine and related phenothiazines on the EEG and its activation. J. Pharmacol. Exp. Ther. 122, 343–358 (1958)PubMedGoogle Scholar
  399. Martin, W.R., Riehl, J.L., Unna, K.R.: Chlorpromazine. III. The effects of chlorpromazine and chlorpromazine sulfoxide on vascular responses to L-epinephrine and levarterenol. J. Pharmacol. Exp. Ther. 130, 37–45 (1960)PubMedGoogle Scholar
  400. Mason, S.T., Iversen, S.D.: Learning in the absence of forebrain noradrenaline. Nature 258, 422–424 (1975)PubMedGoogle Scholar
  401. Mason, S.T., Iversen, S.D.: Effects of selective forebrain noradrenaline loss on behavioural inhibition in the rat. J. Comp. Physiol. Psychol. 91, 165–173 (1977)PubMedGoogle Scholar
  402. Mason, S.T., Iversen, S.D.: Reward, attention and the dorsal noradrenergic bundle. Brain Res. 150, 135–148 (1978)PubMedGoogle Scholar
  403. Matthysse, S.: Antipsychotic drug actions: A clue to the neuropathology of schizophrenia? Fed. Proc. 32, 200–205 (1973)Google Scholar
  404. Mayer, D.J., Price, D.D.: Central nervous system mechanisms of analgesia. Pain 2, 379–404 (1976)PubMedGoogle Scholar
  405. McAfee, D.A., Greengard, P.: Adenosine 3′,5′-monophosphate: electrophysiological evidence for a role in synaptic transmission. Science 178, 310–312 (1972)PubMedGoogle Scholar
  406. McGeer, E.G., McGeer, P.L.: Catecholamine content of spinal cord. Can. J. Biochem. Physiol. 40, 1141–1151 (1962)Google Scholar
  407. McGeer, E.G., McGeer, P.L., McLennan, H.: The inhibitory action of 3-hydroxytyramine, gamma-aminobutyric acid (GABA) and some other compounds towards the crayfish stretchreceptor neuron. J. Neurochem. 8, 36–49 (1961)Google Scholar
  408. McGeer, E.G., Fibiger, H.C., McGeer, P.L., Brooke, S.: Temporal changes in amine synthesizing enzymes of rat extrapyramidal structures after hemitransection or 6-hydroxydopamine administration. Brain Res. 52, 289–300 (1973)PubMedGoogle Scholar
  409. McGeer, P.L., Fibiger, H.C., Hattori, T., Singh, V.K., McGeer, E.G., Maler, L.: Biochemical neuroanatomy of the basal ganglia. In: Neurohumoral Coding and Brain Function, Advances in Behaviour and Biology 10, 27–48, R.D. Myers, R.R. Drucker-Colin, Eds. (1974a)Google Scholar
  410. McGeer, P.L., Grewaal, D.S., McGeer, E.G.: Influence of noncholinergic drugs on rat striatal acetylcholine levels. Brain Res. 80, 211–217 (1974b)PubMedGoogle Scholar
  411. McGeer, E.G., McGeer, P.L., Grewaal, D.S., Singh, V.K.: Striatal cholinergic interneurons and their relation to dopaminergic nerve endings. J. Pharmacol. (Paris) 6, 143–152 (1975)Google Scholar
  412. McGeer, P.L., McGeer, E.G., Wada, J.A.: Central aromatic amine levels and behavior. II. Serotonin and catecholamine levels in various cat brain areas following administration of psycho-active drugs on amine precursors. Arch. Neurol. 9, 81–89 (1963)Google Scholar
  413. McGillard, K.L., Takemori, A.E.: The effect of dopaminergic modifiers on morphine-induced analgesia and respiratory depression, Eur. J. Pharmacol. 54, 61–68 (1979)Google Scholar
  414. McKenzie, G.M., Sadof, M.: Effects of morphine and chlorpromazine on apomorphine-induced stereotyped behaviour. J. Pharm. Pharmacol. 26, 280–282 (1974)PubMedGoogle Scholar
  415. McLennan, H.: The effect of some catecholamines upon a monosynaptic reflex pathway in the spinal cord. J. Physiol. (Lond.) 158, 411–425 (1961)Google Scholar
  416. McLennan, H., York, D.H.: The action of dopamine on neurons of the caudate nucleus. J. Physiol. (Lond.) 189, 393–402 (1967)Google Scholar
  417. McNair, J.L., Sutin, J., Tsubokawa, T.: Suppression of cell firing in the substantia nigra by caudate nucleus stimulation. Exp. Neurol. 37, 395–411 (1972)PubMedGoogle Scholar
  418. Melville, K.I.: Observations on the adrenergic-blocking and antifibrillatory actions of chlorpromazine. Fed. Proc. 13, 386–387 (1954)Google Scholar
  419. Messing, R.B., Lytle, L.D.: Serotonin-containing neurons: their possible role in pain and analgesia. Pain 4, 1–21 (1977)PubMedGoogle Scholar
  420. Miller, R.J., Iversen, L.L.: Effect of chlorpromazine and some of its metabolites on the dopa-mine-sensitive adenylate cyclase of rat brain striatum. J. Pharm. Pharmacol. 26, 142–144 (1974)PubMedGoogle Scholar
  421. Miller, R.J., Horn, A.S., Iversen, L.L.: The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3′,5′-monophosphate production in rat neostriatum and limbic forebrain. Mol. Pharmacol. 10, 759–766 (1974)Google Scholar
  422. Minneman, K.P., Quik, M., Emson, P.C.: Receptor linked cyclic AMP systems in rat neostriatum: differential localization revaled by kainic acid injection. Brain Res. 151, 507–521 (1978)PubMedGoogle Scholar
  423. Moore, R.Y., Bhatnagar, R.K., Heller, A.: Anatomical and chemical studies of a nigro-neostriatal projection in the cat. Brain Res. 30, 119–135 (1971)PubMedGoogle Scholar
  424. Morest, D.K.: A study of the structure of the area postrema with Golgi methods. Am. J. Anat. 107, 291–303 (1960)PubMedGoogle Scholar
  425. Morest, D.K.: Experimental study of the projections of the nucleus of the tractus solatarius and the area postrema in the cat. J. Comp. Neurol. 130, 277–300 (1966)Google Scholar
  426. Morpurgo, C.: Effects of anti-Parkinson drugs on a phenothiazine induced catatonic reaction. Arch. Int. Pharmacodyn. Ther. 137, 84–90 (1962)PubMedGoogle Scholar
  427. Munoz, C., Goldstein, L.: Quantitative EEG studies on the action of adrenergic blocking drugs upon the analeptic effects of DL amphetamine in rabbits. Pharmacologist 2, 80 (1960)Google Scholar
  428. Murrin, L.C., Morgenroth, V.H., Roth, R.H.: Dopaminergic neurons: effects of electrical stimulation on tyrosine hydroxylase. Mol. Pharmacol. 12, 1070–1081 (1976)PubMedGoogle Scholar
  429. Muscholl, E., Vogt, M.: The action of reserpine on sympathetic ganglia. J. Physiol. (Lond.) 136,7 P (1957)Google Scholar
  430. Muscholl, E., Vogt, M.: The action of reserpine on the peripheral sympathetic system. J. Physiol. (Lond.) 141, 132–155 (1958)Google Scholar
  431. Nagy, J.I., Lee, T., Seeman, P., Fibiger, H.C.: Direct evidence for presynaptic and postsynaptic dopamine receptors in brain. Nature 274, 278–281 (1978)PubMedGoogle Scholar
  432. Nathan, P.W.: Pain. Brit. med. Bull. 33, 149–156 (1977)Google Scholar
  433. Ng, K.Y., Chase, T.N., Colburn, R.W., Kopin, I.J.: L-Dopa induced release of cerebral monoamines. Science 170, 76–77 (1970)PubMedGoogle Scholar
  434. Nieoullon, A., Chéramy, A., Glowinski, J.: Release of dopamine in vivo from cat substantia nigra. Nature 266, 375–377 (1977 a)PubMedGoogle Scholar
  435. Nieoullon, A., Cheramy, A., Glowinski, J.: Nigral and striatal dopamine release under sensory stimuli. Nature 269, 340–342 (1977 b)PubMedGoogle Scholar
  436. Nieoullon, A., Cheramy, A., Glowinski, J.: Interdependence of the nigrostriatal dopaminergic systems on the two sides of the brain in the cat. Science 198, 416–418 (1977 c)PubMedGoogle Scholar
  437. Nieoullon, A., Cheramy, A., Leviel, V., Glowinski, J.: Effects of the unilateral nigral application of dopaminergic drugs on the in vivo release of dopamine in the two caudate nuclei of the cat. Euro. J. Pharmacol. 53, 289–296 (1979)Google Scholar
  438. Nybäck, H., Sedvall, G.: Effect of chlorpromazine on accumulation and disappearance of catecholamines formed from tyrosine-C14in brain. J. Pharmacol. Exp. Ther. 162, 294–301 (1968)PubMedGoogle Scholar
  439. Nybäck, H., Sedvall, G.: Effect of nigral lesion on chlorpromazine-induced acceleration of dopamine synthesis from [14C]tyrosine. J. Pharm. Pharmacol. 23, 322–326 (1971)PubMedGoogle Scholar
  440. Nybäck, H., Sedvall, G., Kopin, I.J.: Accelerated synthesis of dopamine-C14from tyrosine-C14in rat brain after chlorpromazine. Life Sci. 6, 2307–2312 (1967)PubMedGoogle Scholar
  441. Nybäck, H., Borzecki, Z., Sedvall, G.: Accumulation and disappearance of catecholamines formed from tyrosine-14C in mouse brain; effect of some psychotropic drugs. Eur. J. Pharmacol. 4, 395–403 (1968)PubMedGoogle Scholar
  442. Okada, Y., Hassler, R.: Uptake and release of γ-aminobutyric acid (GABA) in slices of substantia nigra of rat. Brain Res. 49, 214–217 (1973)PubMedGoogle Scholar
  443. O’Keeffe, R., Sharman, D.F., Vogt, M.: Effect of drugs used in psychoses on cerebral dopamine metabolism. Br. J. Pharmacol. 38, 287–304 (1970)PubMedGoogle Scholar
  444. Olpe, H.-R., Koella, W.P.: Inhibition of nigral and neocortical cells by γ-hydroxy butyrate: a microiontophoretic investigation. Eur. J. Pharmacol. 53, 359–364 (1979)PubMedGoogle Scholar
  445. Owen, F., Cross, A.J., Crow, T.J., Longen, A., Poulter, M., Riley, G.J.: Increased dopamine-receptor sensitivity in schizophrenia. Lancet II: 223–226 (1978)Google Scholar
  446. Paalzow, G., Paalzow, L.: Clonidine antinociceptive activity: effects of drugs influencing central monoaminergic and cholinergic mechanisms in the rat. Naunyn Schmiedebergs Arch. Pharmacol. 292, 119–126 (1976)Google Scholar
  447. Palmer, G.C.: Increased cyclic AMP response to norepinephrine in the rat brain following 6-hydroxydopamine. Neuropharmacology 11, 145–149 (1972)PubMedGoogle Scholar
  448. Palmer, G.C., Jones, D.J., Medina, M.A., Stavinoha, W.B.: Action of psychoactive drugs on cyclic AMP levels in mouse cerebral cortex and lung following microwave irradiation. Pharmacologist 17, 233 (1975)Google Scholar
  449. Palmer, G.C., Jones, D.J., Medina, M.A., Stavinoha,W.B.: Influence of injected psychoactive drugs on cyclic AMP levels in mouse brain and lung following microwave irradiation. Neuropharmacology 16, 435–443 (1977)PubMedGoogle Scholar
  450. Palmer, G.C., Jones, D.J., Medina, M.A., Palmer, S.J., Stavinoha, W.B.: Actions in vitro and in vivo of chlorpromazine and haloperidol on cyclic nucleotide systems in mouse cerebral cortex and cerebellum. Neuropharmacology 17, 491–498 (1978)PubMedGoogle Scholar
  451. Pepeu, G.: Involvement of central transmitters in narcotic analgesia. In: Advances in Pain Research and Therapy. J.J. Bonica, D. Albe-Fessard, Eds., Vol. 1: 595–600, Raven Press, New York (1976)Google Scholar
  452. Perkins, J.P., Moore, M.M.: Characterization of the adrenergic receptors mediating a rise in cyclic 3′,5′-adenosine monophosphate in rat cerebral cortex. J. Pharmacol. Exp. Ther. 185, 371–378 (1973)PubMedGoogle Scholar
  453. Peroutka, S.J., U’Prichard, D.C., Greenberg, D.A., Snyder, S.H.: Neuroleptic drug interactions with norepinephrine alpha receptor binding sites in rat brain. Neuropharmacology 16, 549–556 (1977)PubMedGoogle Scholar
  454. Persson, S.-Å.: Effect of morphine on the accumulation of DOPA after decarboxylase inhibition in the rat. Eur. J. Pharmacol. 55, 121–128 (1979)PubMedGoogle Scholar
  455. Pert, C.B., Snyder, S.H.: Opiate receptor: demonstration in nervous tissue. Science 779, 1011 – 1014 (1973)Google Scholar
  456. Pert, C.B., Kuhar, M.J., Snyder, S.H.: Autoradiographic localization of the opiate receptor in rat brain. Life Sci. 16, 1849–1854 (1975)PubMedGoogle Scholar
  457. Phillis, J.W., Tebēcis, A.K.: The effects of pentobarbitone sodium on acetylcholine excitation and noradrenaline inhibition of thalamic neurones. Life Sci. 6, 1621–1625 (1967 a)PubMedGoogle Scholar
  458. Phillis, J.W., Tebëcis, A.K.: The responses of thalamic neurones to iontophoretically applied monoamines. J. Physiol. (Lond.) 192, 715–745 (1967 b)Google Scholar
  459. Phillis, J.W., York, D.H.: Strychnine block of neural and drug induced inhibition in the cerebral cortex. Nature 216, 922–923 (1967)PubMedGoogle Scholar
  460. Phillis, J.W., Tebëcis, A.K., York, D.H.: Depression of spinal motoneurones by noradrenaline, 5-hydroxytryptamine and histamine. Eur. J. Pharmacol. 4, 471–475 (1968)PubMedGoogle Scholar
  461. Pijnenburg, A.J.J., Van Rossum, J.M.: Stimulation of locomotor activity following injection of dopamine into the nucleus accumbens. J. Pharm. Pharmacol. 25, 1003–1005 (1973)PubMedGoogle Scholar
  462. Pijnenburg, A.J.J., Woodruff, G.N., Van Rossum, J.M.: Ergometrine induced locomotor activity following intracerebral injection into the nucleus accumbens. Brain Res. 59, 289–302 (1973)PubMedGoogle Scholar
  463. Pijnenburg, A.J.J., Honig, W.M.M., Van Rossum, J.M.: Effects of antagonists upon locomotor stimulation induced by injection of dopamine and noradrenaline into the nucleus accumbens of nialamide-pretreated rats. Psychopharmacology (Berlin) 41, 175–180 (1975)Google Scholar
  464. Pijnenburg, A.J.J., Honig, W.M.M., Struyker Boudier, H.A.J., Cools, A.R., Van der Heyden, J.A.M., Van Rossum, J.M.: Further investigations on the effects of ergometrine and other ergot derivatives following injection into the nucleus accumbens of the rat. Arch. Int. Phar-macodyn. Ther. 222, 103–115 (1976)Google Scholar
  465. Pocidalo, J.J., Cathala, H.P., Himbert, J.: Action sur l’excitabilité sympathique du chlorhydrate de diméthylaminopropyl-N-chlorophénothiazine (4560 R. P.). C. R. Soc. Biol. (Paris) 146, 368–370 (1952)Google Scholar
  466. Poirier, L.J., Sourkes, I.L.: Influence of the substantia nigra on the catecholamine content of the striatum. Brain 88, 181–192 (1965)PubMedGoogle Scholar
  467. Pollard, H., Llorens, C., Schwartz, J.C., Cross, C., Dray, F.: Localization of opiate receptors and enkephalins in the rat striatum in relationship with the nigro striatal dopaminergic system. Brain. Res. 757, 392–398 (1978)Google Scholar
  468. Precht, W., Yoshida, M.: Blockage of caudate-evoked inhibition of neurons in the substantia nigra by picrotoxin. Brain Res. 32, 229–233 (1971)PubMedGoogle Scholar
  469. Preston, J.B.: Chlorpromazine: a possible mechanism of action. Fed. Proc. 15,468–469 (1956 a)Google Scholar
  470. Preston, J.B.: Effects of chlorpromazine on the central nervous system of the cat: A possible neural basis for action. J. Pharmacol. Exp. Ther. 118, 100–115 (1956b)PubMedGoogle Scholar
  471. Pycock, C., Tarsy, D., Marsden, C.D.: Inhibition of circling behavior by neuroleptic drugs in mice with unilateral 6-hydroxydopamine lesions of the striatum. Psychopharmacology (Berlin) 45, 211–219(1975)Google Scholar
  472. Quastel, D.M.J., Hackett, J.T., Okamoto, K.: Presynaptic action of central depressant drugs: inhibition of depolarization-secretion coupling. Can. J. Physiol. Pharmacol. 50, 279 (1972)PubMedGoogle Scholar
  473. Quik, M., Iversen, L.L.: Regional study of 3H-spiperone binding and the dopamine-sensitive adenylate cyclase in rat brain. Eur. J. Pharmacol. 56, 323–330 (1979)PubMedGoogle Scholar
  474. Quik, M., Iversen, L.L., Larder, A., Mackay, A.U.P.: Use of ADTN to define specific 3H-spiperone binding to receptors in brain. Nature 274, 513–514 (1978)PubMedGoogle Scholar
  475. Randrup, A., Munkvad, I.: Stereotyped activities produced by amphetamine in several animal species and man. Psychopharmacology (Berlin) 77, 300–310 (1967)Google Scholar
  476. Ranson, S.W.: The fasciculus cerebro-spinalis in the albino rat. Am. J. Anat. 14, 411–424 (1913)Google Scholar
  477. Ranson, S.W.: A note on the degeneration of the fasciculus cerebro-spinalis in the albino rat. J. Comp. Neurol. 24, 503–507 (1914)Google Scholar
  478. Ritchie, J.M., Greengard, P.: On the active structure of local anesthetics. J. Pharmacol. Exp. Ther. 133, 241–245 (1961)PubMedGoogle Scholar
  479. Roberge, C., Ebstein, B., Goldstein, M.: Stimulation of tyrosine hydroxylase (T.H.) activity by dibutyryl cyclic AMP (dB-cAMP) in synaptosomal preparations (S.P.). Fed. Proc. 33, 521 (1974)Google Scholar
  480. Roberts, M.H.T., Straughan, D.W.: An excitatory effect of 5-hydroxytryptamine on single cerebral cortical neurones. J. Physiol. (Lond.) 188, 27–28 P (1966)Google Scholar
  481. Roos, B.-E.: Effects of certain tranquillisers on the level of homovanillic acid in the corpus striatum. J. Pharm. Pharmacol. 17, 820–821 (1965)PubMedGoogle Scholar
  482. Roos, B.-E., Steg, G.: The effect of L-3,4-dihydroxyphenylalanine and DL-5-hydroxytrypto-phan on rigidity and tremor induced by reserpine, chlorpromazine and phenoxybenzamine. Life Sci. 3, 351–360 (1964)PubMedGoogle Scholar
  483. Rothballer, A.B.: Studies on the adrenaline-sensitive component of the reticular activating system. Electroencephalogr. Clin. Neurophysiol. 8, 603–621 (1956)Google Scholar
  484. Ryall, R.W.: Some actions of chlorpromazine. Br. J. Pharmacol. 11, 339–345 (1956)Google Scholar
  485. Salmoiraghi, G.C., Stefanis, C.N.: Patterns of central neurons responses to suspected transmitters. Arch. Ital. Biol. 103, 705–724 (1965)Google Scholar
  486. Sano, I., Gamo, T., Kakimoto, Y., Taniguchi, K., Takasada, M., Nishinuma, K.: Distribution of catechol compounds in human brain. Biochim. Biophys. Acta 32, 586–587 (1959)PubMedGoogle Scholar
  487. Satoh, H., Satoh, Y., Notsu, Y., Honda, F.: Adenosine 3′,5′-cyclic monophosphate as a possible mediator of rotational behaviour induced by dopaminergic receptor stimulation in rats lesioned unilaterally in the substantia nigra. Eur. J. Pharmacol. 39, 365–377 (1976)PubMedGoogle Scholar
  488. Sayers, A.C., Burki, H.R., Ruch, W., Asper, H.: Neuroleptic-induced hypersensitivity of striatal dopamine receptors in the rat as a model of tardive dyskinesias. Effects of clozapine, haloperidol, loxapine and chlorpromazine. Psychopharmacology (Berlin) 41, 97–104 (1975)Google Scholar
  489. Schaumann, W.: Beeinflussung der analgetischen Wirkung des Morphins durch Reserpin. Nau-nyn Schmiedebergs Arch. Pharmacol. 235, 1–9 (1958)Google Scholar
  490. Schildkraut, J.J., Kety, S.S.: Biogenic amines and emotion. Science 156, 21–30 (1967)PubMedGoogle Scholar
  491. Schlosser, W., Horst, W.D., Spiegel, H.E., Sigg, E.B.: Apomorphine and its effects on the spinal cord. Neuropharmacology 11, 417–426 (1972)PubMedGoogle Scholar
  492. Schneider, J.A.: Further studies on the central action of reserpine (Serpasil). Am. J. Physiol. 179, 670–671 (1954a)Google Scholar
  493. Schneider, J.A.: Reserpine antagonism of morphine analgesia in mice. Proc. Soc. Exp. Biol. Med. 87, 614–615 (1954b)PubMedGoogle Scholar
  494. Schneider, J.A.: Further characterization of central effects of reserpine (Serpasil). Am. J. Physiol. 181, 64–68 (1955)PubMedGoogle Scholar
  495. Schneider, J.A., Earl, A.E.: Effects of Serpasil on behavior and autonomic regulating mechanisms. Neurology 4, 657–667 (1954)PubMedGoogle Scholar
  496. Schulte, F.J., Henatsch, H.D.: Unterdrückung tonischer Eigenschaften von Alpha- und Gamma-Motoneuronen durch Phenothiazinkörper. Pflügers Arch. Ges. Physiol. 268, 65–66 (1958)Google Scholar
  497. Schultz, J., Daly, J.W.: Accumulation of cyclic adenosine 3′,5′-monophosphate in cerebral cortical slices from rat and mouse: stimulatory effect of a- and β-adrenergic agents and adenosine. J. Neurochem. 21, 1319–1326 (1973)PubMedGoogle Scholar
  498. Schultz, W., Ungerstedt, U.: Striatal cell supersensitivity to apomorphine in dopamine-lesioned rats correlated to behaviour. Neuropharmacology 17, 349–353 (1978)PubMedGoogle Scholar
  499. Schwarcz, R., Creese, I., Coyle, J.T., Snyder, S.H.: Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum. Nature 277, 766–768 (1978)Google Scholar
  500. Schwartz, J.C., Costentin, L, Martes, M.P., Protais, P., Baudry, M.: Review: modulation of receptor mechanisms in the CNS: hyper- and hyposensitivity to catecholamines. Neuropharmacology 17, 665–685 (1978)PubMedGoogle Scholar
  501. Schweitzer, A., Wright, S.: The action of adrenaline on the knee jerk. J. Physiol. (Lond.) 88, 476–491 (1937)Google Scholar
  502. Seeman, P.M., Bialy, H.S.: The surface activity of tranquilizers. Biochem. Pharmacol. 12, 1181–1191 (1963)PubMedGoogle Scholar
  503. Seeman, P., Lee, T.: Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188, 1217–1219 (1975)PubMedGoogle Scholar
  504. Seeman, P., Lee, T., Chau-Wong, M., Wong, K.: Antipsychotic drug doses and neuroleptic/ dopamine receptors. Nature 261, 717–719 (1976)Google Scholar
  505. Seeman, P., Staiman, A., Chau-Wong, M.: The nerve impulse-blocking actions of tranquilizers and the binding of neuroleptics to synaptosome membranes. J. Pharmacol. Exp. Ther. 190, 123–130 (1974)PubMedGoogle Scholar
  506. Seeman, P., Tedesco, J., Titeler, M., Hartley, E.J.: Antischizophrenic drugs: membrane sites of action. Advan. Pharmacol. Therap. Vol. 5. Neuropsychopharmacol. C. Dumont (Ed.), Oxford: Pergamon Press, pp. 3–20 (1978)Google Scholar
  507. Segal, M., Pickel, V., Bloom, F.: The projections of the nucleus locus coerulus: an autoradiographic study. Life Sci. 13, 817–821 (1973)PubMedGoogle Scholar
  508. Sethy, V.H., Van Woert, M.H.: Effect of L-DOPA on brain acetylcholine and choline in rats. Neuropharmacology 12, 27–31 (1973)PubMedGoogle Scholar
  509. Sethy, V.H., Van Woert, M.H.: Regulation of striatal acetylcholine concentration by dopamine receptors. Nature 251, 529–530 (1974 a)PubMedGoogle Scholar
  510. Sethy, V.H., Van Woert, M.H.: Modification of striatal acetylcholine concentration by dopamine receptor agonists and antagonists. Res. Commun. Chem. Path. Pharmacol. 8, 13–28 (1974b)Google Scholar
  511. Shaar, C.J., Smalstig, E.B., Clemens, J.A.: The effect of catecholamines, apomorphine, and monoamine oxidase on rat anterior pituitary prolactin release in vitro. Pharmacologist 15, 256 (1973)Google Scholar
  512. Share, N.N., Chai, C.Y., Wang, S.C.: Emesis induced by intra-cerebroventricular injections of apomorphine and deslanoside in normal and chemoreceptive trigger zone ablated dogs. J. Pharmacol. Exp. Ther. 147, 416–421 (1965)PubMedGoogle Scholar
  513. Sharman, D.F.: Changes in the metabolism of 3,4-dihydroxy-phenylethylamine (dopamine) in the striatum of the mouse induced by drugs. Br. J. Pharmacol. 28, 153–163 (1966)Google Scholar
  514. Shore, P.A., Brodie, B.B.: Influence of various drugs on serotonin and norepinephrine in the brain. In: Psychotropic Drugs. S. Garattini, V. Ghetti, Eds., pp. 423–427, Elsevier Publishing Company, Amsterdam (1957)Google Scholar
  515. Shore, P.A., Silver, S.L., Brodie, B.B.: Interaction of reserpine, serotonin and lysergic acid diethylamide in brain. Science 122, 284–285 (1955)PubMedGoogle Scholar
  516. Shore, P.A., Pletscher, A., Tomich, E.G., Carlsson, A., Kuntzman, R., Brodie, B.B.: Role of brain serotonin in reserpine action. Ann. N. Y. Acad. Sci. 66, 609–617 (1957)PubMedGoogle Scholar
  517. Sibley, D.R., Creese, I.: Guanine nucleotides regulate anterior pituitary dopamine receptors. Eur. J. Pharmacol. 55, 341–343 (1979)PubMedGoogle Scholar
  518. Sigg, E.B., Ochs, S., Gerard, R.W.: Effects of medullary hormones on the somatic nervous system in the cat. Am. J. Physiol. 183, 419–426 (1955)PubMedGoogle Scholar
  519. Sigg, E.B., Caprio, G., Schneider, J.A.: Synergism of amines and antagonism of reserpine to morphine analgesia. Proc. Soc. Exp. Biol. Med. 97, 97–100 (1958)PubMedGoogle Scholar
  520. Siggins, G.R., Hoffer, B.J., Bloom, F.E.: Cyclic adenosine monophosphate: possible mediator for norepinephrine effects on cerebellar Purkinje cells. Science 165, 1018–1020 (1969)PubMedGoogle Scholar
  521. Siggins, G.R., Hoffer, B.J., Bloom, F.E.: Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. III. Evidence for mediation of norepinephrine effects by cyclic 3′,5′-adenosine monophosphate. Brain Res. 25, 535–553 (1971a)PubMedGoogle Scholar
  522. Siggins, G.R., Oliver, A.P., Hoffer, B.J., Bloom, F.E.: Cyclic adenosine monophosphate and norepinephrine: Effects of transmembrane properties of cerebellar Purkinje cells. Science 171, 192–194 (1971b)PubMedGoogle Scholar
  523. Siggins, G.R., Battenberg, E.F., Hoffer, B.J., Bloom, F.E., Steiner, A.L.: Noradrenergic stimulation of cyclic adenosine monophosphate in rat Purkinje neurons: an immuno-cytochemi-cal study. Science 179, 585–588 (1973)PubMedGoogle Scholar
  524. Siggins, G.R., Hoffer, B.J., Ungerstedt, U.: Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons. Life Sci. 15, 779–792 (1974)PubMedGoogle Scholar
  525. Sigwald, J., Bouttier, D., Courvoisier, S.: Les accidents neurologiques des médications neuroleptiques. Rev. Neurol. (Paris) 100, 31–73 (1959)Google Scholar
  526. Silvestrini, B., Maffii, G.: Effects of chlorpromazine, promazine, diethazine, reserpine, hydroxyzine, and morphine upon some mono- and polysynaptic motor reflexes. J. Pharm. Pharmacol. 17, 224–233 (1959)Google Scholar
  527. Smalstig, E.B., Sawyer, B.D., Clemens, J.A.: Inhibition of rat prolactin release by apomorphine in vivo and in vitro. Endocrinology 95, 123–129 (1974)PubMedGoogle Scholar
  528. Smith, C.M., Murayama, S.: Rigidity of spinal origin: quantitative evaluation of agents with muscle relaxant activity in cats. Neuropharmacology 3, 505–515 (1964)Google Scholar
  529. Sourkes, T.L.: Formation of dopamine in vivo: relation to the function of the basal ganglia. Rev. Can. Biol. 20, 187–196 (1961)Google Scholar
  530. Stadler, H., Lloyd, K.G., Gadea-Ciria, M., Bartholini, G.: Enhanced striatal acetylcholine release by chlorpromazine and its reversal by apomorphine. Brain Res. 55, 476–480 (1973)PubMedGoogle Scholar
  531. Stefanis, C.: Hippocampal neurons: their responsiveness to micro-electrophoretically administered endogenous amines. Pharmacologist 6, 171 (1964)Google Scholar
  532. Steg, G.: Efferent muscle innervation and rigidity. Acta Physiol. Scand. 61, suppl. 225 (1964)Google Scholar
  533. Steg, G.: Efferent muscle control and rigidity. In: Muscular Afferents and Motor Control. Nobel Symposium I, pp. 437–443, R. Granit, Ed., Almqvist & Wiksell, Stockholm and John Willy & Sons, New York, London, Sydney (1966)Google Scholar
  534. Stern, J., Ward, A.A.: Supraspinal and drug modulation of the α-motor system. A. M. A. Arch. Neurol. 6, 404–413 (1962)Google Scholar
  535. Sternbach, R.A., Janowsky, D.S., Huey, L.Y., Segal, D.S.: Effects of altering brain serotonin activity on human chronic pain. In: Advances in Pain Research and Therapy, Vol. 1 J.E. Bonica, D. Albe-Fessard, Eds., pp. 601–606. New York: Raven Press 1976Google Scholar
  536. Stevens, J.: An anatomy of schizophrenia. Arch. Gen. Psychiaty 29, 177–189 (1973)Google Scholar
  537. Stille, G., Hippius, H.: Kritische Stellungnahme zum Begriff der Neuroleptika (anhand von pharmakologischen und klinischen Befunden mit Clozapin). Pharmakopsychiatr. Neuro-psychopharmakol. 4, 182–191 (1971)Google Scholar
  538. Stille, G., Lauener, H., Eichenberger, E.: The pharmacology of 8-chloro-11-(4-methyl-l-pipe-razinyl)-5H-dibenzo (b,e) (1,4) diazepine (clozapine). Farmaco [Prat.] 26, 603–625 (1971)Google Scholar
  539. Struyker Boudier, H.A.J., Gielen, W., Cools, A.R., Van Rossum, J.M.: Pharmacological analysis of dopamine-induced inhibition and excitation of neurones in the snail Helix aspersa. Arch. Int. Pharmacodyn. Ther. 209, 324–331 (1974)Google Scholar
  540. Svensson, T.H., Bunney, B.S., Aghajanian, G.K.: Inhibition of both noradrenergic and serotonergic neurons in brain by the α-adrenergic agonist Clonidine. Brain Res. 92, 291–306 (1975)PubMedGoogle Scholar
  541. Szabo, J.: Projections from the body of the caudate nucleus in the rhesus monkey. Exp. Neurol. 27, 1–15 (1970)PubMedGoogle Scholar
  542. Szabo, J.: The course and distribution of efferents from the tail of the caudate nucleus in the monkey. Exp. Neurol. 37, 562–572 (1972)PubMedGoogle Scholar
  543. Takaori, S., Fukuda, N., Amano, Y.: Mode of action of chlorpromazine on unit discharges from nuclear structures in the brain stem of cats. Jpn. J. Pharmacol. 20, 424–431 (1970)PubMedGoogle Scholar
  544. Takaori, S., Nakai, Y., Matsuoka, I., Sasa, M., Fukuda, N., Shimamoto, K.: The mechanism of antagonism between apomorphine and metoclopramide on unit discharges from nuclear structures in the brainstem of the cat. Neuropharmacology 7, 115–126 (1968)Google Scholar
  545. Tarsy, D., Baldessarini, R.J.: Pharmacologically induced behavioral supersensitivity to apomorphine. Nature New Biol. 245, 262–263 (1973)PubMedGoogle Scholar
  546. Tedeschi, D.H., Tedeschi, R.E., Fellows, E.J.: The effects of tryptamine on the central nervous system, including a pharmacological procedure for the evaluation of iproniazidlike drugs. J. Pharm. Exp. Ther. 126, 223–232 (1959)Google Scholar
  547. Ten Cate, J., Boeles, J.T.F., Biersteker, P.A.: The action of adrenaline and noradrenaline on the knee jerk. Arch. Int. Physiol. Biochim. 67, 468–488 (1959)Google Scholar
  548. Thierry, A.M., Blanc, G., Sobel, A., Stinus, L., Glowinski, J.: Dopaminergic terminals in the rat cortex. Science 182, 499–501 (1973)PubMedGoogle Scholar
  549. Titeler, M., Seeman, P.: Antiparkinsonian drug doses and neuroleptic receptors. Experientia 34, 1490–1492 (1978)PubMedGoogle Scholar
  550. Torrey, E.F., Petersen, M.R.: Schizophrenia and the limbic system. Lancet II: 942–946 (1974)Google Scholar
  551. Trabucchi, M., Cheney, D., Racagni, G., Costa, E.: Involvement of brain cholinergic mechanisms in the action of chlorpromazine. Nature 249, 664–666 (1974)PubMedGoogle Scholar
  552. Trabucchi, M., Cheney, D.L., Racagni, G., Costa, E.: In vivo inhibition of striatal acetylcholine turnover by L-DOPA, apomorphine and (+)-amphetamine. Brain Res. 85, 130–134 (1975)PubMedGoogle Scholar
  553. Trendelenburg, U., Gravenstein, J.S.: Effect of reserpine pretreatment on stimulation of the ac-celerans nerve of the dog. Science 128, 901–903 (1958)PubMedGoogle Scholar
  554. Udenfriend, S., Weissbach, H., Bogdanksi, D.F.: Increase in tissue serotonin following administration of its precursor 5-hydroxytryptophan. J. Biol. Chem. 224, 803–810 (1957 a)PubMedGoogle Scholar
  555. Udenfriend, S., Weissbach, H., Bogdanski, D.F.: Biochemical findings relating to the action of serotonin. Ann. N. Y. Acad. Sci. 66, 602–608 (1957 b)PubMedGoogle Scholar
  556. Ueda, T., Maeno, H., Greengard, P.: Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′:5′-monophosphate. L Biol. Chem. 248, 8295–8305 (1973)Google Scholar
  557. Ungerstedt, U.: 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5, 107–110 (1968)PubMedGoogle Scholar
  558. Ungerstedt, U.: Sterotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. [Suppl.] 367, 1–48 (1971a)Google Scholar
  559. Ungerstedt, U.: Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigrostriatal dopamine system. Acta Physiol. Scand. [Suppl.] 367, 69–93 (1971b)Google Scholar
  560. Ungerstedt, U.: Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the ni-gro-striatal dopamine system. Acta Physiol. Scand. [Suppl.] 367, 95–122 (1971c)Google Scholar
  561. Ungerstedt, U., Pycock, C.: Functional correlates of dopamine neurotransmission. Bull. Schweiz. Akad. Med. Wiss. 30, 44–55 (1974)PubMedGoogle Scholar
  562. Ungerstedt, U., Butcher, L.L., Butcher, S.G., Andén, N.-E., Fuxe, K.: Direct chemical stimulation of dopaminergic mechanisms in the neostriatum of the rat. Brain Res. 14, 461–471 (1969)PubMedGoogle Scholar
  563. Ungerstedt, U., Avemo, A., Avemo, E., Ljungberg, T., Ranje, C.: Animal models of parkinsonism. Adv. Neurol. 3, 257–271 (1973)Google Scholar
  564. Ungerstedt, U., Ljungberg, T., Hoffer, B., Siggins, G.: Dopaminergic supersensitivity in the striatum. Adv. Neurol. 9, 57–65 (1975)PubMedGoogle Scholar
  565. U’prichard, D.C., Snyder, S.H.: 3H-Catecholamine binding to α-receptors in rat brain: enhancement by reserpine. Eur. J. Pharmacol. 51, 145–155 (1978)PubMedGoogle Scholar
  566. Valdman, A.V.: On the localization of the action of chlorpromazine and analgesics in reticular formation of the brain stem. J. Neuropharmacol. 1, 197–200 (1962)Google Scholar
  567. Van der Wende, C., Spoerlein, M.T.: Role of dopaminergic receptors in morphine analgesia and tolerance. Res. Commun. Chem. Path. Pharmacol. 5, 35–43 (1973)Google Scholar
  568. Vogt, M.: The concentration of sympathine in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. (Lond.) 123, 451–481 (1954)Google Scholar
  569. Vogt, M.: Effect of drugs on metabolism of catecholamines in the brain. Br. Med. Bull. 21, 57–61 (1965)PubMedGoogle Scholar
  570. Vogt, M.: Functional aspects of the role of catecholamines in the nervous system. Br. Med. Bull. 29, 168–172 (1973)PubMedGoogle Scholar
  571. von Voigtlander, P.F., Moore, K.E.: The release of H3-dopamine from cat brain following electrical stimulation of the substantia nigra and caudate nucleus. Neuropharmacology 10, 733–741 (1971)Google Scholar
  572. von Voigtlander, P.F., Moore, K.E.: Involvement of nigrostriatal neurons in the in vivo release of dopamine by amphetamine, amantadine and tyramine. J. Pharmacol. Exp. Ther. 184, 542–552 (1973 a)Google Scholar
  573. von Voigtlander, P.F., Moore, K.E.: Turning behavior of mice with unilateral 6-hydroxydopamine lesions in the striatum: effects of apomorphine, L-Dopa, amantadine, amphetamine and other psychomotor stimulants. Neuropharmacology 12, 451–462 (1973 b)Google Scholar
  574. Waldmeier, P.L., Maitre, L.: On the relevance of preferential increases of mesolimbic versus striatal dopamine turnover for the prediction of antipsychotic activity of psychotropic drugs. L Neurochem. 27, 589–597 (1976)Google Scholar
  575. Walker, J.B.; Walker, LP.: Neurohumoral regulation of adenylate cyclase activity in rat striatum. Brain Res. 54, 386–390 (1973)PubMedGoogle Scholar
  576. Walters, J.R., Roth, R.H.: Dopaminergic neurons: drug-induced antagonism of the increase in tyrosine hydroxylase activity produced by cessation of impulse flow. J. Pharmacol. Exp. Ther. 191, 82–91 (1974)PubMedGoogle Scholar
  577. Walters, J.R., Bunney, B.S., Roth, R.H.: Piribedil and apomorphine: pre- and postsynaptic effects on dopamine synthesis and neuronal activity. Adv. Neurol. 9, 273–284 (1975)PubMedGoogle Scholar
  578. Walton, K.G., Liepman, P., Baldessarini, R.J.: Inhibition of dopamine stimulated adenylate cyclase activity by phenoxybenzamine. Eur. J. Pharmacol. 52, 231–234 (1978)PubMedGoogle Scholar
  579. Wand, P.: The response of α-motoneurons of different size to stretch and vibration of extensor muscles after injection of 5-hydroxytryptophan in spinal rats. Arch. Ital. Biol. 114, 228–243 (1976)PubMedGoogle Scholar
  580. Wang, S.C.: III. Emetic and antiemetic drugs. Physiol. Pharmacol. 2, 255–328 (1965)Google Scholar
  581. Wang, S.C., Borison, H.L.: A new concept of organization of the central emetic mechanism: recent studies on the sites of action of apomorphine, copper sulfate and cardiac glycosides. Gastroenterology 22, 1–12 (1952)PubMedGoogle Scholar
  582. Wang, S.C., Glaviano, V.V.: Locus of emetic action of morphine and hydergine in dogs. J. Pharmacol. Exp. Ther. 111, 329–334 (1954)PubMedGoogle Scholar
  583. Weber, E.: Ein Rauwolfiaalkaloid in der Psychiatrie: Scine Wirkungsähnlichkeit mit Chlorpro-mazin. Schweiz. Med. Wochenschrift. 84, 968–970 (1954)Google Scholar
  584. Weber, L.J., Horita, A.: A study of 5-hydroxytryptamine formation from L-tryptophan in the brain and other tissues. Biochem. Pharmacol. 14, 1141–1149 (1965)PubMedGoogle Scholar
  585. Webster, R.A.: The antiadrenaline activity of some phenothiazine derivatives. Br. J. Pharmacol. 25, 566–576 (1965)Google Scholar
  586. Weight, F., Salmoiraghi, G.C.: Response of single spinal cord neurons to ACh, NE and 5-HT administered by microelectrophoresis. Pharmacologist 7, 216 (1965)Google Scholar
  587. Weight, F.F., Salmoiraghi, G.C.: Responses of spinal cord interneurons to acetylcholine, norepinephrine and serotonin administered by microelectrophoresis. J. Pharmacol. Exp. Ther. 153, 420–427 (1966 a)PubMedGoogle Scholar
  588. Weight, F.F., Salmoiraghi, G.C.: Adrenergic responses of Renshaw cells. J. Pharmacol. Exp. Ther. 154, 391–397 (1966b)PubMedGoogle Scholar
  589. Weight, F.F., Salmoiraghi, G.C.: Motoneurone depression by norepinephrine. Nature 213, 1229–1230 (1967)Google Scholar
  590. Westerink, B.H.C., Korf, J.: Regional rat brain levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid: concurrent fluorometric measurement and influence of drugs. Eur. J. Pharmacol. 38, 281–291 (1976)PubMedGoogle Scholar
  591. Westerink, B.H.C., Lejeune, B., Korf, J., Van Praag, H.M.: On the significance of regional dopamine metabolism in the rat brain for the classification of centrally active drugs. Eur. J. Pharmacol. 42, 179–190 (1977)PubMedGoogle Scholar
  592. Wilson, C.W.M., Brodie, B.B.: The absence of blood-brain barrier from certain areas of the central nervous system. J. Pharmacol. Exp. Ther. 133, 332–334 (1961)PubMedGoogle Scholar
  593. Wilson, C.W.M., Murray, A.W., Titus, E.: The effects of reserpine on uptake of epinephrine in brain and certain areas outside the blood-brain barrier. J. Pharmacol. Exp. Ther. 135, 11–16(1962)PubMedGoogle Scholar
  594. Wilson, V.J.: Effect of intra-arterial injections of adrenaline on spinal extensor and flexor reflexes. Am. J. Physiol. 186, 491–496 (1956)PubMedGoogle Scholar
  595. Windle, W.F., Cammermeyer, J.: Functional and structural observations on chronically reser-pinized monkeys. Science (N.Y.) 127, 1503 (1958)Google Scholar
  596. Windle, W.F., Cammermeyer, J., Joralemon, J.T., Smart, J.O., Feringa, E., McQuillen, M.: Tremor in african green monkeys. Fed. Proc. 15, 202 (1956)Google Scholar
  597. Witkin, L.B., Spitaletta, P., Plummer, A.J.: Effects of some central depressants on two simple reflexes in the mouse. J. Pharmacol. Exp. Ther. 126, 330–333 (1959)PubMedGoogle Scholar
  598. Witkin, L.B., Spitaletta, P., Plummer, A.J.: The effects of some central depressants on spinal reflexes of the intact anesthetized cat. Arch. Int. Pharmacodyn. Ther. 124, 105–115 (1960)PubMedGoogle Scholar
  599. Woodruff, G.N., McCarthy, P.S., Walker, R.J.: Studies on the pharmacology of neurones in the nucleus accumbens of the rat. Brain Res. 115, 233–242 (1976)PubMedGoogle Scholar
  600. Wuerthele, S.M., Moore, K.E.: Studies on the mechanisms of L-DOPA-induced depletion of 5-hydroxytryptamine in the mouse brain. Life Sci. 20, 1675–1680 (1977)PubMedGoogle Scholar
  601. Yaksh, T.L., Rudy, T.A.: Analgesia mediated by a direct spinal action of narcotics. Science 192, 1357–1358 (1976)PubMedGoogle Scholar
  602. Yaksh, T.L., Rudy, T.A.: Studies on the direct spinal action of narcotics in the production of analgesia in the rat. J. Pharmacol. Exp. Ther. 202, 411–428 (1977)PubMedGoogle Scholar
  603. Yaksh, T.L., Yamamura, H.I.: Depression by morphine of the resting and evoked release of [3H]-acetylcholine from the cat caudate nucleus in vivo. Neuropharmacology 16, 227–233 (1977)PubMedGoogle Scholar
  604. Yamaguchi, N., Ling, G.M., Marczynski, T.J.: The effects of chemical stimulation of the preoptic region, nucleus centralis medialis or brain stem reticular formation with regard to sleep and wakefulness. Recent Adv. Biol. Psychiatr. 6, 9–20 (1964)Google Scholar
  605. York, D.H.: Possible dopaminergic pathway from substantia nigra to putamen. Brain Res. 20, 233–249 (1970)PubMedGoogle Scholar
  606. York, D.H.: Dopamine receptor blockade — a central action of chlorpromazine on striatal neurones. Brain Res. 37, 91–99 (1972 a)PubMedGoogle Scholar
  607. York, D.H.: Potentiation of lumbo-sacral monosynaptic reflexes by the substantia nigra. Exp. Neurol. 36, 437–448 (1972 b)PubMedGoogle Scholar
  608. York, D.H.: Motor responses induced by stimulation of the substantia nigra. Exp. Neurol. 41, 323–330 (1973 a)PubMedGoogle Scholar
  609. York, D.H.: Antagonism of descending effects of the substantia nigra on lumbo-sacral monosynaptic reflexes. Neuropharmacology 12, 629–636 (1973 b)PubMedGoogle Scholar
  610. Yoshida, M., Precht, W.: Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers. Brain Res. 32, 225–227 (1971)PubMedGoogle Scholar
  611. Zieglgänsberger, W., Bayerl, H.: The mechanism of inhibition of neuronal activity by opiates in the spinal cord. Brain Res. 115, 111–128 (1976)PubMedGoogle Scholar
  612. Zieglgänsberger, W., Satoh, M.: The mechanism of inhibition by morphine on spinal neurones of the cat. Exp. Brain. Res. 23, 444 (1975)Google Scholar
  613. Zivkovic, B., Guidotti, A., Revuelta, A., Costa, E.: Effect of thioridazine, clozapine and other antipsychotics on the kinetic state of tyrosine hydroxylase and on the turnover rate of dopamine in striatum and nucleus accumbens. J. Pharmacol. Exp. Ther. 194, 37–46 (1975)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • I. Jurna

There are no affiliations available

Personalised recommendations