Advertisement

Antipsychotics and Experimental Seizure Models

  • R. Kretzschmar
  • H. J. Teschendorf
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 55 / 1)

Abstract

Shortly after the introduction of chlorpromazine into the therapy of schizophrenic psychosis the occurrence of epileptic fits was observed under that therapy. Since then these side effects were also found with numerous other neuroleptics of the pheno-thiazine type and with reserpine (Bein, 1956; Schenker and Herbst, 1963). Synoptic papers on the literature compiled by Logothetis (1967), Itil (1970), and Itil and Myers (1973) mention the incidence of seizures as a clinical side effect of various neuroleptic drug therapies. Itil also considers the changes of the human EEG induced by neuroleptic drugs. In his papers Itil hardly deals with findings obtained in animal experiments on the behavior of neuroleptic drugs in seizure models.

Keywords

Biogenic Amine Anticonvulsant Effect Clonic Seizure Seizure Threshold Neuroleptic Drug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aceto, M.D.: Effects of CNS agents on nicotine extensor convulsions and lethality in mice and their sedative-antianxiety effects in man. Pharmacologist 16, 205 (1974)Google Scholar
  2. Arrigoni-Martelli, E., Kramer, M.: Studio farmacologico di un nuovo derivato fenotiazinico: La perfenazina. Arch. Int. Pharmacodyn. Ther. 119, 311–333 (1959)PubMedGoogle Scholar
  3. Arushanian, E.B., Avakian, R.M.: Metrazol-induced petit mal: the role played by monoamin-ergic mechanisms and striatum. Pharmacol. Biochem. Behavior 8, 113–117 (1978)Google Scholar
  4. Azzaro, A.J.: The role of biogenic amines in drug induced alterations of the minimal electroshock seizure threshold in the mouse. Dissertation Abstr. Int. 31, 2863-B–64-B (1970)Google Scholar
  5. Azzaro, A.J., Wenger, G.R., Craig, C.R., Stitzel, R.E.: Reserpine-induced alterations in brain amines and their relationship to changes in the incidence of minimal electroshock seizures in mice. J. Pharmacol. Exp. Ther. 180, 558–568 (1972)PubMedGoogle Scholar
  6. Balestrieri, A.: Le azioni di alcuni derivati della fenotiazina nei confronti di agenti convulsivanti. Arch. Int. Pharmacodyn. Ther. 100, 361–372 (1955 a)PubMedGoogle Scholar
  7. Balestrieri, A.: Azione anticonvulsivante e struttura molecolare di derivati fenotiazinici. Arch. Int. Pharmacodyn. Ther. 103, 1–12 (1955 b)PubMedGoogle Scholar
  8. Bastian, J.W., Krause, W.E., Ridlon, S.A., Ercoli, N.: CNS drug specificity as determined by the mouse intravenous pentylenetetrazol technique. J. Pharmacol. Exp. Ther. 127, 75–80 (1959)PubMedGoogle Scholar
  9. Bein, H.J.: The pharmacology of Rauwolfia. Pharmacol. Rev. 8, 435–483 (1956)PubMedGoogle Scholar
  10. Bertrand, I., Quivy, D., Gayet-Hallion, Th.: Sur la potentialisation, par la chlorpromazine, de l’effet anticonvulsivant de la diphényl-hydantoine. Compt. Rend. Soc. Biol. 148, 1170–1172 (1954)Google Scholar
  11. Bertrand, I., Gayet-Hallion, Th., Quivy, D.: Influence exercée par certains ganglioplégiques et neuroplégiques sur l’effet anticonvulsivant de la diphényl-hydantoine. Arch. Int. Pharmacodyn. Ther. 100, 283–297 (1955)PubMedGoogle Scholar
  12. Bevan, W., Chinn, R.McC.: Sound-induced convulsions in rats treated with reserpine. J. Comp. Physiol. Psychol. 50, 311–314 (1957)PubMedGoogle Scholar
  13. Bianchi, C.: Anticonvulsant action of some anti-epileptic drugs in mice pre-treated with Rauwolfia alkaloids. Br. J. Pharmacol. 11, 141–146 (1956)Google Scholar
  14. Bielec, S.: Influence of reserpine on the behavior of mice susceptible to audiogenic seizures. Arch. Int. Pharmacodyn. Ther. 119, 352–357 (1959)PubMedGoogle Scholar
  15. Boggan, W.O., Seiden, L.S.: Dopa reversal of reserpine enhancement of audiogenic seizure susceptibility in mice. Physiol. Behav. 6, 215–217 (1971)PubMedGoogle Scholar
  16. Boggan, W.O., Seiden, L.S.: 5-Hydroxytryptophan reversal of reserpine enhancement of audiogenic seizure susceptibility in mice. Physiol. Behav. 10, 9–12 (1973)PubMedGoogle Scholar
  17. Chen, G., Bohner, B.: A study of the neuropharmacologic properties of certain convulsants, anticonvulsants and reserpine. J. Pharmacol. 117, 142–148 (1956)Google Scholar
  18. Chen, G., Bohner, B.: A method for the biological assay of reserpine and reserpine-like activity. J. Pharmacol. 119, 559–565 (1957)Google Scholar
  19. Chen, G., Bohner, B.: A study of central nervous system stimulants. J. Pharmacol. Exp. Ther. 123, 212–215 (1958)PubMedGoogle Scholar
  20. Chen, G., Bohner, B.: A study of certain CNS depressants. Arch. Int. Pharmacodyn. Ther. 125, 1–20 (1960)PubMedGoogle Scholar
  21. Chen, G., Bohner, B.: The anti-reserpine effects of certain centrally-acting agents. J. Pharmacol. Exp. Ther. 131, 179–184 (1961)PubMedGoogle Scholar
  22. Chen, G., Ensor, C.R., Bohner, B.: A facilitation action of reserpine on the central nervous system. Proc. Soc. Exp. Biol. Med. 86, 507–510 (1954)PubMedGoogle Scholar
  23. Chen, G., Ensor, C.R., Bohner, B.: The participation of biogenic amines in electrically induced extensor-seizures to certain drugs. Pharmacologist 9, 189 (1967)Google Scholar
  24. Chen, G., Ensor, C.R., Bohner, B.: Studies of drug effects on electrically induced extensor seizures and clinical implications. Arch. Int. Pharmacodyn. Ther. 172, 183–218 (1968)PubMedGoogle Scholar
  25. Chimote, K.V., Moghe, P.J.: Putative neurotransmitters in CNS and chemoconvulsions. Arch. Int. Pharmacodyn. Ther. 228, 304–313 (1977)PubMedGoogle Scholar
  26. Christensen, J.A., Hernestam, S., Lassen, J.B., Sterner, N.: Pharmacological and toxicological studies on γ-(4-methylpiperidino)-p-fluorobutyrophenone (FG 5111) — A new neuroleptic agent. Acta Pharmacol. Toxicol. (Kbh.) 23, 109–132 (1965)Google Scholar
  27. Coscia, L., Sansone, M., Causa, P.: Fenotiazinici e convulsioni da metrazolo nel topo. Arch. Int. Pharmacodyn. Ther. 159, 48–52 (1966)PubMedGoogle Scholar
  28. Courvoisier, S., Fournel, J., Ducrot, R., Kolsky, M., Koetschet, P.: Propriétés pharmacodyna-miques du chlorhydrate de chloro-3 (diméthylamino-3′ propyl)-10 phénothiazine (4.560 R. P.). Arch. Int. Pharmacodyn. Ther. 92, 359 (1953)Google Scholar
  29. Courvoisier, S., Ducrot, R., Fournel, J., Mou, L.: Propriétés pharmacologiques générales d’un nouveau dérivé de la phénothiazine, neuroleptique puissant a action neurovégétative discrete, le chlorhydrate de (méthyl-2′ diméthylamino-3′ propyl-1′)-10 phénothiazine (6.549 R. P.). Arch. Int. Pharmacodyn. Ther. 115, 90–113 (1958)PubMedGoogle Scholar
  30. Davison, K., Bagley, C.R.: Schizophrenia-like psychoses associated with organic disorders of the central nervous system: A review of the literature. Br. J. Psychiatry 114, 113–184 (1968)Google Scholar
  31. Delgado, J.M.R., Mihailovic, L.: Use of intracerebral electrodes to evaluate drugs that act on the central nervous system. Ann. N.Y. Acad. Sci. 64, 644–666 (1956)PubMedGoogle Scholar
  32. De Salva, S., Evans, R.: Continuous intravenous infusion of strychnine in rats: II. Antagonism by various drugs. Arch. Int. Pharmacodyn. Ther. 125, 348–354 (1960)Google Scholar
  33. De Schaepdryver, A.F., Piette, Y., Delaunois, A.L.: Brain amines and electroshock threshold. Arch. Int. Pharmacodyn. Ther. 140, 358–367 (1962)Google Scholar
  34. Deshpande, V.R., Sharma, M.L., Dashputra, P.G., Kherdikar, P.R., Grewal, R.S.: Effect of chlorpromazine and prochlorperazine on metrazol induced convulsions in frogs. Arch. Int. Pharmacodyn. Ther. 141, 525–531 (1963)PubMedGoogle Scholar
  35. Everett, G.M., Toman, J.E.P., Smith, Jr., A.H.: Reduction of electroshock seizure latency and other central actions of reserpine. Fed. Proc. 14, 337 (1955)Google Scholar
  36. Fink, G.B., Swinyard, E.A.: Modification of maximal audiogenic and electroshock seizures in mice by psychopharmacologic drugs. J. Pharmacol. Exp. Ther. 127, 318–324 (1959)PubMedGoogle Scholar
  37. Gangloff, H., Monnier, M.: Topic action of reserpine, serotonin, and chlorpromazine on the unanesthetized rabbit’s brain. Helv. Physiol. Acta 15, 83–104 (1957)Google Scholar
  38. Goldstein, D.B.: An animal model for testing effects of drugs on alcohol withdrawal reactions. J. Pharmacol. Exp. Ther. 183, 14–22 (1972)PubMedGoogle Scholar
  39. Gray, W.D., Rauh, CE.: The anticonvulsant action of inhibitors of carbonic anhydrase: Relation to endogenous amines in brain. J. Pharmacol. Exp. Ther. 155, 127–155 (1967)PubMedGoogle Scholar
  40. Gray, W.D., Rauh, CE.: The relation between monoamines in brain and the anticonvulsant action of inhibitors of carbonic anhydrase. J. Pharmacol. Exp. Ther. 177, 206–218 (1971)PubMedGoogle Scholar
  41. Gray, W.D., Rauh, CE., Shanahan, R.W.: The mechanism of the antagonistic action of reserpine on the anticonvulsant effect of inhibitors of carbonic anhydrase. J. Pharmacol. Exp. Ther. 139, 350–360 (1963)PubMedGoogle Scholar
  42. Gujral, M.L., Saxena, P.N., Kulsreshtha, J.K.: Effect of chlorpromazine on dilantin-protection against electroshock convulsions. J. Indian Med. Prof. 3, 1141–1142 (1956)Google Scholar
  43. Hauschild, F. ct. by Feller, K.: Gasstoffwechselversuche mit einigen Phenothiazinkörpern. Arch. Exp. Pathol. Pharmacol. 225, 90–91 (1955)Google Scholar
  44. Heming, A.E., Holtkamp, D.E., Huntsman, D.B., Doggett, M.C., Mansor, L.F.: The effect of chlorpromazine on electroshock seizure threshold, eosinopenia, and inflammation. J. Pharmacol. Exp. Ther. 116, 28 (1956)Google Scholar
  45. Itil, T.M.: Convulsive and anticonvulsive properties of neuro-psycho-pharmaca. In: Epilepsy. Mod. Probl. Pharmacopsychiat., Vol. 4, pp. 270–305. Basel, New York: Karger 1970Google Scholar
  46. Itil, T.M., Myers, J.P.: Epileptic and anti-epileptic properties of psychotropic drugs. In: Anticonvulsant drugs. Mercier, J. (ed.), Vol. II, pp. 599–622. International encyclopedia of pharmacology and therapeutics, Section 19. Oxford, New York: Pergamon Press 1973Google Scholar
  47. Jenney, E.H.: Changes in convulsant thresholds after Rauwolfia serpentina, reserpine and veriloid. Fed. Proc. 13, 370–371 (1954)Google Scholar
  48. Jobe, P.C., Picchioni, A.L., Chin, L.: Role of brain norepinephrine in audiogenic seizure in the rat. J. Pharmacol. Exp. Ther. 184, 1–9 (1973)PubMedGoogle Scholar
  49. Jones, B.J., Roberts, D.J.: The effects of intracerebroventricularly administered noradnamine and other sympathomimetic amines upon leptazol convulsions in mice. Br. J. Pharmacol. 34, 27–31 (1968)PubMedGoogle Scholar
  50. Jurna, I., Regélhy, B.: The antagonism between reserpine and some antiparkinson drugs in elec-troseizure. Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 259, 442 (1968)Google Scholar
  51. Kilian, M., Frey, H.-H.: Central monoamines and convulsive thresholds in mice and rats. Neuropharmacology 12, 681–692 (1973)PubMedGoogle Scholar
  52. Kobayashi, T., Ishikawa, T.: Effects of psychotropic drugs on hippocampal after-discharges in the rabbit. Neuropsychopharmacology 4, 320–326 (1965)Google Scholar
  53. Kobinger, W.: Zusammenhang zwischen experimenteller Katatonie und Förderung von tonischen Streckkrämpfen. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 235, 87–95 (1959)Google Scholar
  54. Koch, R.: Das Verhalten antikonvulsiver Substanzen gegen Aminophenazon- und Strychnin-Krämpfe. Arzneim. Forsch. 7, 461 (1957)Google Scholar
  55. Koslow, S.H., Roth, L.J.: Reserpine and acetazolamide in maximum electroshock seizures in the rat. J. Pharmacol. Exp. Ther. 176, 711–717 (1971)PubMedGoogle Scholar
  56. Lehmann, A.: Audiogenic seizures data in mice supporting new theories of biogenic amines mechanisms in the central nervous system. Life Sci. 6, 1423–1431 (1967)PubMedGoogle Scholar
  57. Lessin, A.W., Parkes, M.W.: The effects of reserpine and other agents upon leptazol convulsions in mice. Br. J. Pharmacol. 14, 108–111 (1959)Google Scholar
  58. Logothetis, J.: Spontaneous epileptic seizures and electroencephalographic changes in the course of phenothiazine therapy. Neurology 17, 869–877 (1967)PubMedGoogle Scholar
  59. Maj, J., Sowinska, H., Baran, L., Palider, W.: The central action of clozapine. Pol. J. Pharmacol. Pharm. 26, 425–435 (1974)PubMedGoogle Scholar
  60. Manian, A.A., Efron, D.H., Goldberg, M.E.: A comparative pharmacological study of a series of monohydroxylated and methoxylated chlorpromazine derivatives. Life Sci. 4, 2425–2438 (1965)PubMedGoogle Scholar
  61. Maynert, E.W., Marczynski, T.J., Browning, R.A.; The role of the neurotransmitters in the epilepsies. In: Advances in Neurology, Friedlander, W.J. (ed.), Vol. 13, pp. 79–147. New York: Raven Press 1975Google Scholar
  62. Mercier, J.: Sur l’action anticonvulsivante expérimentale de la chlorpromazine. Comp. Rend. Soc. Biol. 149, 370–382 (1955)Google Scholar
  63. Meyer, HJ., Meyer-Burg, J.: Hemmung des Elektrokrampfes durch die Kawa-Pyrone Dihy-dromethysticin und Dihydrokawain. Arch. Int. Pharmacodyn. Ther. 148, 97–110 (1964)PubMedGoogle Scholar
  64. Naik Ratan, S.R., Naik Rucha, S., Sheth, A., Sheth, U.K.: Role of mono-amines in pentylenetetrazol induced seizures in mice. Indian J. Med. Res. 62, 1562–1570 (1974)PubMedGoogle Scholar
  65. Nieschulz, O., Popendiker, K., Hoffmann, I.: Weitere pharmakologische Untersuchungen über N-Methyl-piperidyl-(3)-methyl-phenothiazin. Arzneim. Forsch. 5, 680 (1955)Google Scholar
  66. Norton, P.R.E.: The effects of drugs on barbiturate withdrawal convulsions in the rat. J. Pharm. Pharmacol. 22, 763–766 (1970)PubMedGoogle Scholar
  67. Oliver, J.H., Little, J.M., Pirch, J.H.: Effect of reserpine and other drugs on the CNS and lethal effects of hyperbaric oxygen in mice. Arch. Int. Pharmacodyn. Ther. 183, 215–223 (1970)PubMedGoogle Scholar
  68. Ortiz, A., Littleton, J.M., Griffiths, P.J.: A simple screening test for drugs of potential use in ethanol withdrawal. J. Pharm. Pharmacol. 25, 1020–1021 (1973)PubMedGoogle Scholar
  69. Paton, W.D.M.: Experiments on the convulsant and anaesthetic effects of oxygen. Br. J. Pharmacol. Chemother. 29, 350–366 (1967)PubMedGoogle Scholar
  70. Petersen, P.V., Moller Nielsen, I.: Thioxanthene derivatives. In: Medicinal Chemistry. Gordon, M. (ed.), Vol. 4, pp. 301–324. New York, London: Academic Press 1964Google Scholar
  71. Pfeifer, A.K., Galambos, E.: The effect of reserpine α-methyl-m-tyrosine, prenylamine, and guanethidine on metrazol-convulsions and the brain monoamine level in mice. Arch. Int. Pharmacodyn. Ther. 165, 201–211 (1967)PubMedGoogle Scholar
  72. Piala, J.J., High, J.P., Hassert, Jr., G.L., Burke, J.C., Craver, B.N.: Pharmacological and acute toxicological comparisons of triflupromazine and chlorpromazine. J. Pharmacol. Exp. Ther. 127, 55–65 (1959)PubMedGoogle Scholar
  73. Plotnikoff, N.P.: Bioassay of potential tranquilizers and sedatives against audiogenic seizures in mice. Arch. Int. Pharmacodyn. Ther. 116, 130–135 (1958)PubMedGoogle Scholar
  74. Plotnikoff, N.: Ataractics and strain differences in audiogenic seizures in mice. Psychopharma-cologia 1, 429–432 (1960)Google Scholar
  75. Plotnikoff, N., Green, D.M.: Bioassay of potential ataraxic agents against audiogenic seizures in mice. J. Pharmacol. Exp. Ther. 119, 294–298 (1957)PubMedGoogle Scholar
  76. Preston, J.B.: Effects of chlorpromazine on the central nervous system of the cat: A possible neural basis for action. J. Pharmacol. 118, 100–115 (1956)Google Scholar
  77. Prockop, D.J., Shore, P.A., Brodie, B.B.: Anticonvulsant properties of monoamine oxidase inhibitors. Ann. N.Y. Acad. Sci. 86, 643–651 (1959a)Google Scholar
  78. Prockop, D.J., Shore, P.A., Brodie, B.B.: An anticonvulsant effect of monoamine oxidase inhibitors. Experientia 15, 145–147 (1959b)PubMedGoogle Scholar
  79. Rudzik, A.D., Johnson, G.A.: Effect of amphetamine and amphetamine analogs on convulsive thresholds. In: Amphetamines and related compounds. Costa, E., Garattini, S. (eds.), pp. 715–728. New York: Raven Press 1970Google Scholar
  80. Rudzik, A.D., Mennear, J.H.: The mechanism of action of anticonvulsants. I. Diphenylhydan-toin. Life Sci. 4, 2373–2382 (1965)PubMedGoogle Scholar
  81. Sacra, P., McColl, J.D.: Effects of ataractics on some convulsant and depressant agents in mice. Arch. Int. Pharmacodyn. Ther. 117, 1–8 (1958)PubMedGoogle Scholar
  82. Sanders, H.D.: A comparison of the convulsant activity of procaine and pentylenetetrazol. Arch. Int. Pharmacodyn. Ther. 170, 165–177 (1967)PubMedGoogle Scholar
  83. Sayers, A.C.: Prediction of possible convulsive activity in man. Pharmacol. Ther. 5, 563–570 (1979)Google Scholar
  84. Schallek, W., Kuehn, A., Seppelin, D.K.: Central depressant effects of methylprylon. J. Pharmacol. Exp. Ther. 118, 139–147 (1956)PubMedGoogle Scholar
  85. Schallek, W., Zabransky, F., Kuehn, A.: Effects of benzodiazepines on central nervous system of the cat. Arch. Int. Pharmacodyn. Ther. 149, 467–483 (1964)PubMedGoogle Scholar
  86. Schenker, E., Herbst, H.: Phenothiazine und Azaphenothiazine als Heilmittel. Fortschritte der Arzneimittelforschung. Jucker, E. (ed.), Vol. 5, pp. 268–627. Basel, Stuttgart: Birkhäuser 1963Google Scholar
  87. Schlesinger, K., Boggan, W.O., Freedman, D.X.: Genetics of audiogenic seizures: II. Effects of pharmacological manipulation of brain serotonin, norepinephrine, and gamma-amino-butyric acid. Life Sci. 7, 437–447 (1968)PubMedGoogle Scholar
  88. Schlesinger, K., Boggan, W.O., Freedman, D.X.: Genetics of audiogenic seizures: III. Time response relationship between drug administration and seizure susceptibility. Life Sci. 9, 721–729 (1970)Google Scholar
  89. Slater, E., Beard, A.W.: The schizophrenia-like psychoses of epilepsy i. psychiatric aspects. Br. J. Psychiatry 109, 95–150 (1963)PubMedGoogle Scholar
  90. Stull, R.E., Jobe, P.C., Geiger, P.F., Ferguson, G.G.: Effects of dopamine receptor stimulation and blockade on Ro 4–1284-induced enhancement of electroshock seizures. J. Pharm. Pharmacol. 25, 842–844 (1973)PubMedGoogle Scholar
  91. Suarez, M., Teijeira, J., Dominguez, J., Sierra, G.: Estudio experimental sobre clorpromazina y convulsiones. Rev. Esp. Pediatr. 13, 165–170 (1957)PubMedGoogle Scholar
  92. Swinyard, E.A., Wolf, H.H., Fink, G.B., Goodman, L.S.: Some neuropharmacological properties of thioridazine hydrochloride (Mellaril). J. Pharmacol. Exp. Ther. 126, 312–317 (1959)Google Scholar
  93. Takagi, H., Yamamoto, S., Takaori, S., Ogiu, K.: The effect of LSD and reserpine on the central nervous system of the cat. The antagonism between LSD and chlorpromazine or reserpine. Jpn. J. Pharmacol. 7, 119–134 (1958)PubMedGoogle Scholar
  94. Tedeschi, D.H., Benigni, J.P., Elder, C.J., Yaeger, J.C., Flanigan, J.V.: Effects of various phenothiazines on minimal electroshock seizure threshold and spontaneous motor activity of mice. J. Pharmacol. Exp. Ther. 123, 35–38 (1958)PubMedGoogle Scholar
  95. Tedeschi, D.H., Tedeschi, R.E., Cook, L., Mattis, P.A., Fellows, E.J.: The neuropharmacology of trifluoperazine: A potent psychotherapeutic agent. Arch. Int. Pharmacodyn. Ther. 122, 129 (1959)PubMedGoogle Scholar
  96. Teschendorf, H.J., Worstmann, W., Kretzschmar, R.: Interactions of anticonvulsants in experimental seizures. Naunyn Schmiedebergs Arch. Pharmacol. 302, R56 (1978)Google Scholar
  97. Teschendorf, H.J., Safer, A., Worstmann, W., Kretzschmar, R.: Untersuchungen zur Wirkung von Antikonvulsiva-Neuroleptika-Kombinationen auf experimentelle Krämpfe. Arzneim. Forsch, (in preparation) (1980)Google Scholar
  98. Tripod, J., Bein, H.J., Meier, R.: Characterization of central effects of serpasil (reserpine, a new alkaloid of Rauwolfia serpentina B.) and of their antagonistic reactions. Arch. Int. Phar-macodyn. Ther. 96, 406–425 (1954)Google Scholar
  99. Wardell, J.R., Jr., Staples, R.G., III: Animal studies comparing the neuropharmacological pro file of a trifluoperazine HCl-Amobarbital combination with that of the individual components. Arch. Int. Pharmacodyn. Ther. 179, 106–120 (1969)PubMedGoogle Scholar
  100. Weiss, L.R., Nelson, J.W., Tye, A.: The facultative action of reserpine on metrazol convulsions when modified by iproniazid. J. Am. Pharmacol. Assoc. 49, 514–517 (1960)Google Scholar
  101. Wenger, G.R., Stitzel, R.E., Craig, C.R.: The role of biogenic amines in the reserpine-induced alteration of minimal electroshock seizure thresholds in the mouse. Neuropharmacology 12, 693–703 (1973)PubMedGoogle Scholar
  102. Worms, P, Lloyd, K.G.: Differential blockade of bicuculline convulsions by neuroleptics. Eur. J. Pharmacol. 51, 85–88 (1978)PubMedGoogle Scholar
  103. Yamamoto, I., Otori, K., Inoki, R.: Pharmacological studies on antagonists against nicotine-induced convulsions and death. Jpn. J. Pharmacol. 16, 402–415 (1966)PubMedGoogle Scholar
  104. Yamamoto, I., Inoki, R., Iwatsubo, K.: Antagoniststic effects of phenothiazine derivatives on nicotine-induced death in mice. Jpn. J. Pharmacol. 17, 133–134 (1967)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • R. Kretzschmar
  • H. J. Teschendorf

There are no affiliations available

Personalised recommendations