Metabolism of Antidepressants

  • M. H. Bickel
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 55 / 1)


In the most general terms, the fate of a drug in the body can be summarized as follows: The drug undergoes absorption, i.e., transfer from the site of administration into the blood circulation. It is then further transferred to sites of metabolism, sites of excretion, sites of storage (nonspecific receptors), and sites of action (specific receptors). Within this complex interplay, drug metabolism is of particular importance because it influences both the pharmacokinetic as well as the pharmacodynamic situation. Thus, each of the metabolites formed may again be subject to the processes of transfer, distribution, excretion, and binding. Furthermore the action of the drug may be shortened, prolonged or qualitatively altered according to the activity of the metabolites.


Tertiary Amine Polar Metabolite Aromatic Hydroxylation Aliphatic Hydroxylation Glucuronic Acid Conjugation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexanderson, B., Borga, O.: Urinary excretion of nortriptyline and five of its metabolites in man after single and multiple oral doses. Eur. J. Clin. Pharmacol. 5, 174–180 (1973)Google Scholar
  2. Alexanderson, B.: Pharmacokinetics of desmethylimipramine and nortriptyline in man after single and multiple oral doses — a cross-over study. Eur. J. Clin. Pharmacol. 5, 1–10 (1972)Google Scholar
  3. Alvan, G., Borga, O., Lind, M., Palmer, L., Siwers, B.: First pass hydroxylation of nortriptyline: Concentrations of parent drug and major metabolites in plasma. Eur. J. Clin. Pharmacol. 11, 219–224 (1977)PubMedGoogle Scholar
  4. Amundson, M.E., Manthey, J.A.: Excretion of nortriptyline HCl in man. I. Detection and determination of urinary nortriptyline. J. Pharm. Sci. 55, 277–280 (1966)PubMedGoogle Scholar
  5. Beckett, A.H., Al-Sarraj, S.: Metabolism of amitriptyline, nortriptyline, imipramine and desi-pramine to yield hydroxy lamines. J. Pharm. Pharmacol. 25, 335–336 (1973)PubMedGoogle Scholar
  6. Belvedere, G., Rovei, V., Pantarotto, C., Frigerio, A.: Identification of cyclobenzaprine-10, 11-epoxide and other metabolites after incubation of cyclobenzaprine with rat liver microsomes. Xenobiotica 5, 765–771 (1975)Google Scholar
  7. Bertilsson, L., Alexanderson, B.: Stereospecific hydroxylation of nortriptyline in man in relation to interindividual differences in its steady-state plasma level. Eur. J. Clin. Pharmacol. 4, 201–205 (1972)Google Scholar
  8. Bickel, M.H.: Untersuchungen zur Biochemie und Pharmakologie der Thymoleptica. Prog. Drug Res. 77, 121–225 (1968)Google Scholar
  9. Bickel, M.H.: N-oxide formation and related reactions in drug metabolism. Xenobiotica 1, 313–319(1971)PubMedGoogle Scholar
  10. Bickel, M.H.: Liver metabolic reactions: Tertiary amine N-dealkylation, tertiary amine N-oxi-dation, N-oxide reduction, and N-oxide N-dealkylation. I. Tricyclic tertiary amine drugs. Arch. Biochem. Biophys. 148, 54–62 (1972)PubMedGoogle Scholar
  11. Bickel, M.H.: Poisoning by tricyclic antidepressant drugs. General and pharmacokinetic considerations. Int. J. Clin. Pharmacol. Biopharm. 11, 145–176 (1975)PubMedGoogle Scholar
  12. Bickel, M.H., Baggiolini, M.: The metabolism of imipramine and its metabolites by rat liver microsomes. Biochem. Pharmacol. 15, 1155–1169 (1966)PubMedGoogle Scholar
  13. Bickel, M.H., Börner, H.: Uptake, subcellular distribution, and transfer processes of imipramine and its metabolites formed in rat liver perfusion systems. Naunyn Schmiedeberg’s Arch. Pharmac. 284, 339–352 (1974)Google Scholar
  14. Bickel, M.H., Brodie, B.B.: Structure and antidepressant activity of imipramine analogues. Int. J. Neuropharmacol. 3, 611–621 (1964)PubMedGoogle Scholar
  15. Bickel, M.H., Gigon, P.L.: Metabolic interconversions and binding of imipramine, imipramine-N-oxide, and desmethylimipramine in rat liver slices. Xenobiotica 1, 631–641 (1971)PubMedGoogle Scholar
  16. Bickel, M.H., Minder, R.: Metabolism and biliary excretion of the lipophilic drug molecules, imipramine and desmethylimipramine in the rat. I. Experiments in vivo and with isolated perfused livers. Biochem. Pharmacol. 19, 2425–2435 (1970a)PubMedGoogle Scholar
  17. Bickel, M.H., Minder, R.: Metabolism and biliary excretion of the lipophilic drug molecules, imipramine and desmethylimipramine in the rat. II. Uptake into bile micelles. Biochem. Pharmacol. 19, 2437–2443 (1970b)PubMedGoogle Scholar
  18. Bickel, M.H., Weder, H.J.: The total fate of a drug: Kinetics of distribution, excretion, and formation of 14 metabolites in rats treated with imipramine. Arch. Int. Pharmacodyn. Ther. 173, 433–463 (1968a)PubMedGoogle Scholar
  19. Bickel, M.H., Weder, H.J.: Demethylation of imipramine in the rat as influenced by SKF 525-A and by different routes of administration. Life Sci. 7, 1223–1230 (1968b)PubMedGoogle Scholar
  20. Bickel, M.H., Weder, H.J.: Buccal absorption and other properties of pharmacokinetic importance of imipramine and its metabolites. J. Pharm. Pharmacol. 21, 160–168 (1969)PubMedGoogle Scholar
  21. Bickel, M.H., Sulser, F., Brodie, B.B.: Conversion of tranquilizers to antidepressants by removal of one N-methyl group. Life Sci. 4, 247–253 (1963)PubMedGoogle Scholar
  22. Bickel, M.H., Flückiger, M., Baggiolini, M.: Vergleichende Demethylierung von tricyclischen Psychopharmaka durch Rattenleber-Mikrosomen. Arch. Pharmak. Exp. Path. 256, 360–366 (1967)Google Scholar
  23. Bickel, M.H., Minder, R., Di Francesco, C.: Formation of N-glucuronide of desmethylimipramine in the dog. Experientia 29, 960–961 (1973)PubMedGoogle Scholar
  24. Borga, O., Garle, M.: A gas chromatographic method for the quantitative determination of nortriptyline and some of its metabolites in human plasma and urine. J. Chromatogr. 68, 77–88 (1972)PubMedGoogle Scholar
  25. Brochon, R., Lehner, H., Gauch, R., Rudin, O.: The detection and determination of diben-zepine and its metabolites in autopsy material. Arch. Toxikol. (Berl.) 24, 249–259 (1969)Google Scholar
  26. Buckley, J.P., Steenberg, M.L., Jandhyala, B.S., Perel, J.M.: Effects of imipramine, desmethylimipramine and their 2-OH-metabolites on hemodynamics and myocardial contractility in dogs. Fed. Proc. 34, 450 (1975)Google Scholar
  27. Caddy, B., Fish, F., Tranter, J.: Studies on the oxidation of amitriptyline. Analyst 101, 244–254 (1976)PubMedGoogle Scholar
  28. Cassano, G.B., Sjöstrand, S.E., Hansson, E.: Distribution and fate of 14C-amitriptyline in mice and rats. Psychopharmacologia 8, 1–11 (1965)PubMedGoogle Scholar
  29. Charalampous, K.D., Johnson, P.C.: Studies of 14C-protriptyline in man: Plasma levels and excretion. J. Clin. Pharmacol. 7, 93–96 (1967)Google Scholar
  30. Christensen, H., Felby, S.: Dibenzepine and its metabolites in blood, muscle, liver, vitreous body and urine from fatal poisoning. Acta Pharmacol. Toxicol. 37, 393–401 (1975)Google Scholar
  31. Christiansen, J., Gram, L.F.: Imipramine and its metabolites in human brain. J. Pharm. Pharmacol. 25, 604–608 (1973)PubMedGoogle Scholar
  32. Christiansen, J., Gram., L.F., Kofod, B., Rafaelsen, O.J.: Imipramine metabolism in man. A study of urinary metabolites after administration of radioactive imipramine. Psychopharmacologia 11, 255–264 (1967)PubMedGoogle Scholar
  33. Corona, G.L., Facino, R.M.: Identification and evaluation of amitriptyline and its basic metabolites in rabbits urine. Biochem. Pharmacol. 17, 2045–2050 (1968)PubMedGoogle Scholar
  34. Corona, G.L., Zerbi, F., Facino, R.M., Santagostino, G., Pirillo, D.: Valutazione dell’ amitrip-tilina e dei suoi metaboliti basici nelle urine di soggetti sani e depressi. Boll. Soc. Ital. Biol. Sper. 48, 545–547 (1972)Google Scholar
  35. Crammer, J.L., Rolfe, B.: Metabolism of 14C-imipramine. III. Conversion by rat tissues. Psychopharmacologia 18, 26–37 (1970)PubMedGoogle Scholar
  36. Crammer, J.L., Scott, B.: New metabolites of imipramine. Psychopharmacol. 8, 461–468 (1966)Google Scholar
  37. Crammer, J.L., Scott, B., Woods, H., Rolfe, B.: Metabolism of 14C-imipramine. I. Excretion in the rat and in man. Psychopharmacologia 12, 263–277 (1968)PubMedGoogle Scholar
  38. Crammer, J.L., Scott, B., Rolfe, B.: Metabolism of 14C-imipramine: II. Urinary metabolites in man. Psychopharmacologia 15, 207–225 (1969)PubMedGoogle Scholar
  39. De Leenheer, A., Heyndrickx, A.: Identification of a major metabolite of nortriptyline in human urine. J. Pharm. Sci. 60, 1403–1405 (1971)PubMedGoogle Scholar
  40. Diamond, S.: Human metabolization of amitriptyline tagged with carbon 14. Curr. Ther. Res. 7, 170–175 (1965)PubMedGoogle Scholar
  41. Dingell, J.V., Sanders, E.: Methylation of desmethylimipramine by rabbit lung in vitro. Biochem. Pharmacol. 15, 599–605 (1966)Google Scholar
  42. Dingell, J.V., Sulser, F., Gillette, J.R.: Species differences in the metabolism of imipramine and desipramine. J. Pharmacol. Exp. Ther. 143, 14–23 (1964)PubMedGoogle Scholar
  43. Dreyfuss, J., Swoap, J.R., Chinn, C., Hess, S.M.: Excretion and distribution of thiazesim-14C with its biotransformation in vivo and in vitro. J. Pharm. Sci. 57, 1497–1505 (1968a)PubMedGoogle Scholar
  44. Dreyfuss, J., Cohen, A.I., Hess, S.M.: Metabolism of thiazesim, 5-(2-dimethylaminoethyl)-2,3-dihydro-2-phenyl-l,5-benzothiazepin-4(5H)-one, in the rat in vivo and in vitro. J. Pharm. Sci. 57, 1505–1511 (1968b)PubMedGoogle Scholar
  45. Duhm, B., Maul, W., Medenwald, H., Patzschke, K., Wegner, L.: Untersuchungen mit 14C-markiertem Noxiptilin. Stoffwechsel und Kinetik. Arzneim. Forsch. 19, 858–870 (1969)Google Scholar
  46. Eberholst, I., Huus, I.: Studies on the metabolism of melitracen (N 7001) in rats. Arzneim. Forsch. 16, 876–878 (1966)Google Scholar
  47. Eschenhof, E., Rieder, J.: Untersuchungen über das Schicksal des Antidepressivums Amitriptylin im Organismus der Ratte und des Menschen. Arzneim. Forsch. 19, 957–966 (1969)Google Scholar
  48. Facino, R.M., Corona, G.L.: Identification and evaluation of amitriptyline and its basic metabolites by thin-layer chromatography in rabbit organs. J. Pharm. Sci. 58, 764–765 (1969)PubMedGoogle Scholar
  49. Facino, R.M., Santagostino, G., Corona, G.L.: Presence of an acid metabolite of amitriptyline in rabbit urine. Biochem. Pharmacol. 19, 1503–1505 (1970)PubMedGoogle Scholar
  50. Faigle, J.W., Dieterle, W.: The metabolism and pharmacokinetics of clomipramine (anafranil). J. Int. Med. Res. 1, 281–290 (1973)Google Scholar
  51. Fishman, V., Goldenberg, H.: Identification of a new metabolite of imipramine. Proc. Soc. Exp. Biol. Med. 110, 187–190 (1962)PubMedGoogle Scholar
  52. Forshell, G.P.: The distribution and excretion of (3H,14C)lofepramine in the rat. Xenobiotica 5, 73–82 (1975)PubMedGoogle Scholar
  53. Forshell, G.P.: personal communication, 1977Google Scholar
  54. Forshell, G.P., Schauman, P., Hansen, V., Larsen, U.D., Jørgensen, A., Overø, K.F.: Distribution and metabolism of 3,3-dimethyl-l-(3-methyl-aminopropyl)-l-phenylphthalane (Lu 3-010), a bicyclic compound with thymoleptic properties. Acta Pharmacol. Toxicol. 26, 507–520 (1968)Google Scholar
  55. Frigerio, A., Pantarotto, C.: Epoxide-diol pathway in the metabolism of tricyclic drugs. J. Pharm. Pharmacol. 28, 665 (1976)PubMedGoogle Scholar
  56. Frigerio, A., Cavo-Briones, M., Belvedere, G.: Formation of stable epoxides in the metabolism of tricyclic drugs. Drug Metab. Rev. 5, 197–218 (1976)PubMedGoogle Scholar
  57. Gauch, R., Modestin, J.: Zur Pharmakokinetik von Dibenzepin. Arzneim. Forsch. 23, 687–690 (1973)Google Scholar
  58. Gibaldi, M.: Comparison of observed and predicted bioavailability of nortriptyline in humans following oral administration. J. Pharm. Sci. 64, 1036–1037 (1975)PubMedGoogle Scholar
  59. Gigon, P.L., Bickel, M.H.: N-demethylation and N-oxidation of imipramine by rat and pig liver microsomes. Biochem. Pharmacol. 20, 1921–1931 (1971)PubMedGoogle Scholar
  60. Gillette, J.R., Dingell, J.V., Sulser, F., Kuntzman, R., Brodie, B.B.: Isolation from rat brain of a metabolic product, desmethylimipramine, that mediates the antidepressant activity of imipramine. Experientia 17, 417–418 (1961)PubMedGoogle Scholar
  61. Gram, L.F.: Metabolism of tricyclic antidepressants. Dan. Med. Bull. 21, 218–231 (1974)PubMedGoogle Scholar
  62. Gram, L.F., Christiansen, J.: First-pass metabolism of imipramine in man. Clin. Pharmacol. Ther. 17, 555–563 (1975)PubMedGoogle Scholar
  63. Gram, L.F., Overø, K.F.: First-pass metabolism of nortriptyline in man. Clin. Pharmacol. Ther. 18, 305–314(1975)PubMedGoogle Scholar
  64. Gram, L.F. Kofod, B., Christiansen, J., Rafaelsen, J.: Imipramine metabolism: pH-dependent distribution and urinary excretion. Clin. Pharmacol. Ther. 12, 239–244 (1971)PubMedGoogle Scholar
  65. Gyermek, L.: The pharmacology of imipramine and related antidepressants. Int. Rev. Neuro-biol. 9, 95–143 (1966)Google Scholar
  66. Hammer, W., Sjöqvist, F.: Plasma levels of monomethylated tricyclic antidepressants during treatment with imipramine-like compounds. Life Sci. 6, 1895–1903 (1967)PubMedGoogle Scholar
  67. Hammer, W., Martens, S., Sjöqvist, F.: A compartive study of the metabolism of desmethylimi-pramine, nortriptyline, and oxyphenylbutazone in man. Clin. Pharmacol. Ther. 10, 44–49 (1969)PubMedGoogle Scholar
  68. Hammar, C.G., Alexanderson, B., Holmstedt, B., Sjöqvist, F.: Gas chromatography-mass spectrometry of nortriptyline in body fluids of man. Clin. Pharmacol. Ther. 12, 496–505 (1971)PubMedGoogle Scholar
  69. Hawkins, D.R., Midgley, I., Chasseaud, L.F.: The metabolism of amitriptyline N-oxide in man. (abstr.) 2nd Int. Symp. Biol. Oxidation of Nitrogen in Organic Molecules, p. 64. London: 1977Google Scholar
  70. Herrmann, B.: Untersuchungen über den Stoffwechsel von Insidon. Arzneim. Forsch. 14, 219–222 (1964)Google Scholar
  71. Herrmann, B.: Aspects of the metabolism of imipramine. In.Neuro-Psychopharmacology (Cole, J.O., Brill, H., eds.), p. 557. Washington: 1967Google Scholar
  72. Herrmann, B., Pulver, R.: Der Stoffwechsel des Psychopharmakons Tofranil. Arch. Int. Phar-macodyn. Ther. 126, 454–469 (1960)Google Scholar
  73. Herrmann, B., Schindler, W., Pulver, R.: Papierchromatographischer Nachweis von Stoffwechselprodukten des Tofranil. Med. experimentalis 1, 381–385 (1960)Google Scholar
  74. Hobbs, D.C.: Distribution and metabolism of doxepin. Biochem. Pharmacol. 18, 1941–1954 (1969)PubMedGoogle Scholar
  75. Horesovsky, O., Franc, Z., Kraus, P.: Biochemistry of drugs. XI. The metabolic fate of a new psychotropic drug, 11 -(3-dimethylaminopropylidene)-6, 11 -dihydrodibenz(b,e)-thiepine (prothiadene). Biochem. Pharmacol. 16, 2421–2429 (1967)PubMedGoogle Scholar
  76. Hucker, H.B.: Metabolism of amitriptyline. Pharmacologist 4, 171 (1962)Google Scholar
  77. Hucker, H.B., Porter, C.C.: Studies on the metabolism of amitriptyline. Fed. Proc. 20, 172 (1961)Google Scholar
  78. Hucker, H.B., Balletto, A.J., Demetriades, J., Arison, B.H., Zacchei, A.G.: Epoxide metabolites of protriptyline in rat urine. Drug Metab. Dispos. 3, 80–84 (1975)PubMedGoogle Scholar
  79. Hucker, H.B., Balletto, A.J., Demetriades, J., Arison, B.H., Zacchei, A.G.: Biotransformation of amitriptyline in the dog. Fed. Proc. 35, 244 (1976)Google Scholar
  80. Hucker, H.B., Balletto, A.J., Demetriades, J., Arison, B.H., Zacchei, A.G.: Urinary metabolites of amitriptyline in the dog. Drug Metab. Dispos. 5, 132–142 (1977)PubMedGoogle Scholar
  81. Hunziker, F., Schindler, O.: Zum Stoffwechsel von Noveril: 14C-Markierung und Synthese von Metaboliten. Helv. Chim. Acta 48, 1590–1597 (1965)PubMedGoogle Scholar
  82. Im. Obersteg, J., Bäumler, J.: Suicid mit dem Psychopharmakon Tofranil. Arch. Toxicol. (Bed.) 19, 339–344 (1962)Google Scholar
  83. Jandhyala, B.S., Steenberg, M.L., Perel, J.M., Manian, A.A., Buckley, J.P.: Effects of several tricyclic antidepressants on the hemodynamics and myocardial contractility of the anesthetized dogs. Eur. J. Pharmacol. 42, 403–410 (1977)PubMedGoogle Scholar
  84. Jori, A., Bernardi, D., Pugliatti, C., Garattini, S.: Strain differences in the metabolism of imipramine by rat. Biochem. Pharmacol. 19, 1315–1321 (1970)PubMedGoogle Scholar
  85. Judd, C.I., Ursillo, R.C.: Absorption, distribution, excretion, and metabolism of antidepressants. In: Antidepressants (Fielding, S., Lal, H., eds.), pp. 231–265. New York: Futura 1975Google Scholar
  86. Junod, A.F.: Accumulation of 14C-imipramine in isolated perfused rat lungs. J. Pharmacol. Exp. Ther. 183, 182–187 (1972)PubMedGoogle Scholar
  87. Keberle, H., Riess, W., Meyer-Brunot, H.G., Schmid, K.: Species differences in absorption, metabolism, and excretion illustrated by reference to the psycho-active drugs from the diben-zo-bicyclo-octadiene series. In: Excerpta Medica Foundation (Cerletti, A., Bové, F.J., eds.), Int. Congr. Series 180, pp. 123–127. Amsterdam: 1969Google Scholar
  88. Kline, N.S., Cooper, T., Johnston, B.: Doxepin and desmethyldoxepin serum levels and clinical response. In: Pharmacokinetics of Psychoactive Drugs (Gottschalk, L.A., Merlis, S., eds.), pp. 221–228. New York: Spectrum 1976Google Scholar
  89. Knapp, D.R., Gaffney, T.E., Mc Mahon, R.E., Kiplinger, G.: Studies of human urinary and biliary metabolites of nortriptyline with stable isotope labeling. J. Pharmacol. Exp. Ther. 180, 784–790 (1972)PubMedGoogle Scholar
  90. Kraak, J.C., Bijster, P.: Determination of amitriptyline and some of its metabolites in blood by high-pressure liquid chromatography. J. Chromatogr. 143, 499–512 (1977)PubMedGoogle Scholar
  91. Kruse, H., Hoffmann, I., Gerhards, H.J., Leven, M., Schacht, U.: Pharmacological and biochemical studies with three metabolites of nomifensine. Psychopharmacology 51, 117–123 (1977)PubMedGoogle Scholar
  92. Lapin, I.P.: Pharmacological activity of quaternary derivatives of imipramine and diethyla-minopropionyl-iminodibenzyl. Pharmakopsychiatr. Neuropsychopharmakol. 2, 14–27 (1969)Google Scholar
  93. Lehner, H., Gauch, R., Michaelis, W.: Zum Stoffwechsel von 5-Methyl-10-β-dimethylamino-äthyl-10,11-dihydro-11-oxo-5H-dibenzo-(b,e)(l,4) diazepin HCl. III. Isolierung und Identifizierung von im Urin ausgeschiedenen Metaboliten der Substanz bei Mensch und Tier. Arzneim. Forsch. 17, 185–189 (1967)Google Scholar
  94. Matussek, N., Greil, W.: New antidepressants. In: Psychotherapeutic Drugs (Usdin, E., Forrest, LS., eds.), pp. 1251–1266. New York: Marcel Dekker, 1977Google Scholar
  95. Mc Mahon, R.E., Marshall, F.J., Culp, H.W., Miller, W.M.: The metabolism of nortriptyline-N-methyl-14C in rats. Biochem. Pharmacol. 12, 1207–1217 (1963)Google Scholar
  96. Michaelis, W.: Zum Stoffwechsel von 5-Methyl-10-β-dimethylaminoäthyl-10,11-dihydro-11-oxo-5H-dibenzo-(b,e)(l,4)-diazepin HCl. II. Resorption, Verteilung in den Organen und Ausscheidung der mit 14C markierten Substanz beim Tier. Arzneim. Forsch. 17, 181–185 (1967)Google Scholar
  97. Minder, R., Schnetzer, F., Bickel, M.H.: Hepatic and extrahepatic metabolism of the psychotropic drugs chlorpromazine, imipramine, and imipramine-N-oxide. Naunyn Schmiede-berg’s Arch. Pharmacol. 268, 334–347 (1971)Google Scholar
  98. Nagy, A., Johansson, R.: Plasma levels of imipramine and desipramine in man after different routes of administration. Naunyn Schmiedeberg’s Arch. Pharmacol. 290, 145–160 (1975)Google Scholar
  99. Niazi, S.: Comparison of observed and predicted first-pass metabolism of imipramine in humans. J. Pharm. Sci. 65, 1063–1064 (1976a)PubMedGoogle Scholar
  100. Niazi, S.: Comparison of observed and predicted first-pass metabolism of nortriptyline in humans. J. Pharm. Sci. 65, 1535 (1976b)PubMedGoogle Scholar
  101. Overø, K.F., Jorgensen, A., Hansen, V.: Metabolism, distribution and excretion of the thio-phthalane Lu 5–003, a bicyclic thymoleptic. Acta Pharmacol. Toxicol. 28, 81–96 (1970)Google Scholar
  102. Pachecka, L., Salmona, M., Cantoni, L., Mussini, E., Pantarotto, C., Frigerio, A., Belvedere, G.: Activity of liver microsomal mono-oxygenases on some epoxide-forming tricyclic drugs. I. Kinetics in vitro. Xenobiotica 6, 593–598 (1976)PubMedGoogle Scholar
  103. Perel, J.M., Manian, A.A.: Metabolism of 3-chloroimipramine in humans. Fed. Proc. 36, 939 (1977)Google Scholar
  104. Populaire, P., Terlain, B., Pascal, S., Lebreton, G., Decouvelaere, B.:Résorption, excrétion et biotransformation de la triméprimine (7162 R.P.) chez le chien et le lapin. Contribution à l’identification de plusieurs métabolites. Biotransformation chez l’homme. Produits et Problèmes Pharmaceutiques 25, 632–645 (1970)Google Scholar
  105. Pscheidt, G.R.: Demethylation of imipramine in male and female rats. Biochem. Pharmacol. 11, 501–502 (1962)Google Scholar
  106. Quinn, G.P., Hurwi, M.J., Perel, J.H.: Interspecies differences in drug metabolism. In: Psychotherapeutic Drugs (Usdin, E., Forrest, LS., eds.),pp. 605–623. New York: Marcel Dekker, 1976Google Scholar
  107. Riess, W., Rajagopalan, T.G., Keberle, H.: Metabolismus und Pharmakokinetik von Ludiomil (Maprotilin). In: Depressive Zustände. Erkennung, Bewertung, Behandlung (Kielholz, P., ed.), p. 140. Berne: Hans Huber, 1972Google Scholar
  108. Rosenbloom, P.M., Bass, A.D.: A lung perfusion preparation for the study of drug metabolism. J. Appl. Physiol. 29, 138–144 (1970)PubMedGoogle Scholar
  109. Roubein, I.F., Keup, W.: On the origin of desmethylimipramine in rat brain. Res. Commun. Chem. Pathol. Pharmacol. 10, 633–640 (1975)PubMedGoogle Scholar
  110. Ruelius, H.W.: personal communication, 1977Google Scholar
  111. Ryrfeld, A., Hansson, E.: Biliary excretion of quaternary ammonium compounds and tertiary amines in the rat. Acta Pharmacol. Toxicol. 30, 59–68 (1971)Google Scholar
  112. Santagostino, G., Facino, R.M., Pirillo, D.: Urinary excretion of amitriptyline N-oxide in humans. J. Pharm. Sci. 63, 1690–1692 (1974)PubMedGoogle Scholar
  113. Schatz, F., Jahn, U., Adrian, R.W., Molnar, I.: Untersuchungen über Resorption und Metabolismus des Antidepressivums 9,9-Dimethyl-10-(3-dimethylaminopropyl)acridan-hydro-gentartrat. Arzneim. Forsch. 18, 862–871 (1968)Google Scholar
  114. Schenkman, J.B., Remmer, H., Estabrook, R.W.: Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol. Pharmacol. 3, 113–123 (1967)Google Scholar
  115. Schindler, W.: Über die Konstitutionsermittlung und Synthese eines Metaboliten von N-(é-di-methylaminopropyl)-iminodibenzyl-HCl (Tofranil). Helv. Chim. Acta 43, 35–42 (1960)Google Scholar
  116. Sisenwine, S.F., Tio, C.O., Shrader, S.R., Ruelius, H.W.: The biotransformation of protripty-line in man, pig and dog. J. Pharmacol. Exp. Ther. 175, 51–59 (1970)PubMedGoogle Scholar
  117. Sjöqvist, F., Berglund, F., Borga, O., Hammer, W., Andersson, S., Thorstrand, C.: The pH-dependent excretion of monomethylated tricyclic antidepressants. Clin. Pharmacol. Ther. 10, 826–833 (1970)Google Scholar
  118. Stegmann, R., Bickel, M.H.: Dominant role for tissue binding in the first-pass extraction of imi-pramine by the perfused rat liver. Xenobiotica 7, 737–746 (1977)PubMedGoogle Scholar
  119. Sugiura, M., Iwasaki, K., Kato, R.: Reduced nicotinamide adenine dinucleotide-dependent reduction of tertiary amine N-oxide by liver microsomal cytochrome P-450. Biochem. Pharmacol. 26, 489–495 (1977)PubMedGoogle Scholar
  120. Sulser, F., Watts, J., Brodie, B.B.: On the mechanism of antidepressant action of imipramine-like drugs. Ann. N.Y. Acad. Sci. 96, 279–286 (1962)PubMedGoogle Scholar
  121. Theobald, W., Buch, O., Kunz, H.A., Morpurgo, C.: Zur Pharmakologie von Metaboliten des Imipramins. Med. Pharmacol, experimentalis 15, 187–197 (1966)Google Scholar
  122. Van der Veen, F., De Jong, G.D.: N-(3-oxo-butyl) formation: A new metabolic transformation. Xenobiotica 7, 99–100 (1977)Google Scholar
  123. Von Bahr, C.: Binding and oxidation of amitriptyline and a series of its oxidized metabolites in liver microsomes from untreated and phenobarbital-treated rats. Xenobiotica 2, 293–306 (1972)Google Scholar
  124. Von Bahr, C., Bertilsson, L.: Hydroxylation and subsequent glucuronide conjugation of des-methylimipramine in rat liver microsomes. Xenobiotica 1, 205–212 (1971)Google Scholar
  125. Von Bahr, C., Borga, O.: Uptake, metabolism and excretion of desmethylimipramine and its metabolites in the isolated perfused rat liver. Acta Pharmacol. Toxicol. 29, 359–374 (1971)Google Scholar
  126. Von Bahr, C., Orrenius, S.: Spectral studies on the interaction of imipramine and some of its oxidized metabolites with rat liver microsomes. Xenobiotica 1, 69–78 (1971)Google Scholar
  127. Von Bahr, C., Fellenius, E., Fried, I.: On the “first-pass” effect in the liver of nortriptyline, li-docaine and propanolol. Acta Pharmacol. Toxicol. 31 Suppl., 92 (1972a)Google Scholar
  128. Von Bahr, C., Hietanen, E., Glaumann, H.: Oxidation and glucuronidation of certain drugs in various subcellular fractions of rat liver: Binding of desmethylimipramine and hexobar-bital to cytochrome P-450 and oxidation and glucuronidation of desmethylimipramine, aminopyrine, p-nitrophenol and 1-naphthol. Acta Pharmacol. Toxicol. 31, 107–120 (1972b)Google Scholar
  129. Von Bahr, C., Borga, O., Fellenius, E., Rowland, M.: Kinetics of nortriptyline (NT) in rats in vivo and in the isolated perfused liver: Demonstration of a “first-pass disappearance” of NT in the liver. Pharmacology 9, 177–186 (1973)Google Scholar
  130. Whitnack, E., Knapp, D.R., Holmes, J.C., Fowler, N.O., Gaffney, T.E.: Demethylation of nortriptyline by the dog lung. J. Pharmacol. Exp. Ther. 181, 288–291 (1972)PubMedGoogle Scholar
  131. Ziegler, D.M., Mitchell, C.H., Jollow, D.: The properties of a purified hepatic microsomal mixed function amine oxidase. In: Microsomes and drug oxidations (Gillette, J.R., Conney, A.H., Cosmides, G.J., Estabrook, R.W., Fouts, J.R., Mannering, G.J., eds.), pp. 173–188. New York-London: Academic Press 1969Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • M. H. Bickel

There are no affiliations available

Personalised recommendations