Advertisement

Drug-Induced Alterations in Animal Behavior as a Tool for the Evaluation of Antidepressants: Correlation with Biochemical Effects

  • A. Delini-Stula
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 55 / 1)

Abstract

Since the fortuitous discovery of the antidepressant activity of imipramine by Kuhn (1957), psychopharmacologists have been striving to elaborate an animal model faithfully reproducing the clinical features of human depression. Such a model would not only make it possible to develop better and more specific drugs for the treatment of depression, but also to advance and facilitate the investigation of the aetiological and pathophysiological mechanisms underlying the disease. Many scientists and psychiatrists doubt, however, that a valid model of depression in animal will ever become available. This point of view arises partly from the assumption that depression is a uniquely human disease, inherent in which are the verbal communication and the expression of the state of the mind.

Keywords

Animal Behavior Antidepressant Drug Brain Dopamine Behavioral Stimulation Amino Acid Decarboxylase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andén, N.E., Corrodi, H., Fuxe, K., Hökfelt, B., Hökfelt, T., Rydin, C., Svensson, T.: Evidence for a central noradrenaline receptor stimulation by Clonidine. Life Sci. 9, 513–523 (1970)PubMedGoogle Scholar
  2. Andén, N.E., Strömbom, U., Svensson, T.: Dopamine and noradrenaline receptor stimulation: Reversal of reserpine-induced suppression of motor activity. Psychopharmacology 29,289–298 (1973)Google Scholar
  3. Askew, B.M.: A simple screening procedure for imipramine-like antidepressant agents. Life Sci. 10, 725–730 (1963)PubMedGoogle Scholar
  4. Axelrod, J., Whitby, L.G., Herting, G.: Effect of psychotropic drugs on the uptake of 3H-norepinephrine by tissues. Science 133, 383–384 (1961)PubMedGoogle Scholar
  5. Axelrod, J., Hertting, G., Polter, L.: Effect of drugs on the uptake and release of 3H-norepinephrine in the rat heart. Nature 194, 297 (1962)PubMedGoogle Scholar
  6. Barnett, A., Taber, R.I., Roth, F.E.: Activity of antihistamines in laboratory antidepressant tests. Int. J. Neuropharmacol. 8, 73–79 (1969)PubMedGoogle Scholar
  7. Brittain, R.T., Handley, S.L.: Temperature changes produced by the injection of catecholamines and 5-hydroxytryptamine into the cerebral ventricles of the consious mouse. J. Physiol. (Lond.) 792, 805–813 (1967)Google Scholar
  8. Brodie, B.B., Bickel, M.H., Sulser, F.: Desmethylimipramine, a new type of antidepressant drug. Med. Exp. 5, 454–458 (1961)PubMedGoogle Scholar
  9. Bunney, W.E., Davis, J.M.: Norepinephrine in depressive reactions. Arch. Gen. Psychiatry 13, 483–494 (1965)PubMedGoogle Scholar
  10. Callingham, B.A.: The effects of imipramine and related compounds on the uptake of noradrenaline into sympathetic nerve endings. In: Anti-depressant drugs. Proc. 1 st Int. Symp., Milan, 1966. Garattini, S., Dukes, M.N.G. (eds.), pp. 35–43. Amsterdam: Excerpta Medica 1967Google Scholar
  11. Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,alpha-dimethylmeta-ty-ramine. Eur. J. Pharmacol. 5, 357–366 (1969 a)PubMedGoogle Scholar
  12. Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-alpha-ethyl-meta-tyramine. Eur. J. Pharmacol. 5, 367–366 (1969 b)PubMedGoogle Scholar
  13. Carlton, P.L.: Potentiation of the behavioral effects of amphetamine by imipramine. Psycho-pharmacology 2, 364–376 (1961)Google Scholar
  14. Chen, G., Bohner, B.: The anti-reserpine effects of certain centrally — acting agents. J. Pharmacol. Exp. Ther. 131, 179–184 (1961)PubMedGoogle Scholar
  15. Consolo, S., Dolfini, E., Garattini, S., Valzelli, L.: Desipramine and amphetamine metabolism. J. Pharm. Pharmacol. 19, 253–256 (1967)PubMedGoogle Scholar
  16. Corne, S.J., Pickering, R.W., Warner, B.T.: A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br. J. Pharmacol. 20, 106–120 (1963)Google Scholar
  17. Costa, E., Garattini, S., Valzelli, L.: Interactions between reserpine, chlorpromazine and imi-pramine. Experientia 16, 461–463 (1960)PubMedGoogle Scholar
  18. Costall, B., Naylor, R.J.: Possible involvement of noradrenergic area of the amygdala with stereotyped behavior. Life Sci. 11, 1135–1146 (1972)Google Scholar
  19. Cox, B.: The role of dopamine and noradrenaline in temperature control of normal and reser-pine-pretreated mice. J. Pharm. Pharmacol. 27 (4), 242–247 (1975)PubMedGoogle Scholar
  20. Crews, F.T., Smith, C.B.: Presynaptic alpha-receptor subsensitivity after longterm antidepressant treatment. Science 202, 322–325 (1978)PubMedGoogle Scholar
  21. Delini-Stula, A., Morpurgo, C.: Influence of amphetamine and scopolamine on the catalepsy induced by diencephalic lesions in rats. Int. J. Neuropharmacol. 7, 391–394 (1968)PubMedGoogle Scholar
  22. Delini-Stula, A.: The pharmacology of ludiomil in: Depressive illness. Kielholz, P. (ed.), pp. 113–123. Int. Symp., St. Moritz, 1972. Bern: HuberGoogle Scholar
  23. Delini-Stula, A., Radeke, E., Vassout, A.: Some aspects of the psychopharmacological activity of maprotiline (ludiomil): Effects of single and repeated treatments. J. Int. Med. Res. 6, 421–429 (1978)PubMedGoogle Scholar
  24. De Montigny, C., Aghajanian, G.K.: Tricyclic antidepressants: long term treatment increases responsivity of rat brain neurons to serotonin. Science 202, 1303–1305 (1978)PubMedGoogle Scholar
  25. Dhawan, K.N., Jaju, B.P., Gupta, G.P.: Validity of antagonism of different effects of reserpine as test for antidepressant activity. Psychopharmacologia 18, 94–98 (1970)PubMedGoogle Scholar
  26. Doggett, N.S., Reno, H., Spencer, P.S. J.: The effect of drugs with antidepressant activity upon the hypothermia and behavioral depression induced in mice by pimozide or centrally administered noradrenaline. Neuropharmacology 14, 85–90 (1975 a)PubMedGoogle Scholar
  27. Doggett, N.S., Reno, H., Spencer, P.S.J.: Possible involvement of 5-hydroxytryptamine in the antidepressant activity of narcotic analgesics. Neuropharmacology 14, 81–84 (1975b)PubMedGoogle Scholar
  28. Dolphin, A.C., Jenner, P., Marsden, C.D.: The relative importance of dopamine and noradrenaline receptor stimulation for the restoration of motor activity in reserpine or alpha-methyl-p-tyrosine pretreated mice. Pharmacol. Biochem. Behav. 4, 661–670 (1976)PubMedGoogle Scholar
  29. Domenjoz, R., Theobald, W.: Zur Pharmakologie des Tofranil [N-(3-Dimethylaminopropyl)-iminodybenzylhydrochlorid]. Arch. Int. Pharmacodyn. Ther. 120, 450–489 (1959)PubMedGoogle Scholar
  30. Everett, G.M.: The dopa response potentiation test and its use in screening for antidepressant drugs. In: Antidepressant drugs. Proc. 1 st Int. Symp., Milan, 1966. Garattini, S., Dukes, M.N.G. (eds.), pp. 164–167. Amsterdam: Excerpta Medica 1967Google Scholar
  31. Fann, W.E., Davis, J.M., Janowsky, D.S., Kaufmann, J.S., Griffith, J.D., Oates, J.A.: Effect of iprindole on amine uptake in man. Arch. Gen. Psychiatry 26, 158–162 (1972)PubMedGoogle Scholar
  32. Fell, P.J., Quantock, D.C., Van der Burg, W.J.: The human pharmacology of GB 94 — a new psychotropic agent. Eur. J. Clin. Pharmacol. 5, 166–173 (1973)Google Scholar
  33. Fielden, R., Green, A.L.: Validity of ptosis as measure of the central depressant action of reserpine. J. Pharm. Pharmacol. 17, 185–187 (1965)PubMedGoogle Scholar
  34. Fleischhauer, J., Al-Shaltchi, B., Brändli, A.: Bericht über eine erste klinische Prüfung von Mianserin (GB 94), einem tetrazyklischen Antidepressivum im offenen Versuch. Arzneim. Forsch. 23 (12), 1808–1813 (1973)Google Scholar
  35. Freeman, J.J., Sulser, F.: Iprindol-amphetamine interactions in the rat: the role of aromatic hy-droxylation of amphetamine in its mode of action. J. Pharmacol. Exp. Ther. 183 (2), 307–315 (1972)PubMedGoogle Scholar
  36. Fuller, R.W., Perry, K.W., Molloy, B.B.: Effect of an uptake inhibitor on serotonin metabolism in rat brain: studies with 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. (Lilly 110140) Life Sci. 15, 1161–1171 (1974)PubMedGoogle Scholar
  37. Garattini, S., Giachetti, A., Pieri, L., Re, R.: Antagonists of reserpine induced eyelid ptosis. Med. Exp. 3, 315–320 (1960)PubMedGoogle Scholar
  38. Garattini, S., Giachetti, A., Jori, A., Pieri, L., Valzelli, L.: Effect of imipramine, amitriptyline and their monomethyl derivatives (analogs) in reserpine activity. J. Pharm. Pharmacol. 14, 509–514 (1962)PubMedGoogle Scholar
  39. Garattini, S., Jori, A.: Interactions between imipramine-like drugs and reserpine on body temperature. In: Antidepressant drugs. Proc. 1 st Int. Symp., Milan, 1966. Garattini, S., Dukes, M.N.G. (eds.), pp. 179–193. Amsterdam: Excerpta Medica 1967Google Scholar
  40. Giurgea, M., Dauby, J., Levis, S., Giurgea, C.: Un test antitétrabénazine modifié, pour le screening des produits antidepressifs. Med. Exp. 9, 249–262 (1963)PubMedGoogle Scholar
  41. Glowinski, J., Axelrod, J.: Inhibition of uptake of tritiated-noradrenaline in the intact rat brain by imipramine and structurally related compounds. Nature 204, 1318–1319 (1964)PubMedGoogle Scholar
  42. Gluckman, M.I., Baum, T.: The pharmacology of iprindole, a new antidepressant. Psychophar-macologia 15, 169–185 (1969)Google Scholar
  43. Grahame-Smith, D.G.: Studies in vivo on the relationship between brain tryptophan, brain 5-HT synthesis and hyperactivity in rats treated with a monoamine oxidase inhibitor and L-tryptophan. J. Neurochem. 18, 1053–1066 (1971 a)PubMedGoogle Scholar
  44. Grahame-Smith, D.G.: Inhibitory effect of chlorpromazine on the syndrome of hyperactivity produced by L-tryptophan or 5-methoxy-N,N-dimethyltryptamine in rats, treated with amonoamine oxydase inhibitor. Br. J. Pharmacol. 43, 856–864 (1971 b)PubMedGoogle Scholar
  45. Green, A.R., Grahame-Smith, D.G.: The role of brain dopamine in the hyperactivity syndrome produced by increased 5-hydroxytryptamine synthesis in rats. Neuropharmacology 13, 949–959 (1974)PubMedGoogle Scholar
  46. Gyermek, L., Possemato, C.: Potentiation of 5-hydroxytryptamine by imipramine. Med. Exp. 3, 225–229 (1960)PubMedGoogle Scholar
  47. Halliwell, G., Quinton, R.M., Williams, F.E.: A comparison of imipramine, chlorpromazine and related drugs in various tests involving autonomic functions and antagonism of reser-pine. Br. J. Pharmacol. 23, 330–350 (1964)Google Scholar
  48. Herting, G., Axelrod, J., Whitby, L.G., Patrick, R.: Effect of drugs on the uptake and metabolism of 3H-norepinephrine. J. Pharmacol. Exp. Ther. 134, 146–153 (1961)PubMedGoogle Scholar
  49. Hoffmann, I.: 8-Amino-2-methyl-4-phenyl-l,2,3,4-tetrahydroisoquinoline, a new antidepressant. Arzneim. Forsch. 23 (1), 45–50 (1973)Google Scholar
  50. Holman, R.B., Seagraves, E., Elliot, G.R., Barchas, J.D.: Stereotyped hyperactivity in rats treated with tranylcypromine and specific inhibitors of 5-HT re-uptake. Behav. Biol. 16, 507–514 (1976)PubMedGoogle Scholar
  51. Hunt, P., Kannengiesser, M.-H., Raynaud, J.P.: Nomifensine a new potent inhibitor of dopamine uptake into synaptosomes from rat brain corpus striatum. J. Pharm. Pharmacol. 26, 370–371 (1974)PubMedGoogle Scholar
  52. Iversen, L.L., Axelrod, J., Glowinski, J.: The effect of antidepressant drugs on the uptake and metabolism of catecholamines in the brain. In: Neuropsychopharmacology. Proc. 5 th Meeting CINP Washington, 1966. Brill, H., Cole, J.O., Deniker, P., Hippius, H., Bradley, P.B. (eds.), pp. 362–366. Amsterdam: Excerpta Medica 1967Google Scholar
  53. Jacobs, B.L.: An animal behavior model for studying central serotonergic synapses. Life Sci. 19, 777–786 (1976)PubMedGoogle Scholar
  54. Jori, A., Bernardi, D.: Importance of catecholamines for the interaction between reserpine and desipramine on body temperature in rats. Pharmacology 4, 235–241 (1970)PubMedGoogle Scholar
  55. Klerman, G.L.: Relationship between preclinical testing and therapeutic evaluation of antidepressant drugs: The importance of new animal models for theory and practice. In: Predictability in psychopharmacology: Preclinical and clinical correlations. Sudilowsky, A., Gershon, S., Beer, B. (eds.), pp. 159–176. New York: Raven Press 1975Google Scholar
  56. Kruse, H., Hoffmann, I., Gerhards, H.J., Leven, M., Schacht, U.: Pharmacological and biochemical studies with three metabolites of nomifensine. Psychopharmacology 51, 117–123 (1977)PubMedGoogle Scholar
  57. Kuhn, R.: Über die Behandlung depressiver Zustände mit einem Iminodibenzylderivat (G 22355). Schweiz. Med. Wochenschr. 87, 1135–1140 (1957)PubMedGoogle Scholar
  58. Lankier, S.I.: A calorigenic effect of imipramine in the mouse? Eur. J. Pharmacol. 7, 224–226 (1969)Google Scholar
  59. Langer, S.Z.: Presynaptic regulation of catecholamine release. Biochem. Pharmacol. 23, 1793–1800 (1974)PubMedGoogle Scholar
  60. Lapin, LP.: Simple pharmacological procedures to differentiate antidepressants and cholinolyt-ics in mice and rats. Psychopharmacologia 11, 79–87 (1967 a)PubMedGoogle Scholar
  61. Lapin, LP.: Comparison of antireserpine and anticholinergic effects of antidepressants and of central and peripheral cholinolytics. In: Antidepressant drugs. Proc. 1 st Int. Symp., Milan, 1966. Garattini, S., Dukes, M.N.G. (eds.), pp. 266–278. Amsterdam: Excerpta Medica 1967bGoogle Scholar
  62. Lemberger, L., Sernatinger, E., Kunzman, R.: Effect of desmethylimipramine, iprindole and DL-erithro-alpha-(3,4-dichlorophenyl)-beta-(t-butyl amino) propanol HCl on the metabolism of amphetamine. Biochem. Pharmacol. 19, 3021–3028 (1970)PubMedGoogle Scholar
  63. Lippmann, W., Pugsley, T.A.: Effects of viloxazine, an antidepressant agent, on biogenic amine uptake mechanisms and related activities. Can. J. Physiol. 54, 494–509 (1976)Google Scholar
  64. Maître, L., Delini-Stula, A., Waldmeier, P.C.: Relations between the degree of monoamine oxidase inhibition and some psychopharmacological responses to monoamine oxidase inhibitors in rats. In: Monoamine oxidase and its inhibition. Ciba Foundation Symp. 39, pp. 247–270. Amsterdam: Elsevier/Excerpta Medica 1976Google Scholar
  65. Maj, J., Pawlowski, L., Wiscniowska, G.: The effect of tricyclic antidepressants on apomor-phine-induced hypothermia in the mouse. Pol. J. Pharmacol. Pharm. 26, 329–336 (1974)PubMedGoogle Scholar
  66. Maxwell, D.R.: The relative potencies of various antidepressant drugs in some laboratory tests. In: Neuropharmacology. Proc. 3 rd Meeting CINP, pp. 501–506. Munich, 1962. Amsterdam: Elsevier 1964Google Scholar
  67. Menge, H.G., Brand, U.: Untersuchungen über die Stereotypen nach Amphetamin und Apo-morphin sowie deren pharmakologische Beeinflussung. Psychopharmacologia 21, 212–228 (1971)PubMedGoogle Scholar
  68. Metyšova, J., Metys, J., Votava, Z.: Attempt to differentiate thymoleptics and neuroleptics by means of their influence on the effects of reserpine. Int. J. Neuropharmacol. 3, 361–368 (1964)PubMedGoogle Scholar
  69. Modigh, K., Svensson, T.H.: On the role of central nervous system catecholamines and 5-hy-droxytryptamine in the nialamide-induced behavioral syndrome. Br. J. Pharmacol. 46, 32–45 (1972)PubMedGoogle Scholar
  70. Modigh, K.: Effect of clorimipramine and protriptyline on the hyperactivity induced by 5-hy-droxytryptophan after peripheral decarboxylase inhibition in mice. J. Neural. Transm. 34, 101–109 (1973)PubMedGoogle Scholar
  71. Modigh, K.: Studies on DL-5-hydroxytryptophan-induced hyperactivity in mice. Adv. Biochem. Psychopharmacol. 10, 213–217 (1974)PubMedGoogle Scholar
  72. Mogilnicka, E., Braestrup, C.: Noradrenergic influence on the stereotyped behavior induced by amphetamine, phenethylamine and apomorphine. J. Pharm. Pharmacol. 28, 253–255 (1976)PubMedGoogle Scholar
  73. Molander, L., Randrup, A.: Investigation of the mechanism by which L-dopa induces gnawing in mice. Acta Pharmacol. Toxicol. (Kbh.) 34, 312–324 (1974)Google Scholar
  74. Molander, L., Randrup, A.: Effects of thymoleptics on behavior associated with changes in brain dopamine. Potentiation of dopa-induced gnawing of mice. Psychopharmacologia 45, 261–265 (1976a)PubMedGoogle Scholar
  75. Molander, L., Randrup, A.: Effects of thymoleptics on behavior associated with changes in brain dopamine. Modification and potentiation of apomorphine-induced stimulation of mice. Psychopharmacology 49, 139–144 (1976 b)PubMedGoogle Scholar
  76. Morpurgo, C., Theobald, W.: Influence of imipramine-like compounds and chlorpromazine on the reserpine hypothermia in mice and the amphetamine-hyperthermia in rats. Med. Pharmacol. Exp. 12, 226–232 (1965)Google Scholar
  77. Morpurgo, C., Theobald, W.: Pharmacological modifications of the amphetamine-induced hyperthermia in rats. Eur. J. Pharmacol. 2, 287–294 (1967)Google Scholar
  78. Nimegeers, C.: Antagonism of reserpine-like activity. In: Industrial pharmacology 2. Antidepressants. Fielding, S., Lal, H. (eds.), pp. 73–98. New York: Futura 1975Google Scholar
  79. Pedersen, V.: Role of catecholamines in compulsive gnawing behavior in mice. Br. J. Pharmacol. 34, 219–220 (1968)Google Scholar
  80. Petersen, P.V., Lassen, N., Hansen, V., Huld, T., Hjortkjaer, J., Holmbald, J., Møller-Nielsen, I., Nymark, M., Pedersen, V., Jørgensen, A., Hougs, W.: Pharmacological studies of a new series of bicyclic thymoleptics. Acta Pharmacol. Toxicol. (Kbh.) 24, 121–133 (1966)Google Scholar
  81. Plotnikoff, N.P., Kastin, A.J., Anderson, M.S., Schally, A.V.: Dopa potentiation by a hypothalamic factor, MSH release inhibiting hormone (MIF). Life Sci. 10 (1), 1279–1283 (1971)Google Scholar
  82. Plotnikoff, N.P., Prange, A.J., Breese, G.R., Anderson, M.S., Wilson, I.C.: Thyrosine releasing hormone: enhancement of Dopa activity by a hypothalamic hormone. Science 178, 417–418 (1972)PubMedGoogle Scholar
  83. Plotnikoff, N.P., White, W.F., Kastin, A.J., Schally, A.V.: Gonadotropine releasing hormone (GnRH): Neuropharmacological studies. Life Sci. 17, 1685–1692 (1975)PubMedGoogle Scholar
  84. Plotnikoff, N.P., Kastin, A.J., Coy, D.H., Christensen, C.W, Schally, A.V, Spirtes, M.A.: Neuropharmacological actions of enkephalin after systemic administration. Life Sci. 19, 1283–1288 (1976)PubMedGoogle Scholar
  85. Pycock, C.J, Jenner, P.G, Marsden, C.D.: The interaction of Clonidine with dopamine-depen-dent behavior in rodents. Naunyn Schmidebergs Arch. Pharmacol. 297, 133–141 (1977)Google Scholar
  86. Quinton, R.M, Halliwell, G.: Effects of alpha-methyl DOPA and DOPA on the amphetamine excitatory response in reserpinized rats. Nature 200, 178–179 (1963)PubMedGoogle Scholar
  87. Randrup, A, Munkvad, I., Fog, R, Gerlach, J, Molander, L., Kjellberg, B, Scheel-Krüger, J.: Mania, depression and brain dopamine. Current developments in psychopharmacology, Vol. 2. New York: Spectrum 1975Google Scholar
  88. Randrup, A, Braestrup, C.: Uptake inhibition of biogenic amines by newer antidepressant drugs: Relevance to the dopamine hypothesis of depression. Psychopharmacology 53, 309–314(1977)PubMedGoogle Scholar
  89. Ross, S.B., Renyi, A.L., Oegren, S.O.: Inhibition of the uptake of noradrenaline and 5-hy-droxytryptamine by chlorphentermine and chlorimipramine. Eur. J. Pharmacol. 17, 107–112(1972)PubMedGoogle Scholar
  90. Rubin, B, Malone, M.H, Waugh, M.H, Burke, J.C.: Bioassay of rauwolfia roots and alkaloids. J. Pharmacol. Exp. Ther. 120, 125–135 (1957)PubMedGoogle Scholar
  91. Sabelli, H.C.: Pressor effects on adrenergic agents and serotonin after administration of imipra-mine. Drug Res. 10, 935–936 (1960)Google Scholar
  92. Schacht, U, Heptner, W.: Effect of nomifensine (Hoe 984), a new antidepressant, on uptake of noradrenaline and serotonin and on release of noradrenaline in rat brain synaptosomes. Biochem. Pharmacol. 23, 3413–3422 (1974)PubMedGoogle Scholar
  93. Scheckel, C.L., Boff, E.: Behavioral stimulation in rats associated with a selective release of brain norepinephrine. Arch. Int. Pharmacodyn. Ther. 152 (3–4), 479–490 (1964)PubMedGoogle Scholar
  94. Scheel-Krüger, J.: Central effect of anticholinergic drugs measured by the apomorphine gnawing test in mice. Acta Pharmacol. Toxicol. (Kbh.) 28, 1–16 (1970)Google Scholar
  95. Schelkunov, E.L.: Efficacy of neuroleptics and antidepressants in the test of apomorphine hypothermia and some data concerning neurochemical mechanisms of the test. Psychopharmacology 55, 87–95 (1977)PubMedGoogle Scholar
  96. Schildkraut, J.J.: The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am. J. Psychiatry 122, 509–522 (1965)PubMedGoogle Scholar
  97. Schildkraut, J.J, Winokur, A., Draskóczy, P.R, Hensle, J.H.: Changes in norepinephrine turnover in rat brain during chronic administration of imipramine and protriptyline: a possible explanation for the delay in onset of clinical antidepressant effects. Am. J. Psychiatry 127, 1032–1039 (1971)PubMedGoogle Scholar
  98. Schmitt, H, Schmitt, H.: Valeur de pharmacologie prévisionelle dans le domaine des antidepresseurs dérivés de l’iminodibenzyle. Therapie 21, 653–674 (1966)PubMedGoogle Scholar
  99. Sigg, E.B, Soffer, L., Gyermek, L.: Influence of imipramine and related psychoactive agents on the effect of 5-hydroxytryptamine and catecholamines on the cat nictitating membrane. J. Pharmacol. Exp. Ther. 142, 13–20 (1963)PubMedGoogle Scholar
  100. Sigg, E.B, Gyermek, L., Hill, R.T.: Antagonism to reserpine induced depression by imipramine, related psychoactive drugs, and some autonomic agents. Psychopharmacologia 7, 144–149 (1965)PubMedGoogle Scholar
  101. Sigg, E.B, Hill, R.T.: The effect of imipramine on central adrenergic mechanisms. In: Neuro-psychopharmacology. Proc. 5 th CINP Congress, Washington, 1966. Brill, H. (ed.), pp. 367–372. Amsterdam, New York: Excerpta Medica 1967Google Scholar
  102. Simon, P, Boissier, J.R.: Evaluating potential antidepressants in animals. J. Int. Med. Res. 3, Suppl. 3, 14–17 (1975)Google Scholar
  103. Stanley, M.E, Glick, S.D.: Interaction of drug effects with testing procedures in the measurement of catalepsy. Neuropharmacology 15, 393–394 (1976)PubMedGoogle Scholar
  104. Starke, K.: Regulation of noradrenaline release by presynaptic receptor systems. Rev. Physiol. Biochem. Pharmacol. 77, 1–124 (1977)PubMedGoogle Scholar
  105. Stein, L., Seifter, J.: Possible mode of antidepressive action of imipramine. Science 134,286–287 (1961)PubMedGoogle Scholar
  106. Stein, L.: New methods for evaluating stimulants and antidepressants. Psychosomatic medicine. 1 st Hahnemann Symposium. Nodine, J.H, Moyer, J.H. (eds.), pp. 297–311. Philadelphia: Lea & Febiger 1962Google Scholar
  107. Stein, L.: Self-stimulation of the brain and the central stimulant action of amphetamine. Fed. Proc. 23, 836–850 (1964)PubMedGoogle Scholar
  108. Stille, G.: Pharmacological investigations of antidepressant compounds. Neuropsychopharma-cology 1, 92–106 (1968)Google Scholar
  109. Strömbom, U.: On the functional role of pre- and postsynaptic catecholamine receptors in brain. Acta Physiol. Scand. [Suppl.] 431, 1–43 (1975)Google Scholar
  110. Sulser, F., Watts, J.S., Brodie, B.B.: Blocking of reserpine action by imipramine, a drug devoid of stimulatory effects in normal animals. Fed. Pro c. 20, 321 (1961)Google Scholar
  111. Sulser, F., Watts, J.S., Brodie, B.B.: On the mechanism of antidepressant action of imiprami-nelike drugs. Ann. N.Y. Acad. Sci. 96, 279–288 (1962)PubMedGoogle Scholar
  112. Sulser, F., Bickel, M.H., Brodie, B.B.: The action of desmethylimipramine in counteracting sedation and cholinergic effects of reserpine-like drugs. J. Pharmacol. Exp. Ther. 144, 321–330 (1964)Google Scholar
  113. Sulser, F., Langlois Owens, M., Dingeil, J.V.: On the mechanism of amphetamine potentiation by desipramine (DMI). Life Sci. 5, 2005–2010 (1966)Google Scholar
  114. Sulser, F., Vetulani, J., Mobley, P.L.: Commentary: Mode of action of antidepressant drugs. Biochem. Pharmacology 27, 257–261 (1978)Google Scholar
  115. Svensson, T.H.: On the role of central noradrenaline in the regulation of motor activity and body temperature in the mouse. Naunyn Schmiedebergs Arch. Pharmacol. 271, 111–120 (1971)Google Scholar
  116. Tang, S.W., Helmeste, D.M., Stancer, H.C.: The effect of acute and chronic desipramine and amitriptyline treatment on rat brain total 3-methoxy-4-hydroxyphenylglygol. Naunyn Schmiedebergs Arch. Pharmacol. 305, 207–211 (1978)Google Scholar
  117. Tedeschi, D.: Ptosis as a model of depression. J. Pharmacol. (Paris), Suppl. 2 (5), 98 (1974)Google Scholar
  118. Theobald, W., Buch, O., Kunz, H.A., Morpurgo, C., Stenger, E.G., Wilhelmi, G.: Vergleichende pharmakologische Untersuchungen mit Tofranil, Pertofran und Insidon. Arch. Int. Pharmacodyn. Ther. 148, (3–4), 560–596 (1964)PubMedGoogle Scholar
  119. Theobald, W., Buch, O., Kunz, H.A.: Vergleichende Untersuchungen über die Beeinflussung vegetativer Funktion durch Psychopharmaka im akuten Tierversuch. Arzneim. Forsch. 15, 117–125(1965)Google Scholar
  120. Theobald, W., Buch, O., Kunz, A., Morpurgo, C.: Zur Pharmakologie des Antidepressivums 3-chlor-5-(3-dimethylamino-propyl)-10, 11-dihydro-5H-dibenz(b,f) azepin. HCl. Arzneim. Forsch. 17, 561–564 (1967)Google Scholar
  121. Ther, L., Schramm, H.: Apomorphin-Synergismus (Zwangsnagen bei Mäusen) als Test zur Differenzierung psychotroper Substanzen. Arch. Int. Pharmacodyn. Ther. 138, 302–310 (1962)PubMedGoogle Scholar
  122. Valzelli, L., Consolo, S., Morpurgo, C.: Influence of imipramine-like drugs on the metabolism of amphetamine. In: Antidepressant drugs. Proc. 1st Int. Symp., Milan, 1966. Garattini, S., Dukes, M.N.G. (eds.), pp. 61–69. Amsterdam: Exerpta Medica 1967Google Scholar
  123. Van Praag, H.M.: Depression and schizophrenia: A contribution to their chemical pathologies. New York: Spectrum 1977Google Scholar
  124. Waldmeier, P.C., Baumann, P., Greengrass, P.M., Maître, L.: Effects of clomipramine and other tricyclic antidepressants on biogenic amine uptake and turnover. Postgrad. Med. J. 52, Suppl. 3, 33–39 (1976)PubMedGoogle Scholar
  125. Waldmeier, P.C., Baumann, P.A.: Effects of clomipramine, nomifensine, viloxazine and mian-serine on the uptake and metabolism of biogenic amines. A review of the literature and some comparative studies. Br. J. Clin. Pract. to be publishedGoogle Scholar
  126. Westfall, T.C.: Local regulation of adrenergic neurotransmission. Physiol. Rev. 57, 659–728 (1977)PubMedGoogle Scholar
  127. Wilson, S.P., Tislow, R.: Differential antagonism of reserpine eyelid closure by imipramine and amphetamine. Proc. Soc. Exp. Biol. Med. 109, 847–848 (1962)PubMedGoogle Scholar
  128. Wirth, W., Gösswald, R., Hörlein, U., Risse, K.H., Kreiskott, H.: Zur Pharmakologie acylier-ter Phenothiazin-Derivate. Arch. Int. Pharmacodyn. Ther. 115, 1–31 (1958)PubMedGoogle Scholar
  129. Young, R.L., Gordon, M.W.: The disposition of (14C) amphetamine in rat brain. J. Neuro-chem. 9, 161–167 (1962)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • A. Delini-Stula

There are no affiliations available

Personalised recommendations