Tricyclic Antidepressants: General Pharmacology

  • I. Møller Nielsen
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 55 / 1)


The antidepressant effect of the first tricyclic antidepressant was not predicted by pharmacologists. In fact, a series of analogs to antihistaminics were screened for central depressant effect (Domenjoz and Theobald, 1959) and first tried clinically as tranquilizers. The recognition of the antidepressant activity of imipramine was due to the serindipity of Kuhn (1957). Following that, pharmacologists began the search for proper animal models to characterize this property of drugs and investigate for possible modes of action. Since then a large number of derivatives have been synthesized, most of which belong to the group of tricyclic antidepressants; a few nontricyclic compounds with antidepressant activity and with largely the same pharmacologic profile of action will be included in the discussion.


Antidepressant Drug Antidepressant Effect Uptake Inhibition Nictitate Membrane Spontaneous Motor Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G.K., Bloom, F.E.: Localization of tritiated serotonin in rat brain by electron-microscopic autoradiography. J. Pharmacol. Exp. Ther. 156, 23–30 (1967)PubMedGoogle Scholar
  2. Axelrod, J., Weil-Malherbe, H., Tomchick, R.: The physiological disposition of H3-epinephrine and its metabolite metanephrine. J. Pharmacol. Exp. Ther. 127, 251–256 (1959)PubMedGoogle Scholar
  3. Axelrod, J., Whitby, L.G., Hertting, G.: Effect of psychotropic drugs on the uptake of H3-norepinephrine by tissues. Science 133, 383–384 (1961)PubMedGoogle Scholar
  4. Barth, N., Muscholl, E.: The effects of the tricyclic antidepressants desipramine, doxepin and iprindole on the isolated perfused rabbit heart. Naunyn-Schmiedeberg’s Arch. Pharmacol. 284, 215–232 (1974)Google Scholar
  5. Blackburn, K.J., French, P.C., Merrils, R.J.: 5-hydroxytryptamine uptake by rat brain in vitro. Life Sci. 6, 1653–1663 (1967)PubMedGoogle Scholar
  6. Boissier, J.-R., Simon, P., Witchitz, S.: Étude chez le cobaye de la toxicité cardiaque de l’imipramine, de l’amitriptyline et de leurs dérivés monodesméthylés. Thérapie XX, 67–75 (1965)Google Scholar
  7. Bonaccorsi, A., Hrdina, P.: Interactions between desipramine and sympathomimetic agents on the cardiovascular system. In: Proceedings of the First International Symposium on Antidepressant Drugs. Garattini, S. (ed), pp. 149–157. Amsterdam: Excerpta Medica Foundation 1967Google Scholar
  8. Born, G.V.R., Gillson, R.E.: Studies on the uptake of 5-hydroxytryptamine by blood platelets. J. Physiol. 146, 472–491 (1959)PubMedGoogle Scholar
  9. Bræstrup, C., Scheel-Krüger, J.: Methylphenidate-like effects of the new antidepressant drug nomifensine (HOE 984). Eur. J. Pharmacol. 38, 305–312 (1976)PubMedGoogle Scholar
  10. Buus Lassen, J., Squires, R.F., Christensen, J.A., Molander, L.: Neurochemical and pharmacological studies on a new 5-HT-uptake inhibitor, FG 4963, with potential antidepressant properties. Psychopharmacology 42, 21–26 (1975)Google Scholar
  11. Cairncross, K.D.: On the peripheral pharmacology of amitriptyline. Arch. Int. Pharmacodyn. Ther. 154, 438–448 (1965)PubMedGoogle Scholar
  12. Cairncross, K.D., McCulloch, M.W., Mitchelson, F.: The action of protriptyline on peripheral autonomic function. J. Pharmacol. Exp. Ther. 149, 365–372 (1965)PubMedGoogle Scholar
  13. Carlsson, A.: The contribution of drug research to investigating the nature of endogenous depression. Pharmakopsychiatr. Neuropsychopharmacol. 9, 2–10 (1976)Google Scholar
  14. Carlsson, A., Waldeck, B.: Inhibition of 3H-metaraminol uptake by antidepressive and related agents. J. Pharm. Pharmacol. 17, 243–244 (1965)PubMedGoogle Scholar
  15. Carlsson, A., Fuxe, K., Ungerstedt, U.: The effect of imipramine of central 5-hydroxytryptamine neurons. J. Pharm. Pharmacol. 20, 150–151 (1968)PubMedGoogle Scholar
  16. Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effect of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-α-ethyl-metatyramine. Eur. J. Pharmacol. 5, 357–366 (1969a)PubMedGoogle Scholar
  17. Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,α-dimethyl-meta-tyramine. Eur. J. Pharmacol. 5, 367–373 (1969 b)PubMedGoogle Scholar
  18. Carlsson, A., Jonason, J., Lindqvist, M.: On the mechanism of 5-hydroxytryptamine release by thymoleptics. J. Pharm. Pharmacol. 21, 769–773 (1969 c)PubMedGoogle Scholar
  19. Carlsson, A., Jonason, J., Lindqvist, M., Fuxe, K.: Demonstration of extraneuronal 5-hydroxytryptamine accumulation in brain following membrane-pump blockade by chlorimipra-mine. Brain Res. 12, 456–460 (1969d)PubMedGoogle Scholar
  20. Carlton, P.L.: Potentiation of the behavioral effects of amphetamine by imipramine. Psycho-pharmacology 2, 364–376 (1961)Google Scholar
  21. Christensen, A.V., Fjalland, B., Møller Nielsen, I.: On the supersensitivity of dopamine receptors, induced by neuroleptics. Psychopharmacology 48, 1–6 (1976)PubMedGoogle Scholar
  22. Christensen, A.V., Fjalland, B., Pedersen, V., Danneskiold-Samsøe, P., Svendsen, O.: Pharmacology of a new phthalane (Lu 10–171), with specific 5-HT uptake inhibiting properties. Eur. J. Pharmacol. 41, 153–162 (1977)PubMedGoogle Scholar
  23. Corsini, G.U., Masala, C., Del Zompo, M., Piccardi, M.P., Mangoni, A.: Potentiation of the antidepressant effect of chlorimipramine following haloperidol withdrawal. 6 th Int. Congr. Pharmacol. Abs. 1080. Helsinki Juli 1975Google Scholar
  24. Costall, B., Kelly, D.M., Naylor, R.J.: Nomifensine: A potent dopaminergic agonist of anti-parkinson potential. Psychopharmacology 41, 153–164 (1975)Google Scholar
  25. Dengler, H.J., Spiegel, H.E., Titus, E.O.: Uptake of tritium-labeled norepinephrine in brain and other tissues of cat in vitro. Science 133, 1072–1073 (1961)PubMedGoogle Scholar
  26. Dengler, H.J., Titus, E.O.: The effect of drugs on the uptake of isotopic norepinephrine in various tissues. Biochem. Pharmacol. 8, 64 (1961)Google Scholar
  27. Domenjoz, R., Theobald, W.: Zur Pharmakologie des Tofranil [N-(3-dimethylaminopropyl)-iminodibenzyl-hydrochlorid]. Arch. Int. Pharmacodyn. Ther. CXX, 450–489 (1959)Google Scholar
  28. Elonen, E.: Correlation of the cardiotoxicity of tricyclic antidepressants to their membrane effects. Med. Biol. 52, 415–423 (1974)PubMedGoogle Scholar
  29. Elonen, E., Mattila, M.J., Saarnivaara, L.: Cardiovascular effects of amitriptyline, nortriptyline, protriptyline and doxepin in conscious rabbits. Eur. J. Pharmacol. 28, 178–188 (1974)PubMedGoogle Scholar
  30. Elonen, E.: Effect of β-adrenoceptor blocking drugs, physostigmine, and atropine on the toxicity of doxepin in mice. Med. Biol. 53, 231–237 (1975)PubMedGoogle Scholar
  31. Elonen, E., Mattila, M.J.: Cardiovascular effects of amitriptyline, nortriptyline, protriptyline and doxepin in conscious rabbits after subacute pretreatment with protriptyline. Med. Biol. 53, 238–244 (1975)PubMedGoogle Scholar
  32. Elonen, E., Linnoila, M., Lukkari, I., Mattila, M.J.: Concentration of tricyclic antidepressants in plasma, heart and skeletal muscle after their intravenous infusion to anaesthetized rabbits. Acta Pharmacol. Toxicol. (Kbh.) 37, 274–281 (1975)Google Scholar
  33. Everett, G.M.: The dopa response potentiation test and its use in screening for antidepressant drugs. In: Proceedings of the First International Symposium on Antidepressant Drugs. Garattini, S. (ed.), pp. 164–167. Amsterdam: Excerpta Medica Foundation 1967Google Scholar
  34. Fuxe, K., Ungerstedt, U.: Localization of 5-hydroxytryptamine uptake in rat brain after intraventricular injection. J. Pharm. Pharmacol. 19, 335–336 (1967)PubMedGoogle Scholar
  35. Garattini, S., Giachetti, A., Jori, A., Pieri, L., Valzelli, L.: Effect of imipramine, amitriptyline and their monomethyl derivatives on reserpine activity. J. Pharm. Pharmacol. 14, 509–514 (1962)PubMedGoogle Scholar
  36. Garattini, S., Jori, A.: Interactions between imipramine-like drugs and reserpine on body temperature. In: Proceedings of the First International Symposium on Antidepressant Drugs. Garattini, S. (ed.), pp. 179–193. Amsterdam: Excerpta Medica Foundation 1967Google Scholar
  37. Glowinski, J., Axelrod, J.: Inhibition of uptake of tritiated-noradrenaline in the intact rat brain by imipramine and structurally related compounds. Nature 204, 1318–1319 (1964)PubMedGoogle Scholar
  38. Gluckman, M.I., Baum, T.: The pharmacology of iprindole, a new antidepressant. Psychopharmacology 15, 169–185 (1969)Google Scholar
  39. Gong, S.N.C., Rogers, K.J.: Role of brain monoamines in the fatal hyperthermia induced by pethidine or imipramine in rabbits pretreated with pargyline. Br. J. Pharmacol. 42, 646 P (1971)Google Scholar
  40. Greeff, K., Wagner, J.: Cardiodepressive und lokalanaesthetische Wirkungen der Thymoleptica. Vergleichende Untersuchungen mit Imipramin, Desipramin, Amitriptylin, Nortriptylin und Melitracen. Arzneim. Forsch. 19, 1662–1664 (1969)Google Scholar
  41. Greenwood, D.T.: Animal pharmacology of viloxazine (vivalan). J. Int. Med. Res. 3, 18–30 (1975)Google Scholar
  42. Halaris, A.E., Freeman, D.X.: Psychotropic drugs and dopamine uptake inhibition. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 54, 247–258 (1975)PubMedGoogle Scholar
  43. Halaris, A.E., Belendiuk, K.T., Freedman, D.X.: Antidepressant drugs affect dopamine uptake. Biochem. Pharmacol. 24, 1896–1898 (1975)PubMedGoogle Scholar
  44. Hanson, H.M.: The effect of amitriptyline, imipramine, chlorpromazine and nialamide on avoidance behavior. Fed. Proc. 20, 396 (1961)Google Scholar
  45. Hertting, G., Axelrod, J., Kopin, I.J., Whitby, L.G.: Lack of uptake of catecholamines after chronic denervation of sympathetic nerves. Nature 189, 66 (1961)PubMedGoogle Scholar
  46. Himwich, H.E.: Stimulants. In: The effect of pharmacological agents on the nervous system. Braceland, F.J. (ed.), pp. 356–383. Baltimore: Williams & Wilkins Company 1959Google Scholar
  47. Hoffmann, I.: 8-amino-2-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline, a new antidepressant. Arzneim. Forsch. 23, 45–50 (1973)Google Scholar
  48. Hoffmeister, F.: Zur Frage pharmakologisch-klinischer Wirkungsbeziehungen bei Antidepressiva, dargestellt am Beispiel von Noxiptilin. Arzneim. Forsch. 19, 458–462 (1969)Google Scholar
  49. Horn, A.S.: The interaction of tricyclic antidepressants with the biogenic amine uptake systems in the central nervous system. Postgrad. Med. J. 52, 25–30 (1976)PubMedGoogle Scholar
  50. Horn, A.S., Trace, R.C.A.M.: Structure-activity relations for the inhibition of 5-hydroxytryptamine uptake by tricyclic antidepressants into synaptosomes from serotoninergic neurones in rat brain homogenates. Br. J. Pharmacol. 51, 399–403 (1974)PubMedGoogle Scholar
  51. Horn, A.S., Coyle, J.T., Snyder, S.H.: Catecholamine uptake by synaptosomes from rat brain. Structure-activity relationships of drugs with differential effects on dopamine and norepinephrine neurons. Mol. Pharmacol. 7, 66–80 (1971)PubMedGoogle Scholar
  52. Horovitz, Z.P., Chow, M.-I.: Effects of centrally acting drugs on the correlation of electrocortical activity and wakefulness of cats. J. Pharmacol. Exp. Ther. 137, 127–132 (1962)PubMedGoogle Scholar
  53. Horovitz, Z.P., Piala, J.J., High, J.P., Burke, J.C., Leaf, R.C.: Effects of drugs on the mouse-killing (muricide) test and its relationship to amygdaloid function. Int. J. Neuropharmacol. 5, 405–411 (1966)PubMedGoogle Scholar
  54. Hunt, P., Kannengiesser, M.-H., Raynaud, J.P.: Nomifensine: a new potent inhibitor of dopamine uptake into synaptosomes from rat brain corpus striatum. J. Pharm. Pharmacol. 26, 370–371 (1974)PubMedGoogle Scholar
  55. Hyttel, J.: Neurochemical characterization of a new potent and selective serotonin uptake inhibitor: Lu 10–171. Psychopharmacology 51, 225–233 (1977)PubMedGoogle Scholar
  56. Hyttel, J.: Inhibition of [3H]-dopamine accumulation in rat striatal synaptosomes by psychotropic drugs. Biochem. Pharmacol. 27, 1063–1068 (1978)PubMedGoogle Scholar
  57. Hyttel, J., Fjalland, B.: Central 5-HTP decarboxylase inhibiting properties of RO 4–4602 in relation to 5-HTP potentiation in mice. Eur. J. Pharmacol. 19, 112–114 (1972)PubMedGoogle Scholar
  58. Iversen, L.L.: The uptake of noradrenaline by the isolated perfused rat heart. Br. J. Pharmacol. 21, 523–537 (1963)Google Scholar
  59. Iversen, L.L.: Inhibition of noradrenaline uptake by drugs. J. Pharm. Pharmacol. 17, 62–64 (1965)PubMedGoogle Scholar
  60. Iversen, L.L.: Uptake mechanisms for neurotransmitter amines. Biochem. Pharmacol. 23, 1927–1935 (1974)PubMedGoogle Scholar
  61. Jandhyala, B.S., Steenberg, M.L., Perel, J.M., Manian, A.A., Buckley, J.P.: Effects of several tricyclic antidepressants on the hemodynamics and myocardial contractility of the anesthetized dogs. Eur. J. Pharmacol. 42, 403–410 (1977)PubMedGoogle Scholar
  62. Jefferson, J.W.: A review of the cardiovascular effects and toxicity of tricyclic antidepressants. Psychosom. Med. 37, 160–179 (1975)PubMedGoogle Scholar
  63. Jori, A., Garattini, S.: Interaction between imipramine-like agents and catecholamine-induced hyperthermia. J. Pharm. Pharmacol. 17, 480–488 (1965)PubMedGoogle Scholar
  64. Kielholz, P., Pöldinger, W.: Die Behandlung endogener Depressionen mit Psychopharmaka. Dtsch. Med. Wochenschr. 93, 701–704 (1968)PubMedGoogle Scholar
  65. Kinnard, W.J., Barry, H., III, Watzman, N., Buckley, J.P.: Methods of evaluation of antidepressant activity. In: Proceedings of the First International Symposium on Antidepressant Drugs. Garattini, S. (ed.), pp. 89–98. Amsterdam: Excerpta Medica Foundation 1967Google Scholar
  66. Kuhn, R.: Über die Behandlung depressiver Zustände mit einem Iminodibenzylderivat (G 22355). Schweiz. Med. Wochenschr. 35/36, 1135–1140 (1957)Google Scholar
  67. Loveless, A.H., Maxwell, D.R.: A comparison of the effects of imipramine, trimipramine, and some other drugs in rabbits treated with a monoamine oxidase inhibitor. Br. J. Pharmacol. 25, 158–170 (1965)Google Scholar
  68. Maxwell, D.R., Palmer, H.T.: Demonstration of anti-depressant or stimulant properties of imipramine in experimental animals. Nature 191, 84–85 (1961)PubMedGoogle Scholar
  69. Maxwell, R.A., Keenan, P.D., Chaplin, E., Roth, B., Eckhardt, S.B.: Molecular features affecting the potency of tricyclic antidepressants and structurally related compounds as inhibitors of the uptake of tritiated norepinephrine by rabbit aortic strips. J. Pharmacol. Exp. Ther. 166, 320–329 (1969)PubMedGoogle Scholar
  70. Modigh, K.: Electroconvulsive shock and postsynaptic catecholamine effects: Increased psychomotor stimulant action of apomorphine and Clonidine in reserpine pretreated mice by repeated ECS. J. Neural Transm. 36, 19–32 (1975)PubMedGoogle Scholar
  71. Modigh, K.: Correlation between clinical effects of various antidepressive treatments and their effects on monoaminergic receptors in the brain. XV Scandinavian Congress of Physiology and Pharmacology, Århus 1976. Acta Physiol. Scand., Suppl. 440, 37 (1976)Google Scholar
  72. Molander, L., Randrup, A.: Effects of thymoleptics on behaviour associated with changes in brain dopamine. I. Potentiation of dopa-induced gnawing of mice. Psychopharmacology 45, 261–265 (1976)Google Scholar
  73. Morpurgo, C.: Drug-induced modifications of discriminated avoidance behavior in rats. Psychopharmacology 8, 91–99 (1965)Google Scholar
  74. Morpurgo, C., Theobald, W.: Influence of imipramine-like compounds and chlorpromazine on the reserpine-hypothermia in mice and the amphetamine-hyperthermia in rats. Med. Pharmacol. Exp. 12, 226–232 (1965)Google Scholar
  75. Møller Nielsen, I., Nymark, M., Hougs, W., Pedersen, V.: The pharmacological properties of melitracen (N 7001) and litracen (N 7049). Arzneim. Forsch. 16, 135–140 (1966)Google Scholar
  76. Møller Nielsen, I., Christensen, A.V., Hyttel, J.: Adaptational phenomena in neuroleptic treatment. In: Advances in Biochemical Psychopharmacology, Vol. 19. Dopamine. Roberts, P.J., Woodruff, G.N.M., Iversen, L.L. (eds.), pp. 267–274. New York: Raven Press 1978Google Scholar
  77. Nymark, M., Møller Nielsen, I.: Reactions due to the combination of monoamineoxidase inhibitors with thymoleptics, pethidine, or methylamphetamine. Lancet Sept. 7, 524–525 (1963)Google Scholar
  78. Pedersen, V.: Potentiation of apomorphine effect (compulsive gnawing behaviour) in mice. Acta Pharmacol. Toxicol. (Kbh.) 25, 63 (1967)Google Scholar
  79. Pedersen, V.: Role of catecholamines in compulsive gnawing in mice. Br. J. Pharmacol. 34, 219P (1968)PubMedGoogle Scholar
  80. Petersen, P.V., Lassen, N., Hansen, V., Huld, T., Hjortkjær, J., Holmblad, J., Moller Nielsen, I., Nymark, M., Pedersen, V., Jørgensen, A., Hougs, W.: Pharmacological studies of a new series of bicyclic thymoleptics. Acta Pharmacol. Toxicol. (Kbh.) 24, 121–133 (1966)Google Scholar
  81. Randrup, A., Bræstrup, C.: Uptake inhibition of biogenic amines by newer antidepressant drugs: Relevance to the dopamine hypothesis of depression. Psychopharmacology 53, 309–314 (1977)PubMedGoogle Scholar
  82. Ross, S.B., Renyi, A.L.: Inhibition of the uptake of tritiated catecholamines by antidepressant and related agents. Eur. J. Pharmacol. 2, 181–186 (1967)PubMedGoogle Scholar
  83. Ross, S.B., Renyi, A.L.: Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur. J. Pharmacol. 7, 270–277 (1969)PubMedGoogle Scholar
  84. Ross, S.B., Renyi, A.L.: Tricyclic antidepressant agents. I. Comparison of the inhibition of the uptake of 3H-noradrenaline and 14C-5-hydroxytryptamine in slices and crude synaptosome preparations of the midbrain-hypothalamus region of the rat brain. Acta Pharmacol. Toxicol. (Kbh.) 36, 382–394 (1975)Google Scholar
  85. Ryall, R.W.: Effects of cocaine and antidepressant drugs on the nictitating membrane of the cat. Br. J. Pharmacol. 17, 339–357 (1961)Google Scholar
  86. Schaeppi, U.: Die Beeinflussung der Reizübertragung im peripheren Sympathicus durch Tofranil. Helv. Physiol. Acta 18, 545–562 (1960)Google Scholar
  87. Scheckel, C.L., Boff, E.: Behavioral effects of interacting imipramine and other drugs with d-amphetamine, cocaine and tetrabenazine. Psychopharmacology 5, 198–208 (1964)Google Scholar
  88. Shaw, D.M.: The practical management of affective disorders. Br. J. Psychiatr. 130, 432–451 (1977)Google Scholar
  89. Shopsin, B., Gershon, S., Goldstein, M., Friedman, E., Wilk, S.: Use of synthesis inhibitors in defining a role for biogenic amines during imipramine treatment in depressed patients. Psychopharmacol. Commun. 1, 239–249 (1975)Google Scholar
  90. Sigg, E.B.: Pharmacological studies with Tofranil. Can. Psychiatr. Assoc. J. 4, S75-S85 (1959)Google Scholar
  91. Sigg, E.B., Osborne, M., Korol, B.: Cardiovascular effects of imipramine. J. Pharmacol. Exp. Ther. 141, 237–243 (1963 a)PubMedGoogle Scholar
  92. Sigg, E.B., Soffer, L., Gyermek, L.: Influence of imipramine and related psychoactive agents on the effect of 5-hydroxytryptamine and catecholamines on the cat nictitating membrane. J. Pharmacol. Exp. Ther. 142, 13–20 (1963 b)PubMedGoogle Scholar
  93. Squires, R.F.: Effects of noradrenaline pump blockers on its uptake by synaptosomes from several brain regions; additional evidence for dopamine terminals in the frontal cortex. J. Pharm. Pharmacol. 26, 364–367 (1974)PubMedGoogle Scholar
  94. Stacey, R.S.: Uptake of 5-hydroxytryptamine by platelets. Br. J. Pharmacol. 16, 284–295 (1961)Google Scholar
  95. Stein, L.: Psychopharmacological substrates of mental depression. In: Proceedings of the First International Symposium on Antidepressant Drugs. Garattini, S. (ed.), pp. 130–140. Amsterdam: Excerpta Medica Foundation 1967Google Scholar
  96. Stein, L., Seifter, J.: Possible mode of antidepressive action of imipramine. Science 134, 286–287 (1961)PubMedGoogle Scholar
  97. Stille, G.: Zur pharmakologischen Prüfung von Antidepressiva am Beispiel eines Dibenzodia-zepins. Arzneim. Forsch. 14, 534–537 (1964)Google Scholar
  98. Stille, G.: Pharmacological investigation of antidepressant compounds. Pharmakospychiatr. Neuropsychopharmakol. 1, 92–106 (1968)Google Scholar
  99. Sulser, F., Watts, J., Brodie, B.B.: On the mechanism of antidepressant action of imipramine-like drugs. Ann. N. Y. Acad. Sci. 96, 279–288 (1962)PubMedGoogle Scholar
  100. Ther, L., Schramm, H.: Apomorphin-Synergismus (Zwangsnagen bei Mäusen) als Test zur Differenzierung psychotroper Substanzen. Arch. Int. Pharmacodyn. Ther. 138, 302–310 (1962)PubMedGoogle Scholar
  101. Thoenen, H., Huerlimann, A., Haefely, W.: Mode of action of imipramine and 5-(3′-methyla-minopropyliden)-dibenzo[a,e]cyclohepta[l,3,5]trien hydrochloride (Ro 4–6011) a new antidepressant drug, on peripheral adrenergic mechanisms. J. Pharmacol. Exp. Ther. 144, 405–414 (1964)Google Scholar
  102. Thorstrand, C.: Cardiovascular effects of poisoning by hypnotic and tricyclic antidepressant drugs. Acta Med. Scand., Suppl. 583, 1–34 (1975)Google Scholar
  103. Todrick, A., Tait, A.C.: The inhibition of human platelet 5-hydroxytryptamine uptake by tricyclic antidepressive drugs. The relation between structure and potency. J. Pharm. Pharmacol. 21, 751–762 (1969)PubMedGoogle Scholar
  104. Valzelli, L., Consolo, S., Morpurgo, C.: Influence of imipramine-like drugs on the metabolism of amphetamine. In: Proceedings of the First International Symposium on Antidepressant Drugs. Garattini, S. (ed.), pp. 61–69. Amsterdam: Excerpta Medica Foundation 1967Google Scholar
  105. Vernier, V.G., Hanson, H.M., Stone, C.A.: The pharmacodynamics of amitriptyline. In: Psychosomatic medicine. The first Hahnemann symposium. Nodine, J.H., Moyer, J.H. (eds.), pp. 683–690. Philadelphia: Lea & Febiger 1962Google Scholar
  106. Votava, Z., Metysová, J., Metys, J., Benesová, O., Bohdanecký, Z.: Comparison of pharmacological effects of some antidepressants of imipramine type and their desmethyl derivatives. In: Neuro-psychopharmacology, Vol. 4. Bente, D., Bradley, P.B. (eds.), pp. 395–401. Amsterdam: Elsevier Publishing Company 1965Google Scholar
  107. Whitby, L.G., Hertting, G., Axelrod, J.: Effect of cocaine on the disposition of noradrenaline labelled with tritium. Nature 187, 604–605 (1960)PubMedGoogle Scholar
  108. Wong, D.T., Horng, J.S., Bymaster, F.P., Hauser, K.L., Molloy, B.B.: A selective inhibitor of serotonin uptake: Lilly 110140, 3-(p-trifluoromethylphenoxy)-N-methyl-3-phenylpropylamine. Life Sci. 15, 471–479 (1974)PubMedGoogle Scholar
  109. Young, J.P.R., Hughes, W.C., Lader, M.H.: A controlled comparison of flupenthixol and amitriptyline in depressed patients. Br. Med. J. 1, 1116–1118 (1976)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • I. Møller Nielsen

There are no affiliations available

Personalised recommendations